oooooooogon
1093 0 1999 0 33-38

33

Common-face embeddings of planar graphs with applications *

BE 29 (Zhi-Zhong Chen), Xin He, Ming-Yang Kao
Tokyo Denki University, SUNY at Buffalo, Yale University

1 Introduction

It is a fundamental problem in mathematics to em-
bed a graph into a given space while optimizing cer-
tain objectives required by applications. A graph
is called planar if it can be embedded on the plane
'so that any pair of edges can only intersect at their
endpoints; a plane graph is a planar one together
with such an embedding. A classical variant of the
problem is to test whether a given graph is planar
and in case it is, to find a planar embedding. This
planarity problem can be solved in linear time.

In this paper, we initiate the study into the fol-
lowing new planarity problem. Let G be a planar
graph. Assume that G is simple. Let M be a se-
quence Cy,...,Cq, where each C; is a family of ver-
tex subsets of G. A plane embedding ® of G satis-
fies C; if the boundary of some face in ® intersects
every set in C;. @ satisfies M if it satisfies all C;.
G satisfies M if G has an embedding that satisfies
M. The CFE problem is the following:

e Input: G and M. '

¢ Question: Does G satisfy M?

We show that the CFE problem is NP-complete.
For the special case where every vertex subset in
M induces a connected subgraph of G, we give
an O(aloga)-time algorithm, where a is the in-
put size. The CFE problem arises naturally from
topological inference [1]. For instance, a less gen-
eral and efficient version of our algorithm for the
special case has been employed to design fast al-
gorithms for reconstructing maps from scrambled
partial data in geometric information systems. In
this application, each vertex subset in M describes
a recognizable geographical feature, and each fam-
ily in M is a set of features that are known to be
near each other. Similarly, our algorithm for the
special case can compute a constrainted layout of
VLSI modules, where each vertex subset consists
of the ports of a module, and each subset family
specifies a set of modules that are required to be
close to each other.

2 The main results

* A preliminary version was presented at SODA’99.

‘Theorem 2.1 The CFE problem is NP-complete.

The size |C;| of C; is the total cardinality of the
sets in C;. The size |[M| of M is |Cy|+---+|Cy|. |G}
denotes the total number of vertices and edges in
a graph G. Let a = |G| + | M|. The next theorem
is the main theorem of this paper.

Theorem 2.2 If every vertez subset in M in-
duces a connected subgraph of G, then the CFE
problem can be solved in O(alog o) time.

Proof: We consider three special cases:

Case M1: G is connected.

Case M2: G is biconnected.

Case M3: G is triconnected.

Theorem 3. 8 solves Case M3. Theorem 4. 1 re-
duces this theorem to Case M1. §5 reduces Case
M1 to M2. Theorem 6.1 uses Theorem 3.8 to
solve Case M2. O

The remainder of the paper assumes that every
vertex subset of G in M induces a connected sub-
graph of G.

3 Case M3

This section assumes that G is triconnected. Then,
G has a unique combinatorial embedding up to the
choice of the exterior face. Thus, the CFE prob-
lem reduces in linear time to that of finding all the
faces in the embedding whose boundaries intersect
every set in some C;. The naive algorithm takes
B6(]G||M]) time. We solve the latter problem more
efficiently by recursively solving the ACF problem
defined below.

Throughout this section, for technical conve-
nience, the vertices of a plane graph are indexed by
distinct positive integers. The faces are indexed by
positive integers or —1. The faces indexed by pos-
itive integers have distinct indices and are called
the positive faces. Those indexed by —1 are the
negative faces.

Let H be a plane graph. A uf-set of H is a set
of vertices and positive faces in H. A vuf-family is
a family of vfsets; a uf-sequence is a sequence of
vi-families. Let N be a vi-sequence D,..., D, of
H. Also, let D = {S1,...,84} be a vi-family of H.

Let F; be the set of faces in S;. Let U; be the set
of vertices in S;.

o |D| = |S1]| + -+ +|Sql; similarly, |N] = |Dy| +
o |D ql- :

o A,(D) is the set of vertices in the intersection
of the vi-sets in D.

o A¢(H, D) is the set of positive faces F' of H such
that for each S;, F is a face in S; or its boundary
intersects S; — Ay(D).

o ACF(H,D) = Ay(D) U As(H, D).

The ACF problem is the following:

e Input: H and V.

e Output: ACF(H,D,),...,ACF(H,D,).

To solve the ACF problem recursively, H need
not be simple or triconnected. Furthermore, those
faces that are indexed by —1 are ruled out as fi-
nal output during recursions. To solve the problem
efficiently, each vertex in A, (D;) is meant as a suc-
cinct representation of all the faces whose bound-
aries contain that vertex. - Similarly, the positive
faces in the input D; and the output are repre-
sented by their indices.

The next lemma relates the CFE problem and
the ACF problem. :

Lemma 3.1 Let the faces of G be indexed by posi-
tive integers. Then, the output to the CFE problem
is “yes” iff for all C;, ACF(G,C;) #90.

3.1 A counting lemma

Lemma 3.2 1. Let vy and va be distinct vertices
in G. Let Fy and Fy be distinct faces in G. Then,
both vy and vy are on the boundaries of both Fy and
Fy iff v1 and vy form a boundary edge of both Fy
and F: 2.

2. Given a set U of vertices in G, there are
O(|U)) faces in G whose boundaries each contain
at least two vertices in U.

3. Given a set F of faces in G, there are O(|F])
vertices in G which are each on the boundaries of
at least two faces in F.

Corollary 3.3 If H is simple and triconnected,
then the output of the ACF problem has size
O(NM)).

3.2 A simplification technique

To solve the ACF problem efficiently, we simplify
. the input graph by removing unnecessary edges and
vertices as follows.

For a vfset S of H, the topological subgraph
‘HOS of H constructed as follows is said to simplify
H over S.

Let U and F be the sets of vertices and positive
faces in S, respectively. Let Fyy be the set of the

34

positive faces in H whose boundaries each contain
at least two distinct vertices in U. Let V' and E'
be the sets of boundary vertices and edges of the
faces in F U Fy, respectively. Let H' be the plane
subgraph of H consisting of V' UU and E'.

Let U’ be the set of vertices which are of degree
at least three in H/; note that each vertex in U’
appears on the boundaries of at least two faces in

~ FUZFy. A critical path P in M’ is a maximal path

such that (1) every internal vertex of P appears
only once in it, and (2) no internal vertex of P is in
U U U’. By the choice of U’, every internal vertex
of a critical path is of degree 2 in H'. We use this
property to further simplify H'. Let H$S be the
plane graph obtained from ' by replacing each
critical path with an edge between its endpoints.
This edge is embedded by the same curve in the
plane as the path is. For technical consistency, if a
critical path forms a cycle and its endpoint is not
in U U U’, then we replace it with a self-loop for
the vertex of the cycle with the smallest index.

Each vertex in H<{S is given the same index as in
‘H. The closure of the interior of each face of H{S
is the union of those of several faces or just one in
‘H. Let F be a face in H{S and F” be one in H. Let
o (resp., o’) denote the closure of the interior of F'
(resp., F'). If 0 = ¢, then F and F’ are regarded
as the same face, and F is assigned the same index
in HOS as F' is in ‘H. For technical conciseness,
these two faces are identified with each other. If o
is the union of the closures of the interiors of two
or more faces in H, F is not the same as any face
in H and is indexed by —1.

Lemma 3.4 1. GivenH and S, we can compute
HOS in O(|H| + |S|) time.

2. Let S' be a vf-set of HOS. If S' C. S, then
HOS = (HOS)OS' .

8. If H simplifies G over a yf-set S* with S C §*,
then |HOS| = O(|S]).

3.3 Algorithms for ACF

To solve the ACF problem recursively, we use sim-
plification to reduce the number of D; and the num-
ber of sets in each D;.

For brevity, let HOD = HO(S U--- U Sg); sim-
ilarly, HON = HO(D1 U --- U Dy). Given a vi-set
S* of H, we say D < §* if S; C §* for all S;; we
say N < §* if D; < §* for all D;.

Lemmas 3.5 and 3.6 below reduce to 1 the
number of D; in A in the ACF problem.

Lemma 3.5 Assume q > 2. Let Ny =
Dl,...,D[q/2]. Let Ny = D[q/2]+1,---,Dq- Let
He = HONg and H, = HON,.

1. Given H and N, we can compute H, and H,
in O(JH| + |N]) total time.

2. For1l <i < [q/2], HOD; = HelD;. Simi-
larly, for [q/2] +1<i < q, HOD; = H,$D;.

3. If H simplifies G over a vf-set S* with N' <
S*, then |'Hg| = O(|D1|+' . '+|D|”q/2’||) and IH'r‘l =
O(|Drgsz141] + -+ + | Dgl).

Lemma 3.6 Assume q > 1. Let H; = HOD;.

1. ACF(H,D;) = ACF(H,, D).
- 2. If H simplifies G over a uf-set S* with N' <
S*, then [H;| = O(|D;)).

3. If H simplifies G over a vf-set S* with N <
S*, then given H and N, we can compute all H; in
O(M| + |Nlog(q + 1)) total time.

Lemma 3.7 Let Dy = {S1,...,S[as21} and D, =
{Srd/z-l_,_l,...,sd}. Let Hy = HODy and H, =
HOD,. Let D= {ACF(H,, D), ACF(H,, Dy)}.

1. ACF(H,D) = ACF(H,D').

2. If H simplifies G over a vf-set §* withD < S*,
then given H and D, ACF(H,D) can be computed
in O(|H| + |D]log(d + 1)) time.

Theorem 3.8 1. Let d be the mazimum number
of vf-sets in any D; in N. If H simplifies G over a
yf-set S* with N' < S*, then the ACF problem can
be solved in O(|H| + [N|log(d + q)) time.

2. Let d be the maximum number of vertex sets
in any C; in M. Case M3 of the CFE problem can
be solved in O(|G| + |M|log(d + q)) time.

4 Reduction to Case M1

Let G be a graph. Let V(G) denote the set of ver-
tices in G. A cut vertex of G is one whose removal
increases the number of connected components in
G} a block is a maximal subgraph with no cut ver-
tex. Let ¥(G) denote the forest whose vertices are
the cut vertices v and the blocks B of G and whose
edges are those {v, B} with v € B. ¥(G) is a tree if
G is connected. A set U is G-local if U C V(G). A
family C of sets is G-local if every set in C is G-local.
For a vertex subset W of G, let G — W denote the
graph obtained from G by deleting the vertices in
w.

Let Gi,...,Gk be the connected components of
G. A family Cp in M is global if for every ¢ €
{1,...,k}, Cs is not G;-local. Let H be an edge-
labeled graph defined as follows. The vertices of H
are Gi,...,Gk. For each global Cp, H contains a
cycle C possibly of length 2 where (1) the vertices
of C are those G; such that some set in Cp, is G;-local
and (2) the edges of C are all labeled Cy,.

Let Bj, ..., By be the blocks of H. Then, for
each global Cp,, exactly one B; contains all the edges

35

labeled Cp. For every Bj, let U; be the family con-
sisting of all sets U such that some edge of B; is
labeled Cp, with U € C;,. For each G;, let M; be the-
sequence consisting of the G;-local families in M as
well as the family U;; = {U € U; | U is G;-local}
for each B; with G; € V(B;).

Theorem 4.1 G satisfies M iff every G; satisfies
M,;. Consequently, Theorem 2. 2 holds if it holds
for Case M1. '

5 Reducing Case M1 to M2

This section assumes that G is connected.

Let w be a cut vertex of G. Let Wy, ..., W}
be the vertex sets of the connected components of
G — {w}. Let G; be the subgraph of G induced by
{w}UW;. G, ..., G are the augmented components
induced by w. Foreach Cr, in M, let Up 1, ..., U,
be the sets in Cp, containing w; possibly ¢, = 0. Cp,
is w-global if for each G;, Cp, — {Un,,...,Unt,} is
not G;-local; otherwise, Cj, is w-local.

Lemma 5.1 1. Assume Cp, —{Un,1,...,Ung,} s
Gi-local for some G;. Then, G satisfies M iff G sat-
isfies M with Cp, replaced by (Ch—{Un,1,---,Uns,})
U {Un 1NV (Gi),. .. ,Unt,NV(Gi)}.

2. Assume that Cy is w-global. Then, G sat-
isfies M iff G satisfies M with Cp, replaced by
Ch —{Un1,-- - Unytp }- '

By Lemma 5. 1 , we may assume that (1) each set
in a w-global family in M does not contain w and
(2) each set in a family in M is G;-local for some
G;- Let H be an edge-labeled graph constructed
as follows. The vertices of H are Gy, ..., Gx. For
each w-global family Cp, H has a cycle C possibly
of length 2 where (1) the vertices of C are those G;
such that at least one set in Cp is G;-local and (2)
the edges of C are all labeled Cj,.

Let By, ..., Bp be the blocks of H. Clearly, for
each w-global family C, € M, exactly one block
of H contains all the edges labeled Cp. For each
Bj, let U; be the family consisting of {w} and all
U C V(G) such that some edge of B; is labeled Cj
with U € Cy. For each G;, let M; be the sequence
consisting of the G;-local families in M as well as
the family U;; = {U € UY; | U C V(G;)} for each
Bj with G; € V(Bj).

Lemma 5.2 G satisfies M iff every G; satisfies
M;.

By Lemma 5. 2, Case M1 can be reduced to Case
M2 in quadratic time. The inefficiency comes from
the one-by-one removal of cut vertices. Using the
union-find data structure and splay trees, we can
remove all the cut vertices in almost linear time.

6 Case M2

We here assume G is biconnected, and prove:

Theorem 6.1 Theorem 2. 2 holds for Case M2.

6.1

A planar st-graph G is an acyclic plane digraph
such that G has exactly one source s and exactly
one sink ¢, and both vertices are on the exterior
face. These two vertices are the poles of G.

A split pair of G is either a pair of adjacent ver-
tices or a pair of vertices whose removal disconnects
G. A split component of a split pair {u,v} is either
an edge (u,v) or a maximal subgraph C of G such
that C is a planar uv-graph and {u,v} is not a
split pair of C. A split pair {u,v} of G is maxzi-
mal if there is no other split pair {«/,v'} in G with
{u,v} in a split component of {v’,v'}.

The decomposition iree T of G is a rooted or-
~ dered tree recursively defined in four cases as fol-
lows. The nodes of T' are of four types S, P,Q,
and R. Each node p of T has an associated planar
st-graph ske(u), called the skeleton of u. Also, p
is associated with an edge in the skeleton of the
parent ¢ of u, called the virtual edge of p in ske(¢).

Case Q: G is a single edge from s to t. Then, T
is a Q-node whose skeleton is G.

Case S: G is not biconnected. Let ¢y,...,Ck—1
with £ > 2 be the cut vertices of G. Since G is
~a planar st-graph, each ¢; is in exactly two blocks
G; and G4 with s € G; and t € Gg. Then, T’s
root is an S-node u, and ske(u) consists of the chain
e1,...,e, and the edge (s, t), where the edge e; goes
from ¢;—1 to ¢;, o = 8, and ¢ = t.

Case P: {s,t} is a split pair of G with at least
two split components. Then, T”s root is a P-
node u, and ske(y) consists of k + 1 parallel edges
e1,...,€ex+1 from s to t.

Case R: Otherwise. Let {s1,t1},...,{sk,tx}
with £ > 1 be the maximal split pairs of G. Let
G; be the union of the split components of {s;,%;}.
Then, T’s root is an R-node p, and ske(p) is the
simple triconnected graph obtained from G by re-
placing each G; with an edge e; from s; to ¢; and
inserting the edge (s,).

In the last three cases, u has children x1,..., Xk
in this order, such that each y; is the root of the
decomposition tree of G;. The virtual edge of x;
is the edge e; in ske(u). G; is called the pertinent
graph pert(x;) of x; as well as the ezpansion graph
of e;. G is the pertinent graph of T’s root. Also,
no child of an S-node is an S-node, and no child of
a P-node is a P-node.

The allocation nodes of a vertex v of G are the
nodes of T" whose skeleton contains v; note that v

SPQR decompositions

36

has at least one allocation node.

In the above description of T, for each non-leaf
node p, an additional edge is added into ske(u)
between its two poles (which does not correspond
to any child of p). This additional edge has no
effect on our algorithm. From now on, we ignore
this edge in ske(p).

For each non-S-node p in T', pert(y) is called a
block of G [2], which differs from that in §4 and §5.
For a block B = pert(u), let node(B) = p. For an
ancestor ¢ of node(B), the representative of B in
ske(¢) is the edge in ske(¢) whose expansion graph
contains B.

Let p be an R- or P-node in 7' with children
X1,-.-,Xp- For each k € {1,...,b}, let ex be the
virtual edge of xj in ske(u). If xx is an S-node,
pert(xx) is a chain consisting of two or more blocks.
If xx is an R-nod or P-node, pert(x) is a single
block. For each k € {1,...,b}, we say that the
blocks in pert() are on edge e;. The minor blocks
of pert(u) are the blocks on ey, ..., those on e.

6.2 Basic ideas

An st-orientation of a planar graph is an orienta-
tion of its edges together with an embedding such
that the resulting digraph is a planar st-graph.

Fact 1 (see [2]) If an n-vertex planar graph has
an st-orientation, then every embedding, where s
and ¢ are on the exterior face, of this graph can be
obtained from this orientation through a sequence
of O(n) following operations:

e Select one of the two possible flips of an R-
node’s skeleton around its poles.

e Permute the skeletons of a P-node’s children
with respect to their common poles.

Let {s,t} be an edge of G. Since G is biconnected,
we convert G to a planar st-graph in O(n) time
for technical convenience. For the remainder of §6,
let T be the decomposition tree of G. Also, let
ci = {Ui,h e 7Ui,'r1;}-

Let u be a node of T. T, denotes the subtree
of T rooted at p and dep(u) denotes the distance
from T’s root to p.

o U, ; is contained in pert(y) if the vertices of
U; ; are all in pert(p); U; ; is strictly contained in
pert(u) if in addition, no pole of pert(y) is in U ;.

e Let done(U; ;) be the deepest node p in T such
that U; ; is strictly contained in pert(u), if such a
node exists. If no such p exists, then U; ; contains
a pole of G and let done(U; ;) be T’s root.

e A family C; straddles pert(y) if at least one set
in C; is strictly contained in pert(x), and at least
one set in C; has no vertex in pert(u).

o Let done(C;) be the deepest node u in T such
that for every U; ; € C;, at least one vertex of U ;
is-in pert(u).

o Let sub(u) = {U,; | done(U;;) = u} and
fam(u) = {C; | done(C;) = u}.

e If u is a P- or R-node, let xfam(p) =
fam(p) U (Uy, fam(xg)) and xsub(p) = sub(u) U
(UxiSub(xx)), where xj ranges over all S-children
of u.

In a fixed embedding of a block B, the poles
of B divide the boundary of its exterior face into
two paths side;(B) and sidey(B), called the two
sides of B. U, ; is two-sided for B if both side; (B)
and sidey(B) intersect U; ;. In particular, U;; is
two-sided for B if it contains a pole of B. U ; is
side-1 (resp., side-2) for B if only side;(B) (resp.,

- sidey(B)) intersects U; ;. Assume that B is a minor
block of pert(y) for some u. Let e be the repre-
sentative of B in ske(u). In a fixed embedding of
ske(), ey, separates two faces F and F’. When em-
bedding pert(u), we can embed side;(B) towards
either F' or F', referred to as the two orientations
of B in pert(p).

A family C; is side-0 (resp., side-1 or side-2)
exterior-forcing for B if done(C;) is an ancestor of
node(B) in T and some U; ; € C; strictly contained
in B is two-sided (resp., side-1 or side-2) for B. For
p=0, 1,2, define

e ext,(B) = min{dep(done(C;)) | C; is side-p
exterior-forcing for B}, if there is side-p exterior-
forcing for B;

e ext,(B) = oo otherwise.

Assume exty(B) # 00.
Let 1 = node(B), ¢1, o, ..., P be the path in T
from p to ¢p, where dep(¢n) = ext,(B). For each
£ € {1,...,h—1}, the representative of B in ske(¢y)
must be an exterior edge in any satisfying embed-
ding of ske(@¢). In addition, if p = 1 or 2, side,(B)
must be embedded towards the exterior face of the
embedding of pert(e,).

Since (s,t) is an edge of G, the root p of T is a P-
node and has a child Q-node ¢ representing (s, t).
A subtle difference between p and each non-root
node of T is that the two sides of G = pert(p) is
actually on the same face. To eliminate this differ-
ence, we delete ¢ from T'; afterwards, if p has only
one child, we further delete p from 7. From here
onwards, T" denotes this modified tree.

6.3 The CFE algorithm

The CFE algorithm processes T' from bottom up.
A ready node p of T is either (1) a leaf node or
(2) a P- or R-node such that the non-S-children of
p and the children of every S-child of p all have
been processed. The CFE algorithm processes the

37

ready nodes of T in an arbitrary order. An S-node
is processed when its parent is processed. We detail
how to process u as follows.

For the case where p is a leaf node of T, note
that pert(p) is a single edge of G. Since no U; ; is
strictly contained in pert(u), fam(y) = sub(p) = 0.
Therefore, we simply set extp(pert(u)) = oo for
r=0,1,2, ,

We next consider the case where 4 is a non-leaf
ready node. Before yu is processed, an embedding
of every minor block of pert(u) is already fixed,

~except for a possible flip around its poles. More-

over, for each minor block B of pert(x) and each
p € {0,1,2}, exty(B) is known. When processing
1, the CFE algorithm checks whether some em-
bedding ®, of pert(n) satisfies the following two
conditions:

o &, satisfies every C; in xfam(u).

e For each C; straddling pert(u) and each U; ; €
C; strictly contained in pert(y), at least one vertex
of U;,; is embedded on the exterior face of ®,,. (Re-
mark. This ensures the existence of an embedding
of pert(done(C;)) satisfying C; later.) :

If no such ®, exists, then G cannot satisfy M
and the CFE algorithm outputs “no” and stops.
Otherwise, it finds such an @, and fixes it except
for a possible flip around its poles. It also computes
extp(pert(u)) for p=0, 1, 2.

To detail how to process u, we classify the sets
U;; in each C; into four types and define a set
img(U;,;,) for each type as follows.

Type 1. U;; contains at least one pole of
ske(u). Then, done(U; ;) is an ancestor of u. Let
img(U;,j, 1) = {v € U; ; | v is a vertex in ske(u)}.

Type 2. U, ; contains at least one vertex but
no pole of ske(u). Then, done(U; ;) = u. Let
img(U; ;, 1) as in the case of type 1.

Type 8 U, ; is strictly contained in pert(x) for
some S-node x of 4 and U; ; contains at least one
vertex in ske(x). Then, done(U;;) = x. Let
img(U; 5,) = {virtual edge of x in ske(u)}.

Type 4: U;; is strictly contained in a minor block
B of pert(u). Then, done(U; ;) is node(B) or its
descendent. Let img(U; ;, u) = { representative of
B in ske(u)}.

Each element of img(U; j,) is called an image
of U; j in ske(y). The remainder of §6.3 details how
to process of u.

6.3.1 Processing an S-child

When processing p, for each S-child x of p, we need
to find an embedding of pert(x) satisfying certain
conditions. We call this process the S-procedure
and describe it helow.

Let x be an S-child of . Then, ske(x) is a path.
Let ey, ..., ey be the edges in ske(x). For each
k € {1,...,b}, let By, be the expansion graph of e;.
Before the S-procedure is called on Y, the following
requirements are met:

e For each k € {1,...,b}, an embedding of By
has been fixed, except for a possible flip around its
poles.

o For some £ € {1,...,b} and p € {1,2},
side,(By) is required to face either the left or the
right side of ske(x).

--Qur only choice for embedding pex’s(x) is to flip
Bi, ..., By around their poles. We need to check
whether for some combination of flippings of By,

., By, (1) the resulting embedding satisfies every
C; € fam(x) and (2) the second requirement above
is met.

The S-procedure consists of the following five
stages:

Stage S1 constructs an a,umhary graph D =
(VD,ED)WlthVD-—{kpllgk‘Sb p = 1,2}
as follows. For each C; € fam(x), insert a path
P; into D to connect all k, € Vp such that for
some type-4 U ; € Ci, (a) img(Us;, x) = {ex} and
(b) U, ; is side-p for By. To avoid confusion, we
call the elements of Vp points, and the connected
components of D clusters. Those points kp € Vp
such that side,(By) is required to face the left side
of ske(x) are called L-points. R-points are defined
similarly. For each cluster C of D, all sidey(Bx)
where k, ranges over all the points in C' must be
embedded toward the same side of ske(x). Also,
each type-3 U; ; in C; contains a vertex in ske(x)
which is on both sides of ske(). For this reason,
such sets were not considered when constructing D.

Stage S2 checks whether there is a cluster of D
containing both an L-point and an R-point. If
such a cluster exists, then S2 outputs “no” and
stops. Otherwise, each cluster C consists of ei-
ther L-points only or R-points only. In the former
(resp., latter) case, we call C an L-cluster (resp.,
R-cluster).

Stage S3 constructs another auxiliary graph
RD = (Vrp,Egrp) from D as follows. The ver-
tices of RD are the clusters of D. For each k €
{1,...,b}, there is an edge {C1,C>} in RD, where
C (resp., Cy) is the cluster of D containing point
ki (resp., k2). RD may have self-loops.

Stage S4 checks whether RD is bipartite. If
it is not, then S4 outputs “no” and stops.
erwise, for each connected component K of RD,
the clusters in K can be uniquely partitioned into
two independent subsets Vi1 and Vi of clus-
ters. If Vi1 or Vg contains both an L-cluster
and an R-cluster, S4 outputs “no” and stops. Oth-
erwise, Vrp can be partitioned into two indepen-

Oth--

38

dent subsets Vi, and VA, of clusters such that
all L-clusters are in V%, and all R-clusters are in
VE,. Let V& = {kp | kp is in a cluster in Vip}
and VD = {k, | kp is in a cluster in VZ,}.

Stage Sb embeds side,(By) toward the left side
of ske(x) for each k, € V.

6.3.2 u is an R-node

In this case, ske(u) is a simple triconnected graph
and has a unique embedding. Let X1, ..., X» be
the children of p in T. For each k € {1,...,b}, let
By1, -y Bi,s, be the minor blocks of pert(x) in
pert(xx). When xj is an R- or P-node, sy = 1.
To process u, the CFE algorithm proceeds in five
stages.

6.83.3 u is a P-node

In this case, ske(u) consists of parallel edges

€1,€,...,ep between its two poles with b > 2. Let
X1, -, X be the children of 4 in T. For each
k € {1,...,b}, let By, ..., Bgs, be the minor

blocks of pert(y) in pert(xx). When embedding
ske(u), edges e; through e, can be embedded in
any order. The CFE algorithm first finds a proper
embedding of ske(p) in three stages. It then tries to
embed pert (i) based on the embedding of ske(u).

References

[1] Z-Z. Chen, M. Grigni and C.H. Papadim-
itriou. Planar Map Graphs. In Proceedings of
the 30th Annual ACM Symposium- on Theory
of Computing, pp. 514-523, 1998.

[2] G. Di Battista and R. Tamassia. On-Line Pla-
narity Testing. SIAM J. Comput., 25(5):956-
997, 1996.

