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1 Introduction

In the filed of cognitive psychology, simple
recurrent networks are used for recognizing se-
quences of symbols and modeling the language
processing in the human brain. A simple recur-
rent network is a circuit which consists of a finite
number of gates, each of which computes a linear
function whose range is a closed interval $[$0.0, 1. $\mathrm{o}]$

$[4, 5]$ . McClelland et al. showed on an experi-
mental basis that simple recurrent networks can
simulate finite automata [8]. Rrthermore, Elman
showed on an experimental basis that simple re-
current networks can predict the rightmost word
in sentential forms of a particular context-free
grammar with high probability, after a learning
process based on the sample words which are gen-
erated by the grammar $[4, 5]$ . Concerning these
results, it is natural ask whether the computa-
tional capability of simple recurrent networks is
sufficient to recognize natural languages or not.

It is known that processor nets used by Siegel-
mann and Sontag in [10] can simulate Turing Ma-
chines [10]. Processor nets are recurrent networks
which consist of a finite number of processors (or
gates), each of which computes a saturated-linear
function. Siegelmann and Sontag showed the fol-
lowing facts in [10]: if the weights of the connec-
tions in a processor net are rational numbers, it
can simulate an arbitrary Turing Machine. The
proof of this proposition is constructive. More-
over, if the weights of the connections are real
numbers, processor nets can recognize arbitrary
languages and if the weights of connections are
integers, processor nets can only recognize regu-
lar languages. Note that when the weights are
rational numbers (or real numbers), the number
of the sates of processor nets is infinite.

It is trivial that if each gate of simple recurrent
networks computes a saturated linear function,

simple recurrent networks can simulate proces-
sor nets in a straightforward fashion. This means
that simple recurrent networks can recognize re-
cursive languages. In these works, however, the
range of a function computed at each gate is in-
finite. In this paper, we assume that the range
of a function computed at each gate of a simple
recurrent networks is a finite set. This is a quite
realistic assumption especially when we perform
a computer simulation of a simple recurrnet net-
work.

On the other hand, computational complexity
classes on processor nets has been studied. In
[10], Siegelmann and Sontag showed that a class
of languages decided by processor nets in polyno-
mial time equals a class of languages decided by
bring Machines in polynomial time, and 1058
processors are sufficient in this simulation. Indyk
improved this result and showed that 25 proces-
sors are sufficient [7]. Moreover, Balc\’azar et al.
develop further relationships between languages
which are decided by processor nets and other
complexity classes [3]. The details of the rela-
tionships between time complexity classes on pro-
cessor nets and circuit complexity on nonuniform
circuit $\mathrm{f}\mathrm{a}\mathrm{m}\mathrm{i}\mathrm{l}\dot{\mathrm{i}}\mathrm{e}\mathrm{s}$ are shown in [11].

A mathematical definition of simple recurrent
networks will be given in section 2.1, and we adopt
a cirtain assumption on gates of simple recur-
rent networks. Then, we define an equivalence
relation between simple recurrent networks and
Mealy machines which are a finite automata with
output. Our first result is a construction of a
Mealy machine which simulates a simple recur-
rent network. This result shows that, under our
assumption, simple recurrent networks can only
learn a regular language and the computational
capabillty of simple recurrent networks is not suf-
ficient to recognize natural languages.

Next, we define an equivalence relation between
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The outputs of the hidden unit depend on the out-
puts of the input unit and the context unit, while
the outputs of the output unit only depends on
the outputs from the hidden unit. More formally,
we define a SRN as follows.

$1\mathrm{u}_{\mathrm{i}^{\ovalbox{\tt\small REJECT}\cup \mathrm{t}\mathrm{U}\mathrm{w}}}\iota$

Figure 1: A simple recurrent network

simple recurrent networks and Moore machines
which are also finite automata with output. Our
second result is a construction of a simple recur-
rent network which simulates a Moore machine
under our assumption. Therefore, these two con-
structions show that the computational capability
of simple recurrent networks is equal to that of fi-
nite automata with output under our assumption.

In section 5, we discuss the relationships be-
tween the number of states of a finite automaton
with output and the size of a simple recurrent
networks.

2 Preliminaries

2.1 Simple Recurrent Networks
A $S\dot{i}mple$ recurrent network (SRN) consists of an
$\dot{i}nput$ unit, an output $un\dot{i}t$, a hidden unit and a
context $un\dot{i}t$ (see Figure 1). The hidden unit, the
context unit and the output unit are sets of gates
each of which computes a function $f[w_{1}, \ldots, w_{m}]$

($x_{1,\ldots,x_{m})}$ : $\mathrm{R}^{m}arrow \mathrm{R},$ $w_{1},$ $\ldots,$
$w_{m}\in \mathrm{R},$ $m\in \mathrm{N}$

defined by

$f[w_{1}, \ldots,w_{m}](x_{1}, \ldots, x_{m})=\{$

$0$ if $\sum_{i=1}^{m}w:xi<0$

$\sum n$

wixi if $0 \leq\sum_{i=1}^{m}w:x:\leq 1$

$:_{=}1$

1 if $\sum_{1=1}^{m}.w:xi>1$ .

For convenience, we $\mathrm{s}\mathrm{h}\mathrm{a}\mathrm{U}$ use $F$ [ $\sum_{i=}^{m_{1}}$ wixi] in-
stead of $f[w_{1}, \ldots, w_{m}](X1, \ldots, xm)$ bom here on.

The context unit of a SRN holds a copy of the
outputs of the hidden unit at a previous time step.

Definition 2.1 A $S\dot{i}mple$ recurrent network is a
7-tuple $\mathcal{E}=(G, I, O, H, C, A, w)$ , where

1. $G=(V, E)\dot{i}S$ a directed graph, where $V$

is a finite set of nodes $wh_{\dot{i}C}h$ is divided
into the following four sets of gates: an in-
put $un\dot{i}tI=\{x_{1}, \ldots , x_{n}\}\subseteq V$ , an out-
put unit $O=\{y_{1}, \ldots, y_{m}\}\subseteq V$, a hidden
unit $H=\{h_{1}, \ldots, h_{k}\}\subseteq V$ and a con-
text $un\dot{i}tC=\{c_{1}, \ldots, c_{k}\}$ $\subseteq$ V. Then,
$E=\{(v_{1}, v_{2})|(v_{1}, v_{2})\in I\cross H\cup C\cross H\cup H_{\mathrm{X}}$

$C\cup H\cross O\}\dot{i}S$ a set of edges of G. Edges from
the $h_{\dot{i}}dden$ unit to the context $un\dot{i}t$ must be of
the form $(h_{iC_{i}),h_{i}},\in H,$ $c_{i}\in C,$ $1\leq\dot{i}\leq k$ .

2. $A=\{A_{1}, \ldots, A_{k}\}\in \mathrm{R}^{k}\dot{i}S$ a set of $k$ real
numbers, called $in\dot{i}t\dot{i}al$ output of the context
unit.

3. $w$ : $Earrow \mathrm{R}\dot{i}S$ a weight assignment to the
edges $\dot{i}n$ E. We denote the weight of an edge
$(v_{1},v_{2})$ by $w(v_{1}, v_{2})$ . We assume that the
weight of the edge $(h_{i,\mathrm{Q}}),$ $h_{i}\in H,$ $c_{i}\in C,$ $1\leq$

$i\leq k\dot{i}S\mathit{1}$ .

In. this paper, we adopt the following realistic
assumption on gates of simple recurrent networks:

Assumption 2.1 A $funct\dot{i}on$ computed at each
gate of a simple recurrent network is a $funct\dot{i}on$

whose range is a finite set.

This means that we can only physically imple-
ment a logic gate whose output is a value of fi-
nite precision. Rom Assumption 1, for each gate,
there exists a finite set of real numbers which the
gate can output. We define a finite ordered set
VAL which contains these real numbers as follows:

VAL $=$ { $val_{1},$
$\ldots,$

$val_{i},$
$\ldots$ , valj, ..., $val_{p}$ },

where $val_{k}\in \mathrm{R},$ $1\leq k\leq p,$ $0\leq val_{i}<valj$ $\leq$

$1,\dot{i}<j,\dot{i},j,$ $k\in$ N. In the sequel, we assume
that a gate compute a function $F[ \sum_{i}^{m}=1wiXi]$ :
$\mathrm{R}^{m}arrow \mathrm{V}\mathrm{A}\mathrm{L},$ $m\in \mathrm{N}$ .

Now, we define an input sequence and an out-
put sequence of a SRN. For $v\in V,$ $t\geq 0$ , let $S_{v}(t)$

denote the output of the gate $v$ at time $t$ . The
input for a SRN at time $t$ , denoted $\mathcal{I}(t)$ , is the
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sequence $S_{x_{1}}(t)\cdots s_{x_{n}}(t)$ , where $x_{i}\in I,$ $S_{x_{i}}\in$

$\{0,1\},$ $1\leq\dot{i}\leq n$ . The output of a SRN at
time $t\geq 2$ is the sequence $S_{y_{1}}(t)\cdot \mathrm{v}\cdot S_{y_{m}}(t)$, where
$y_{i}\in O,$ $1\leq\dot{i}\leq m$ .
Definition 2.2 An input sequence $\mathcal{I}$ with length
$n$ is $\mathcal{I}=\mathcal{I}(0)\mathcal{I}(2)\mathcal{I}(4)\cdots \mathcal{I}(2(n-1))$ . For
$a$ input sequence $\mathcal{I}$ with length $n$ and a $SRN$

$\mathcal{E}$ , an output sequence of $\mathcal{E}$ is $T_{\mathcal{E}}(\mathcal{I})$ $=$

$\mathcal{O}(2)\mathcal{O}(4)\mathcal{O}(6)\cdots \mathcal{O}(2n)$ .

2.2 Mealy Machines
A Mealy mach\’ine is a deterministic finite au-

tomaton with output $[1, 6]$ .
Definition 2.3 A Mealy machine $M$ is a 6-tuple
$M=(Q, \Sigma, \Delta, \delta, \lambda, q\mathrm{o})$ , where $Q$ is a finite set of
states, $q_{0}\in Q$ is an initial state, $\Sigma$ is an input
alphabet, $\triangle$ is an output alphabet, $\delta$ : $Q\cross\Sigmaarrow Q$

is a transition function, and $\lambda$ : $Q\cross\Sigmaarrow\Delta$ is an
output function.

Let $q(t)\in Q$ denote the state of $M$ at time
$t$ . We define an input sequence and an output
sequence of a Mealy Machine as follows:

Definition 2.4 An input sequence $w$ of a Mealy
machine with length $i\in \mathrm{N}$ , is a string $w=$
$a_{0}a_{1}\cdots a_{i-1},$ $a_{j}\in\Sigma,$ $0\leq j\leq i-1$ .
Definition 2.5 For an input sequence $w$ $=$

$a0a_{1}\cdots ai-1$ , an output sequence of a Mealy ma-
chine $M,$ $T_{M}(w)$ is a string

$T_{M}(w)=\lambda(q(\mathrm{O}), a\mathrm{o})\lambda(q(1), a_{1})\cdots\lambda(q(\dot{i}-1), ai-1)$

such that $q(t+1)=\delta$($q(t)$ , at), $0\leq t\leq\dot{i}-1$ .

We define an equivalence relation between simple
recurrent machines and Mealy machines.

Definition 2.6 A $SRN\mathcal{E}$ is said to be equivalent
to a Mealy machine $M$ if $T_{\mathcal{E}}(W)=T_{M}(w)$ for any
$\dot{i}nput$ sequence $w$ .

2.3 Moore Machines
$.\mathrm{A}$ Moore machine is also a deterministic finite

automaton with output [6].

Definition 2.7 A Moore machine $M$ is a 6-tuple
$M=(Q, \Sigma, \Delta, \delta, \lambda, q\mathrm{o})$ , where $Q$ is a finite set of
states, $q_{0}\in Q$ is an initial state, $\Sigma$ is an input
alphabet, $\Delta$ is an output alphabet, $\delta$ : $Q\cross\Sigmaarrow Q$

is a transition function, and $\lambda$ : $Qarrow\triangle$ is an
output function.

We define an input $\grave{s}equence$ and an output se-
quence of a Moore machine in the same fashion of
those of a Mealy machine. The following lemma
is known [6].

Lemma 2.1 For a Mealy machine $M’$ , there ex-
ists a Moore machine $M$ which is equivalent to
$M’$ .

2.4 Vector representations

Suppose that the number of states of a Moore
machine $M=(Q, \Sigma, \Delta, \delta, \lambda, q\mathrm{o})$ is $m$ , the num-
ber of elements of the input alphabet is $k$ , and
the number of elements of the output alphabet
is $l$ . Namely, let $Q=\{q_{0}, \ldots, q_{m}-1\},$ $\Sigma=$

$\{a_{0}, \ldots, a_{k}-1\}$ and $\Delta=\{b_{0}, \ldots, b_{l-}1\}$ .
We first define a state vector of a Moore ma-

chine. Each entry of a state vector corresponds
to a tuple of a state and an input symbol of a
Moore machine.

Definition 2.8 A state vector of $M$ at time $t$ is
$v(t)\in\{0,1\}^{km}$ and satisfies the following proper-
ties:

1. If $t=0$ and $q(t)=q_{i}$ , from the $\dot{i}k+1$ th entry
to the $\dot{i}k+kth$ entry of $v(t)$ are all l’s and
the others are $0^{)}s$ .

2. If $t\neq 0$ and $q(t)=q_{i}$ , only one entry from
the $ik+1$ th entry to the $\dot{i}k+kth$ entry of $v(t)$

is 1 and the others are $\mathrm{O}’ s$ .

Next, we define an input vector of a Moore ma-
chine. Let $I(t)$ denote a given input symbol of a
Moore machine at time $t$ .
Definition 2.9 An input vector of $M$ at time $t$

is $w(t)\in\{0,1\}^{k}$ , and if $I(t)=a_{i}$ , the $i+1$ th
entry of $w(t)$ is 1 and the others are $\mathrm{O}’ s$ .

We define a state-input vector based on the above
definitions.

Definition 2.10 Let $v(t)=(v_{1}(t), \ldots, vkm(t))\in$

$\{0,1\}^{km}$ a state vector and $w(t)=(w_{1}(t),$ $\ldots$ ,
$w_{k}(t))\in\{0,1\}^{k}$ an input vector of $M$ at time
$t$ . Then, a state-input vector of $M$ at time $t$

is $V(t)=(v_{1}(t), \ldots, vkm(t), w_{1}(t), \ldots, wk(t))\in$

$\{0,1\}^{km}+k$ .

Next, we define an output vector of a Moore ma-
chine. Let $O(t)$ denote an output symbol of a
Moore machine at time $t$ .
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Definition 2.11 If an output vector $\cdot ofM$ at
time $t\dot{i}su(t)\in\{0,1\}^{l}$ , and $O(t)=b_{i}$ , then the
$i+1$ th entry of $u(t)$ is 1 and the others are $\mathrm{O}’ s$ .

Finally, we give the definition of equivalence
relation between simple recurrent networks and
Moore machines.

Definition 2.12 For $a$ input sequence $w,$ $\sup-$

pose that a Moore machine $M$ yeilds the output
sequence $T_{M}(w)$ and a $SRN\mathcal{E}$ yeilds the output
sequence $T_{\mathcal{E}}(w)$ . Then, $\mathcal{E}$ is $sa\dot{i}d$ to be equivalent
to $M$ if $T_{M}(w)=bTg(w)$ for all $w$ where $b$ is the
output alphabet for the initial state of $M$ .

3 Constructing Mealy Mach-
ines

In this section, we will construct a Mealy ma-
chine which is equivalent to a given SRN. We de-
scribe how to define the states,the transition func-
tion and the output function of the SRN.

Suppose that a SRN $\mathcal{E}=(G, I, O, H, C, A, w)$ is
given, where $|I|=n,$ $|O|=m,$ $|H|=|C|=k$ . We
construct a Mealy machine $M=(Q, \Sigma, \Gamma, \delta, \lambda, q_{0})$

which simulates $\mathcal{E}$ in the following way.

1. Each state $p\in Q$ of $M$ represents the output
pattern $a_{c_{1}}\cdots a_{c_{k}}$ of the context unit, where
$a_{c_{t}}\in$ VAL and $\mathrm{q}\in C$ . Note that every out-
put pattern of the context unit can be repre-
sented as a word in VAL$k$ . Thus, the states
of $M$ includes all the repreS.entation of the
output pattern of the context unit of $\mathcal{E}$ .
The initial output pattern of the context unit
of $\mathcal{E}$ corresponds to the initial state$ $q0$ of $M$ .

2. Since the number of the gates in the context
unit is equal to that of the hidden unit, each
state $p\in Q$ of $M$ also represents the output
pattern $a_{h_{1}}\cdots a_{h_{k}}$ of the hidden unit, where
$a_{h_{\mathfrak{i}}}\in \mathrm{V}\mathrm{A}\mathrm{L}$ and $h_{i}\in \mathcal{H}$ .

for each $i,$ $1\leq i\leq k$ . Then, the transition
function $\delta$ of $M$ is defined by $\delta(p, \sigma)=p’$

where $p=a_{c_{1}}\cdots a_{c_{k}}\in Q,$ $\sigma=a_{x_{1}}\cdots a_{x_{n}}\in$

$\Sigma$ and $p’=a_{h_{1}}\cdots ah_{k}\in Q\mathrm{S}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{s}\mathfrak{g}\Gamma$ the above
equations.

4. Finally, we construct the output function $\lambda$

of $M$. Suppose that the output pattern of
the input unit of $\mathcal{E}$ is $a_{x_{1}}\cdots a_{x_{n}}$ , the out-
put pattern of the context unit is $a_{c_{1}}\cdots a_{c_{n}}$

and the output pattern of the hidden unit is
$a_{h_{1}}\cdots a_{h_{k}}$ . The output of $\mathcal{E}$ depends on the
output pattern of the hidden unit. That is,
the output of the gates $a_{y_{i}}$ in the output unit
is given by

$a_{yi}=F[ \sum_{j=1}^{k}w(h_{j,y_{i})]}ah_{k}$ .

Then, the output function $\lambda$ of $M$ is defined
by $\lambda(p, \sigma)=\gamma$ where $p=a_{c_{1}}\cdots a_{c_{k}}\in Q,$ $\sigma=$

$a_{x_{1}}\cdots a_{x_{n}}\in\Sigma,$ $\gamma=a_{y_{1}}\cdots a_{y_{m}}\in Q\mathrm{s}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{S}\mathfrak{h}\Gamma$

the above equations.

We have the following result:

Theorem 3.1 Under Assumption 2.1, for any
simple recurrent network $\mathcal{E}$ , there exists a Mealy
machine $M$ which is equivalent to $\mathcal{E}$ .

4 Constructing Simple Recur-
rent Networks

In this section, we will show that there exits a
SRN which simulates a Moore Machine. For this
purpose, we use a connection matrix of a Moore
machine [2]. Our first goal is to show that a con-
nection matrix of a Moore machine can be imple-
mented on a SRN. Through this section, consider
a Moore machine $M=(Q, \Sigma, \Delta, \delta, \lambda, q\mathrm{o})$ with $Q=$
$\{q_{0}, q_{1}, \ldots, qm-1\}$ and $\Sigma=\{a0, a_{1}, \ldots, ak-1\}$ .

3. We construct the transition function $\delta$ of $M$ .
Suppose that the output pattern of the input
unit of $\mathcal{E}$ is $a_{x_{1}}\cdots a_{x_{n}}$ and the output pattern
of the context unit of $\mathcal{E}$ is $a_{c_{1}}\cdots a_{\mathrm{c}_{n}}$ . The
output pattern of the hidden unit depends on
$a_{c_{1}}\cdot*\cdot ac_{k}$ and $a_{x_{1}}\cdots a_{x_{n}}$ . That is, the output
of the gate $a_{h_{f}}$ in the hidden unit is given by

$a_{h_{i}}=F[_{j=1} \sum^{k}w(Cj, h_{i})a_{c}j+\sum_{j=1}^{n}w(Xj, h_{i})axj]$ ,

4.1 Connection matrices
We first define a connection matrix of a transi-

tion function of a Moore machine [2].

Definition 4.1 A connection matrix $\alpha$ of transi-
tion function of $M$ is

$\alpha_{ij}=\{x\in\Sigma|\exists q_{iq_{j}},\in Q, \delta(q_{i}, x)=qj\}$ ,

where $\alpha_{ij}$ is an entry of the $\dot{i}th$ row and the $jth$

column of the matrix $\alpha$ .
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4.2 Weight matrices
From the definition, a connection matrix $\alpha$ of

$M$ is an $m\cross m$ matrix. We define a weight matrix
$\mathrm{o}\mathrm{f}M$ .

Definition 4.2 For a Moore machine $M$ , $a$

weight matrix $\alpha’$ of $M$ is a $km\cross(km+k)$ matrix
which satisfies the following properties:

$\bullet F_{or}\dot{i}ifand’ Oj,nly\dot{i}fihereex’,0\leq 1\leq\dot{i},j\leq km_{istSh}iheen\iota ry\alpha_{ij}’\dot{i}S\frac{1}{-1,k+1}h\leq k$

such that $\delta(q_{\lfloor}(i-1)/k\rfloor’ ah)=q_{\lfloor}(j-1)/k\rfloor$ ’ and
the entry $\alpha_{ij}’$ is $0$ if and only if there does
not exist $h,$ $0\leq h\leq k-1$ , such that
$\delta(q_{\lfloor}(i-1)/k\rfloor’ ah)=q\lfloor(j-1)/k\rfloor$ .. For $\dot{i},j,$ $1\leq\dot{i}<km$ , $km\leq j\leq km+k$ , the
entry $\alpha_{ij}’$ is $\frac{2k+\overline{1}}{2k+2}$ if (j-km) mod $k=\dot{i}$ mod $k$

and the entry $\alpha_{ij}’$ is $\mathit{0}$ if (j–km) mod $k\neq$

$\dot{i}$ mod $k$ .

Now, we construct a weight matrix $\alpha’\mathrm{h}_{\mathrm{o}\mathrm{m}}$ a con-
nection matrix $\alpha$ as follows:

SRN is a finite set, namely VAL $=\{0,1\}$ . There-
fore, a function computed at each gate is

$F[ \sum_{i=1}^{m}wi^{X]}i=\{$

$0$ if $\sum_{i=1}^{m}$ $wixi<0$
$0$ if $0 \leq\sum_{i=1}^{m}$ $wixi\leq 1$

1 if $\sum_{i=1}^{m}$ $wixi>1$ .

We will define a function $\sigma$ from the function $F$ .

Definition 4.3 For an $n\cross m$ matrix $A$ , a func-
tion $\sigma_{A}$ : $\{0,1\}^{m}arrow\{0,1\}^{n}$ is

$\sigma_{A}(x)=$ ,

where $x=$ $(x_{1}, \ldots , x_{m})$ and

$A=$ .

1. Let $\alpha^{T}$ be a transposed matrix of $\alpha$ .

2. For an $m\cross m$ matrix $\alpha$ of $M$ , let a matrix $\alpha’$

be a $km\cross(km+k)$ matrix.

3. Entries in the 1st,...,the kmth rows and the
1st,. .., the kmth columns of $\alpha’$ are defined
as:

(a) If the entry $\alpha_{ij}$ contains a symbol $at\in$

$\Sigma,$ $k$ entries in the $k(j-1)+1\mathrm{t}\mathrm{h},$ $\ldots$ ,
the $k(j-1)+k\mathrm{t}\mathrm{h}$ columns and the $k(\dot{i}$ -

$1)+t\mathrm{t}\mathrm{h}$ row are all $\frac{1}{k+1}$ .
(b) If the entry $\alpha_{ij}$ does not contains a sym-

bol $at\in\Sigma,$ $k$ entries in the $k(j-1)+1\mathrm{t}\mathrm{h}$,
..., the $k(j-1)+k\mathrm{t}\mathrm{h}$ columns and the
$k(\dot{i}-1)+t\mathrm{t}\mathrm{h}$ row are all $0$ .

4. Entries in the 1st, ...,the kmth rows and the
$km+1\mathrm{t}\mathrm{h},$

$\ldots$ , the $km+k\mathrm{t}\mathrm{h}$ columns of $\alpha’$ are
defined as follows: for the $\dot{i}\mathrm{t}\mathrm{h}$ row, an entry in
the ith row and the $km+$ ($i$ mod $k$ ) $\mathrm{t}\mathrm{h}$ column
of $\alpha’$ is $\frac{2k+1}{2k+2}$ and the other entries are all $0$ .

4.3 Implementing matrices on simple
recurrent networks

In this paper, we already have assume that the
range of a function computed at each gate of a

The outputs of units of SRN’s are regarded as
vectors. A transition function of $M$ can be imple-
mented by using a function $\sigma_{\alpha’}$ .

Lemma 4.1 Suppose that $\delta(q_{i}, a_{j})=q_{h}$ , a state
vector of the state $q_{i}$ is $v$ , an input vector of the
input symbol $a_{j}$ is $w$ , and a state-input vector of
$v$ and $w$ is V. Then, a vector $\sigma_{\alpha’}(V)$ is a state
vector of the state $q_{h}$ .

4.4 Constructing simple recurrent net-
works which simulate Moore ma-
chine.$\mathrm{s}$

In this section, we will construct a SRN which is
equivalent to a given Moore machine. We describe
how to define the input unit, the output unit, the
context unit, the hidden unit, the initial output
and the weights.

Let $M=(Q, \Sigma, \Delta, \delta, \lambda, q\mathrm{o})$ be a Moore machine
. and $m=|Q|,$ $k=|\Sigma|$ , and $l=|\Delta|$ . We will con-
struct a SRN $\mathcal{E}=(G, I, O, H, C, A, w)$ as follows:

1. The input unit is $I=\{x_{1}, \ldots, x_{k}\}$ .
2. The output unit is $O=\{y_{1}, \ldots, y\iota\}$ .

3. The context unit is $C=\{c_{1}, \ldots, C_{k}m\}$ , and
the hidden unit is $H=\{h_{1}, \ldots, h_{km}\}$ .
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4. Let $v(\mathrm{O})$ be a state vector of the initial state
$q_{0}$ and $v(\mathrm{O})=(v_{1}(0), \ldots, vkm(0))$ , where
$v_{i}(0)\in\{0,1\},$ $1\leq\dot{i}\leq km.$ Then, the ini-
tial output $A$ is $A=\{A_{1}, A_{2}, \ldots A_{km}\}$ , where
$A_{i}=v_{i}(\mathrm{O}),$ $1\leq i\leq km$ .

5. Note that $t$ he weight matrix $\alpha’$ of $M$ is a
$km\cross(km+k)$ matrix. We define the weights
as follows:

(a) For an edge $(x_{i}, h_{j}),$ $xi\in I,$ $h_{j}\in H$ , the
weight $w(X_{i}, h_{j})$ is the entry in the $j\mathrm{t}\mathrm{h}$

row and $km+1t\mathrm{h}$ column of $\alpha’$ .
(b) For a edge $(c_{i}, h_{j}),$ $c_{i}\in C,$ $h_{j}\in H$ , the

weight $w(C_{i}, h_{j})$ is the entry in the $j\mathrm{t}\mathrm{h}$

row and $\dot{i}\mathrm{t}\mathrm{h}$ column $\mathrm{f}\alpha’$ .
6. If $\lambda(q_{i})=b_{j}$ , the weight $w(h_{s}, y_{j})$ is an ar-

bitrary value that is greater than 1 for $h_{s}$ ,
$\dot{i}k\leq s\leq\dot{i}k+k$ . The weights of the other
edges are all $0$ .

We obtain the following theorem.
Theorem 4.1 Under Assumption 2.1, for any
Moore machine $M$ , there exists a simple recur-
rent network $\mathcal{E}_{M}$ which is equivalent to $M$ .

5 The Size of Simple Recurrent
Networks

In this section, we discuss the relationships be-
tween the number of states of automata with out-
put and the size of a SRN. Suppose that a SRN
$\mathcal{E}$ is equivalnet to automata with output $M$ . Let
$K(M)$ be a set of automata which are equivalnet
to $M$ and $S(\mathcal{E})$ be a set of SRN’s which are equiv-
alnet to $\mathcal{E}$ . For $M$ , let $\phi(M)$ denote a number of
the states of $M$ . For $\mathcal{E}$ , let $S\dot{i}Ze(\mathcal{E})$ denote the
size of $\mathcal{E}$ , where the size of a SRN is the number
of gates of $\mathcal{E}$ .
Definition 5.1 $M_{\min}$ is $a$ element of $K(M)$

w.hich satisfies
$\phi(M_{\min})=\min\{\phi(M)|M\in K(M)\}$ .

Definition 5.2 $\mathcal{E}_{\min}$ is $a$ element of $S(\mathcal{E})$ which
satisfies

$S \dot{i}ze(\mathcal{E}_{\min})=\min\{size(\mathcal{E})|\mathcal{E}\in S(\mathcal{E})\}$ .
From the above two construction, we obtain the
following theorem.
Theorem 5.1 For $M$ and $\mathcal{E}$ , there exit constants
$C$ and $C’$ such that

6 Conclusion

In this paper, we show that when the range of
a function computed at each gate of a SRN is
a finite set, there exists a Mealy machine which
can simulates the SRN. This result means that,
under our assumption, the computational power
of simple recurrent networks is not exceed $t$hat
of finite automata with output, and thus, is not
sufficient to recognize natural languages.

On the other hand, a simple recurrent network
can simulates a Moore machine as we showed in
Section 4.4. From our two results, we have shown
that the computational capability of simple recur-
rent networks is equal to that of finite automata
under our assumption.
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