oooooooogon
1093 0 1999 O

188-193

188

Baimg ey hT—2 OstEBENICTDODNT

A Wiz (Junnosuke Moriya)

75 B ¥ (Tetsuro Nishino)

BRBERFERFREER EXEREEVAM
T 182-8585 HAER A M A » . 1-5-1

e-mail: jmoriya@sw.cas.uec.ac.jp, nishino@sw.cas.uec.ac.jp

1 Introduction

In the filed of cognitive psychology, simple
recurrent networks are used for recognizing se-
quences of symbols and modeling the language
processing in the human brain. A simple recur-
rent network is a circuit which consists of a finite
number of gates, each of which computes a linear
function whose range is a closed interval [0.0,1.0]
[4, 5]. McClelland et al. showed on an experi-
mental basis that simple recurrent networks can
simulate finite automata [8]. Furthermore, Elman
showed on an experimental basis that simple re-
current networks can predict the rightmost word
in sentential forms of a particular context-free
grammar with high probability, after a learning
process based on the sample words which are gen-
erated by the grammar [4, 5|. Concerning these
results, it is natural ask whether the computa-
tional capability of simple recurrent networks is
sufficient to recognize natural languages or not.

It is known that processor nets used by Siegel-
mann and Sontag in [10] can simulate Turing Ma-
chines [10]. Processor nets are recurrent networks
which consist of a finite number of processors (or
gates), each of which computes a saturated-linear
function. Siegelmann and Sontag showed the fol-
lowing facts in [10]: if the weights of the connec-
tions in a processor net are rational numbers, it
can simulate an arbitrary Turing Machine. The
proof of this proposition is constructive. More-
over, if the weights of the connections are real
numbers, processor nets can recognize arbitrary
languages and if the weights of connections are
integers, processor nets can only recognize regu-
lar languages. Note that when the weights are
rational numbers (or real numbers), the number
of the sates of processor nets is infinite.

It is trivial that if each gate of simple recurrent
networks computes a saturated linear function,

" output.

simple recurrent networks can simulate proces-
sor nets in a straightforward fashion. This means
that simple recurrent networks can recognize re-
cursive languages. In these works, however, the
range of a function computed at each gate is in-
finite. In this paper, we assume that the range
of a function computed at each gate of a simple
recurrent networks is a finite set. This is a quite-
realistic assumption especially when we perform
a computer simulation of a simple recurrnet net-

‘work.

On the other hand, computational complexity
classes on processor nets has been studied. In
[10], Siegelmann and Sontag showed that a class
of languages decided by processor nets in polyno-
mial time equals a class of languages decided by
Turing Machines in polynomial time, and 1058
processors are sufficient in this simulation. Indyk
improved this result and showed that 25 proces-
sors are sufficient [7]. Moreover, Balcazar et al.
develop further relationships between languages
which are decided by processor nets and other
complexity classes [3]. The details of the rela-
tionships between time complexity classes on pro-

_cessor nets and circuit complexity on nonuniform

circuit families are shown in [11].

A mathematical definition of simple recurrent
networks will be given in section 2.1, and we adopt
a cirtain assumption on gates of simple recur-
rent networks. Then, we define an equivalence
relation between simple recurrent networks and
Mealy machines which are a finite automata with
Our first result is a construction of a
Mealy machine which simulates a simple recur-
rent network. This result shows that, under our
assumption, simple recurrent networks can only
learn a regular language and the computational
capability of simple recurrent networks is not suf-
ficient to recognize natural languages.

Next, we define an equivalence relation between

Output Unit

Hidden Unit

Context Unit

Input Unit

- Figure 1: A simple recurrent network

simple recurrent networks and Moore machines
which are also finite automata with output. Our
second result is a construction of a simple recur-
rent network which simulates a Moore machine
under our assumption. Therefore, these two con-
structions show that the computational capability
of simple recurrent networks is equal to that of fi-
nite automata with output under our assumption.

In section 5, we discuss the relationships be-
tween the number of states of a finite automaton
with output and the size of a simple recurrent
networks.

2 Preliminaries

2.1 Simple Recurrent Networks

A simple recurrent network (SRN) consists of an
input unit, an output unit, a hidden unit and a
context unit (see Figure 1). The hidden unit, the
context unit and the output unit are sets of gates
each of which computes a function flwy,..., wm)
(1,..yZm) : R™ = R,wy,...,wm E R,me N
defined by

0 if E:’__l wiz; <0

189

The outputs of the hidden unit depend on the out-
puts of the input unit and the context unit, while
the outputs of the output unit only depends on "
the outputs from the hidden unit. More formally,

“we define a SRN as follows. ‘

Definition 2.1 A simple recurrent network is a
T-tuple £ = (G, 1,0,H,C, A, w), where

1. G = (V,E) is a directed graph, where V
is a finite set of nodes which is divided
into the following four sets of gates: an in-
put unit I = {x1,...,z,} C V, an out-
put unit O = {y1,...,Ym} S V, a hidden
unit H = {h1,...,hx} C V and a con-
text unit C = {ci,...,c,} C V. Then,
E = {(’01,’02) | ('U]_,’Uz) €EIXHUCXHUH x
CUH x O} is a set of edges of G. Edges from
the hidden unit to the context unit must be of
the form (h;,¢;),h; € Hyc; € C,1 < i < k.

2. A = {A,...,A;} € R* is a set of k real
numbers, called initial output of the context
unit.

3. w: E — R is a weight assignment to the
edges in E. We denote the weight of an edge
(vi,v2) by w(vi,v2). We assume that the
weight of the edge (hi,¢;),h; € H,c; € C,1 <
1<kisl.

In. this paper, we adopt the following realistic
assumption on gates of simple recurrent networks:

Assumption 2.1 A function computed at each
gate of a simple recurrent network is a function
whose range is a finite set.

This means that we can only physically imple-
ment a logic gate whose output is a value of fi-
nite precision. From Assumption 1, for each gate,
there exists a finite set of real numbers which the
gate can output. We define a finite ordered set
VAL which contains these real numbers as follows:

VAL = {valy,...,val;, ..., val;, ..., val,},

Flwt, ..., wml(z1,. .., 2m) = Zwm if ogzglww‘-nghere valy € R, 1 <k <p, 0<Lval; < val; <

=1

1 if E:’;l w;x; > 1.

For convenience, we shall use F[Y}/*; wiz;] in-
stead of flwy,..., wn](z1,...,Zm) from here on.

The context unit of a SRN holds a copy of the
outputs of the hidden unit at a previous time step.

1, i< 37, t,j,k € N. In the sequel, we assume
that a gate compute a function F[Y ;~; w;z;] :
R™ — VAL, m € N.

Now, we define an input sequence and an out-
put sequence of a SRN. For v € V,t > 0, let S,(t)
denote the output of the gate v at time ¢. The
input for a SRN at time ¢, denoted Z(t), is the

sequence Sy, (t)---Sz,(t), where z; € I,S;; €
{0,1}, 1 € 7 < n. The output of a SRN at
time ¢ > 2 is the sequence Sy, (t) - - - Sy,, (t), where
1 €0,1<i<m.

Definition 2.2 An input sequence T with length
n is I = Z(0)Z(2)Z(4)---Z(2(n — 1)). For
a input sequence I with length n and a SRN
E, an output sequence of & is Teg(I) =
0(2)0(4)0(6) - - - O(2n).

2.2 Mealy Machines

A Mealy machine is a deterministic finite au-
tomaton with output [1, 6].

Definition 2.3 A Mealy machine M is a 6-tuple
M =(Q,Z,A, 8,) q), where Q is a finite set of
states, go € Q 1s an initial state, ¥ is an input
alphabet, A is an output alphabet, 6 : Q X L — Q
is a transition function, and A : Q@ XX — A is an
output function.

Let ¢(t) € Q denote the state of M at time
t. We define an input sequence and an output
sequence of a Mealy Machine as follows:

Definition 2.4 An input sequence w of a Mealy
machine with length i € N, is a string w =
agay - Ai—1, @5 €3, 0<5<i—-1.

Definition 2.5 For an inpult sequence w =
©apay - a1, an output sequence of a Mealy ma-
chine M, Th(w) is a string

Tm(w) = A(g(0), a0)A(q(1), a1) - - - Ag(i—1), ai-1)
such that q(t +1) = 6(q(t),as), 0 <t <i—1.

We define an equivalence relation between simple
recurrent machines and Mealy machines.

Definition 2.6 A SRN & is said to be equivalent
to a Mealy machine M if Tg(w) = Tr(w) for any
input sequence w.

2.3 Moore Machines

-A Moore machine is also a deterministic finite
automaton with output [6].

Definition 2.7 A Moore machine M is a 6-tuple
M= (Q,%,A,6)\ q), where Q is a finite set of
states, qo € Q is an initial state, ¥ is an input
alphabet, A is an output alphabet, § : Q X £ — Q
is @ tramsition function, and A : Q — A is an
output function.

190

We define an input sequence and an output se-
quence of a Moore machine in the same fashion of
those of a Mealy machine. The following lemma
is known [6].

Lemma 2.1 For a Mealy machine M', there ez-

ists a Moore machine M which is equivalent to
M. .

2.4 Vector representations

Suppose that the number of states of a Moore
machine M = (Q, X, A, 8, A, q) is m, the num-
ber of elements of the input alphabet is k, and
the number of elements of the output alphabet
is I. Namely, let @ = {g0,.-.,¢m-1}, & =
{ao, iy ak,l}’ and A = {bo, ey bl—-l}-

We first define a state vector of a Moore ma-
chine. Each entry of a state vector corresponds
to a tuple of a state and an input symbol of a
Moore machine.

Definition 2.8 A state vector of M at time t is
v(t) € {0,1}*™ and satisfies the following proper-
ties:

1. Ift =0 and q(t) = ¢;, from the ik+1th entry

to the ik + kth entry of v(t) are all 1’s and
the others are 0’s.

2. Ift # 0 and q(t) = g¢;, only one entry from
the ik +1th entry to the ik +kth entry of v(t)
is 1 and the others are 0’s.

Next, we define an input vector of a Moore ma-
chine. Let I(t) denote a given input symbol of a
Moore machine at time .

Definition 2.9 An input vector of M at time t
is w(t) € {0,1}*, and if I(t) = a;, the i + 1th
entry of w(t) is 1 and the others are 0’s.

We define a state-input vector based on the above
definitions.

Definition 2.10 Let v(t) = (vi(t),...,vem(t)) €
{0,1}¥™ q state vector and w(t) = (wi(t),...,
wi(t)) € {0,1}* an input vector of M at time
t. Then, a state-input vector of M at time t
is V() = (v1(t)-- -, em (), wr(2), ..., wr(t)) €
{0,1}km+k.

Next, we define an output vector of a Moore ma-
chine. Let O(t) denote an output symbol of a
Moore machine at time .

Definition 2.11 If an output vector of M at
time t is u(t) € {0,1}, and O(t) = b;, then the
t+ 1th entry of u(t) is 1 and the others are 0’s.

Finally, we give the definition of equivalence
relation between simple recurrent networks and
Moore machines.

Definition 2.12 For a input sequence w, sup-
pose that a Moore machine M yeilds the output
sequence Thr(w) and a SRN £ yeilds the output
sequence Tg(w). Then, £ is said to be equivalent
to M if Tpg(w) = bTg(w) for all w where b is the
output alphabet for the initial state of M. '

3 Constructing Mealy Mach-
ines

In this section, we will construct a Mealy ma-
chine which is equivalent to a given SRN. We de-
scribe how to define the states,the transition func-
tion and the output function of the SRN.

Suppose that a SRN € = (G,I,0,H,C, A, w) is
given, where |I| = n,|0| =m,|H| =|C| = k. We
construct a Mealy machine M = (Q, X, T, §, A, ¢o)
which simulates £ in the following way.

1. Each state p € @ of M represents the output
pattern a., - - - ac, of the context unit, where
ac; € VAL and ¢; € C. Note that every out-
put pattern of the context unit can be repre-
sented as a word in VAL®. Thus, the states
of M includes all the representation of the
output pattern of the context unit of £.

The initial output pattern of the context unit
of £ corresponds to the initial state.gy of M.

2. Since the number of the gates in the context
unit is equal to that of the hidden unit, each
state p € @ of M also represents the output
pattern ap, - - - ap, of the hidden unit, where
Qp; € VAL and h; € H.

3. We construct the transition function é of M.
Suppose that the output pattern of the input
unit of £ is az, - - - ag, and the output pattern
of the context unit of &£ is ac, -+-ac,. The
output pattern of the hidden unit depends on
Qcy *** Q¢ and ag, - - - ag,. That is, the output
of the gate ap, in the hidden unit is given by

k n
ap, = F Z'w(c,', hi)ac; + Zw(-’ﬂj, hi)az, | 5

191

for each 4, 1 < ¢ < k. Then, the transition
function 6 of M is defined by 6(p,0) = p'
where p = a¢ - ae, € Q,0 = Az, -+ ay, €
Y and p' = ap, - - ap, € Q satisfy the above
equations.

4. Finally, we construct the output function A
of M. Suppose that the output pattern of
the input unit of £ is ag, ---ay,, the out-
put pattern of the context unit is a, - - - ac,
and the output pattern of the hidden unit is
Qpy - - ap,,. The output of £ depends on the
output pattern of the hidden unit. That is,
the output of the gates ay, in the output unit
is given by '

ay, = F

o
Zw(hjayi)ahk] :

J=1

Then, the output function A of M is defined
by A(p,0) = where p=a,, ---a, € Q,0 =
Ay, *** g, € X, ¥ = Gy, ++-ay,, € Q satisfy
the above equations.

We have the following result:

Theorem 3.1 Under Assumption 2.1, for any
simple recurrent network £, there exists a Mealy
machine M which is equivalent to E.

4 Constructing Simple Recur-
rent Networks

In this section, we will show that there exits a
SRN which simulates a Moore Machine. For this
purpose, we use a connection matriz of a Moore
machine [2]. Our first goal is to show that a con-
nection matrix of a Moore machine can be imple-
mented on a SRN. Through this section, consider
a Moore machine M = (Q, %, A, 8, A, qo) with Q =
{q09 qi,. .. 7Q‘m—1} and ¥ = {a07 A1y.-., a’k:-—-l}'

4.1 Connection matrices

We first define a connection matriz of a transi-
tion function of a Moore machine [2].

Definition 4.1 A connection matriz o of transi-
tion function of M is

Qi = {"I" €x ! Jdg;, g5 € Q)é(qiam) = Qj}7

where o;; 18 an entry of the ith row and the jth
column of the matriz a.

4.2 Weight matrices

From the definition, a connection matrix o of
M is an m x m matrix. We define a weight matriz
of M.

Definition 4.2 For a Moore machine M, a
weight matriz of of M is a km x (km+ k) matriz
which satisfies the following properties:

e Fori,j, 1 <i,7 <km, the eniry a” 18 k+—1
if and only if there exists h, 0 < h < k-1,
such that 6(q-1)/k)>0h) = QG-1)/k]s and
the entry oj; is 0 if and only if there does
not exist h, 0 < h < k — 1, such that
6(q|(i-1)/k)» @h) = Q| (j-1)/k]-

. For2],1<z<km km<]<km+k the
entry oy; is 324_% if (j—km) mod k = ¢ mod k
and the entry of; is 0 if (j — km) mod k #
i mod k. '

Now, we construct a weight matrix o/ from a con-
nection matrix o as follows:

1. Let T be a transposed matrix of a.

2. For an m x m matrix o of M, let a matrix o/
be a km x (km + k) matrix.

3. Entries in the 1st,...,the kmth rows and the
1st,..., the kmth columns of o are defined
as: '

(a) If the entry «j; contains a symbol a; €
¥, k entries in the k(j — 1) + 1th, ...,
the k(j — 1)+ kth columns and the k(i —
1) + tth row are all Elﬁ-

(b) If the entry a;; does not contains a sym-
bol a; € T, k entries in the k(j—1)+1th,
., the k(5 — 1) + kth columns and the

k(i — 1) + tth row are all 0.

4. Entries in the 1st, ...,the kmth rows and the
km+1th, ..., the km-+kth columns of o/ are
defined as follows: for the ith row, an entry in
the sth row and the km+ (i mod k)th column

of o is 3’1315 and the other entries are all 0.

4.3 Implementing matrices on simple
recurrent networks

In this paper, we already have assume that the
range of a function computed at each gate of a

and m =

192

SRN is a finite set, namely VAL = {0,1}. There-

- fore, a function computed at each gate is

0 if 0y wzx; <1
1 if Sy wix > 1.

m 0 if >t wix; <0
F {Z wimi] =
i=1

We will define a function o from the function F.- -

Definition 4.3 For an n x m matriz A, a func-
tion o4 : {0,1}™ — {0,1}" is

F3 iy Avizi]
F [Z?Q Az i
UA(m) = 5
F [Zz— n m]
where x = (Z1,...,%m) and
A1 Aim
A= . :
An 1 An m

’ 2

The outputs of units of SRN’s are regarded as
vectors. A transition function of M can be imple-
mented by using a function oq4r.

Lemma 4.1 Suppose that 6(q;,a;) = qn, a state
vector of the state ¢; is v, an input vector of the
input symbol a; is w, and a state-input vector of
v and w is V. Then, a vector o4 (V) is a state
vector of the state qp,.

4.4 Constructing simple recurrent net-
works which simulate Moore ma-
chines

In this section, we will construct a SRN which is
equivalent to a given Moore machine. We describe
how to define the input unit, the output unit, the
context unit, the hidden unit, the initial output
and the weights.

Let M = (Q, X, A, 8,)\, o) be a Moore machine
|Ql, k= ||, and | = |A|. We will con-
struct a SRN € = (G, 1,0, H,C, A, w) as follows:

1. The input unit is I = {z1,...,2x}.

2. The output unit is O = {y1,..., ¥}

3. The context unit is C = {c1,...,Ckm}, and
the hidden unit is H = {h1,..., hgm}-

4. Let v(0) be a state vector of the initial state
go and v(0) = (vi(0),...,vkm(0)), where
v;(0) € {0,1},1 < 4 < km. Then, the ini-
tial output Ais A = {Ay, Ag,... Agm}, where
A; = 1),'(0), 1<i<km.

5. Note that the weight matrix o/ of M is a
km x (km+ k) matrix. We define the weights
as follows:

(a) For an edge (i, h;), z; € I, hj € H, the
weight w(x;, h;) is the entry in the jth
row and km + 1th column of o/.

(b) For a edge (c;, hj), ¢; € C, hj € H, the
weight w(c;, hy) is the entry in the jth
row and ¢th column f o'

6. If A\(¢;) = bj, the weight w(hs,y;) is an ar-
bitrary value that is greater than 1 for A,
tk < s < tk + k. The weights of the other
edges are all 0.

We obtain the following theorem.

Theorem 4.1 Under Assumption 2.1, for any
Moore machine M, there exists a simple recur-
rent network Epr which is equivalent to M.

5 The Size of Simple Recurrent
Networks

In this section, we discuss the relationships be-
tween the number of states of automata with out-
put and the size of a SRN. Suppose that a SRN
€ is equivalnet to automata with output M. Let
K (M) be a set of automata which are equivalnet
to M and S(£) be a set of SRN’s which are equiv-
alnet to £. For M, let ¢(M) denote a number of
the states of M. For &£, let size(£) denote the
size of £, where the size of a SRN is the number
of gates of £.

Definition 5.1 My, is a element of K(M)
which satisfies
¢(Mrmin) = min{g¢(M) | M € K(M)}.

Definition 5.2 Enipn is a element of S(E) which
satisfies '

size(Emin) = min{size(€) | € € S(€)}.

From the above two construction, we obtain the
following theorem.

- Theorem 5.1 For M and £, there exit constants
C and C' such that

193

6 Conclusion

In this paper, we show that when the range of
a function computed at each gate of a SRN is
a finite set, there exists a Mealy machine which
can simulates the SRN. This result means that,
under our assumption, the computational power
of simple recurrent networks is not exceed that
of finite automata with output, and thus, is not
sufficient to recognize natural languages.

On the other hand, a simple recurrent network

"can simulates a Moore machine as we showed in

Section 4.4. From our two results, we have shown
that the computational capability of simple recur-
rent networks is equal to that of finite automata
under our assumption.

References

[1] Noga Alon, A. K. Dewdney, and Teunis J. Ott. Ef-
ficient simulation of finite automata by neural nets.

Journal of Association for Computing Machinery, Vol.
38, No. 2, pp. 495-514, April 1991.

[2] M. A. Arbib, A. J. Kfoury, and Robert N. Moll. A
Basis for Theoretical Computer Science. Springer-
Verlag, 1981.

[3] José L. Balcdzar, Ricard Gavaldi, Have T. Siegel-
mann, and Eduardo D. Sontag. Some structural com-
plexity aspects of neural computation. In Proceedings
of the IEEE Structure in Complexity Theory Confer-
ence, pp. 263-265, San Diego, CA, 1993.

[4] Jeffrey L. Elman. Finding structure in time. Congni-
tive Science, Vol. 14, pp. 179-211, 1990.

[5] Jeffrey L. Elman. Distributéed representations, simple
recurrent networks, and grammatical structure. Ma-
chine Learning, Vol. 7, pp. 195~-225, 1991.

[6] J. E. Hopcroft and J. D. Ullman. Introduction to Au-
tomata Theory, Language and Computation. Read-
ing. Addison-Wesley, MA, 1979.

[7] P. Indyk. Optimal simulation of automata by neural
nets. In Proceedings of the 12th Annual Symposium on
Theoreical Aspects of Computer Science (STACS’95),
pp. 337-348, New York, April 1995. Springer-Verlag.

[8] James L. McClelland, Axel Cleeremans, and David
Servan-Schreiber. Parallel distributed processing : Br-
idging the gap between human and machine intelli-
gence. Journal of Japanese Society of Artificial Intel-
ligence, Vol. 5, No. 1, pp. 3-14, January 1990.

[9] oMz, BHFEH. THEMERRY b7 —2 28
T % mealy BROWRE] EFEREBEELICEa
F—3 a YHEKER, COMP98-27, 1998.

[10] Have T. Siegelmann and Eduardo D. Sontag. On the

com;utationa.l power of neural nets. In Proceedings of

the Fifth ACM Workshop on Computational Learning
Theory, Pittsburgh, PA, July 1992.

[11] Have T. Siegelmann and Eduardo D. Sontag. Analog
computation via neural networks. Theoretical Com-
puter Science, Vol. 131, pp. 331-360, 1994.

