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Abstract. Rom a standpoint congenial to $\mathrm{R}\mathrm{e}\mathrm{v}\mathrm{e}\mathrm{r}\circ.\mathrm{e}$ Mathematics, we develop a basic part of

real analysis within weak second-order systems of 0-1 strings, e.g., BTFA. Among others, we

show within BTFA that a version of the maximum principle is equivalent to $\Sigma_{1}^{b_{-}}\mathrm{C}\mathrm{A}$ .

\S 1. Introduction.

The purpose of Reverse Mathematics is to determine which set existence axioms are

needed to prove a popular theorem of mathematics. For the main-stream researches of

this program, the system $\mathrm{R}\mathrm{C}\mathrm{A}_{0}$ is presupposed as a base theory in which most of basic

concepts of ordinary mathematics (e.g., reals, continuous functions) are defined. However,

it has been claimed by several people that the phenomena of Reverse Mathematics depend

on the base theory, so that necessary axioms for a theorem may be changing if one replaces

$\mathrm{R}\mathrm{C}\mathrm{A}_{\mathrm{O}}$ by a weaker system. Actually, Simpson and Smith [6] already studied Reverse

Mathematics over $\mathrm{R}\mathrm{C}\mathrm{A}_{0}^{*}$, which is roughly $\mathrm{R}\mathrm{C}\mathrm{A}_{0}$ minus $\Sigma_{1}^{0}$-induction plus $\Sigma_{0}^{0}$-induction

plus exponentiation. F.Ferreira [2] proposed to do Reverse Mathematics over BTFA (or

$\mathrm{B}\mathrm{T}\mathrm{F}\mathrm{A}+\Sigma_{\infty}^{b}$-WKL), a second-order systems of 0-1 strings whose provably total functions

are the polynomial time computable functions.
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In this paper, we carry out Ferreira’s plan and show, for instance, that the intermediate

value theorem on $[0,1]$ is provable in BTFA, and a version of the maximum principle is

equivalent to $\Sigma_{1}^{b_{-}}\mathrm{C}\mathrm{A}$ within BTFA.

In the rest of this section, we quickly review the basic concepts about second-order

systems of 0-1 strings following [2]. Then in \S 2, we develop real analysis within such

systems, and in \S 3, we prove our main results.

The language of second-order systems of 0-1 strings consists of three constant symbols

$\epsilon,$
$0$ , and 1, two binary function symbols $-$ (for concatenation) and $\cross(x\cross y$ means the

word $x$ concatenated with itself the length of $y$ times) and a binary relation symbol $\subseteq$

(for initial subwordness). The class of s.w.q. formulae (where s.w.q. stands for “subword

quantification”) is the smallest class of formulae containing the atomic formulae and closed

under the Boolean operations and quantifications of the form $\forall x\subseteq*t$ or $\exists x\subseteq*t$ where

$x\subseteq*y$ means $\exists z\subseteq y(z^{-}X\subseteq y)$ and $t$ is a term in which the variable $x$ does not occur.

The relation $x\leq y$ is defined $\mathrm{b}\mathrm{y},1\cross x\subseteq 1\cross y$ to express that the length of $x$ is less

than or equal to the length of $y$ . We $\tilde{\mathrm{w}}$rite $1\cross x\dot{\mathrm{f}}\mathrm{o}\mathrm{r}|x|$ . $\Sigma_{1}^{b}$ -formula is a formula of the

form $\exists x\leq t\varphi$ where $\varphi$ is a s.w.q. formula and $t$ is a term in which the variable $x$ does

not occur. The class of $\Sigma_{\infty}^{b}$-formulas is the smallest class containing the s.w.q. formulas

and closed under Boolean operations and bounded quantification, i.e., quantification of

the form $\exists x\leq t(\ldots)$ or $\forall x\leq t(\ldots)$ , where the variable $x$ does not occur in the term $t$ .

Definition 1 i) ($)-CA is the set of universal closures of formulas of the form

$\forall x(\exists y\varphi(x, y)rightarrow\forall z\neg\psi(x, z))arrow\exists X\forall x(x\in Xrightarrow\exists y\varphi(x, y))$ ,

where $\varphi$ and $\psi$ are $\Sigma_{1}^{b}$ -formulae $X$ does not occur in $\varphi$ .

26



ii) $\Sigma_{1}^{b_{-}}\mathrm{C}\mathrm{A}$ is the set of universal closures of formulas of the form

$\exists X\forall x(x\in Xrightarrow\varphi(x))$ ,

where $\varphi$ is $\Sigma_{1}^{b}$ -formulae and $Xdoe\mathit{8}$ not occur in $\varphi$ .

iii) $\Sigma_{1^{-}}^{b}\mathrm{N}\mathrm{I}$ (notation induction) is the $\mathit{8}et$ of universal closures of $formula\mathit{8}$ :

$\varphi(\epsilon)$ A $\forall x(\varphi(x)arrow\varphi(x\mathrm{O})\wedge\varphi(x1))arrow\forall x\varphi(x)$,

where $\varphi$ is $\Sigma_{1}^{b}$ -formula.

iv) $\mathrm{B}\Sigma_{\infty}^{b}$ is the set of universal closures of $formula\mathit{8}$:

$\forall x\leq a\exists y\varphi(x, y)arrow\exists z\forall x\leq a\exists y\leq z\varphi(x, y)$ ,

where $\varphi i_{\mathit{8}}\Sigma_{\infty}^{b}$ -formula.

Definition 2 (See [2] for a complete statement) i) $\Sigma_{1}^{b}$ -NIA $con\mathit{8}i\mathit{8}t_{S}$ of the axioms

for $ba\mathit{8}ic$ word operators $-,$ $\cross$ , etc. plus $\Sigma_{1^{-}}^{b}\mathrm{N}\mathrm{I}$.

ii) BTFA is $\Sigma_{1}^{b_{- \mathrm{N}\mathrm{I}\mathrm{A}+\mathrm{B}}}\Sigma^{b}\infty+(-\mathrm{c}\mathrm{A}$.

We notice that $\Sigma_{1}^{b}$ -NIA and Buss’ $S_{2}^{1}$ are mutually interpretable. Originally, BTFA,

which stands for base theory for feasible analysis, is introduced by F. Ferreira [2] to

answer Sieg’s problem: find a mathematically significant subsystem of analysis whose

class of provably recursive functions consists only of the computationally “feasible” ones.

It is obvious that the smallest model of BTFA is $(2^{\omega}, \Delta^{0})1$

’ though it is unknown whether

or not ($)-CA implies $\Sigma_{1}^{b_{-\mathrm{C}\mathrm{A}}}$. The following theorem is a major characterization of

systems $\Sigma_{1}^{b}$-NIA and BTFA.

Theorem 1 i) $\Sigma_{1}^{b_{-}}\mathrm{N}\mathrm{I}\mathrm{A}+\mathrm{B}\Sigma_{\infty}^{b}$ is conservative over $\Sigma_{1}^{b}$ -NIA with respect to $\Pi_{2}^{0}$ -formulas.
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ii) BTFA is conservative over $\Sigma_{1}^{b_{- \mathrm{N}\mathrm{I}\mathrm{A}+\mathrm{B}\Sigma_{\infty}}}b$ with $re\mathit{8}pect$ to $\Pi_{1}^{1_{-}}f_{\mathit{0}}rmulaS$.

For a proof of this theorem and other related results, see Ferreira [2].

\S 2. Basics of real analysis.

We begin with defining a real number and a (uniformly) continuous function on the

reals in BTFA. We here have two sorts of natural numbers, i.e., tally natural numbers

and dyadic natural numbers. A tally natural number is defined by a string of l’s, i.e., $\epsilon,$
$1$ ,

11, $\ldots$ . Let $\mathrm{N}$ be the set of tally natural numbers. We can define $0_{\mathrm{N}},$ $\leq_{\mathrm{N}},$ $+_{\mathrm{N}}$ and $\cdot \mathrm{N}$ by

$\epsilon,$
$\subseteq,$

$-$ and $\cross$ , respectively. Then it is easy to show in BTFA that $\mathrm{N}$ is an ordered semi-

ring. We use $n,$ $m,$ $l,$ $k,$
$\ldots$ as variables over N. A tally natural number is used to express

the length of a string or the index of a sequence. A string $\sigma$ is a dyadic natural number

if $\sigma=1\tau$ for some $\tau$ , or $\sigma=0$ . In the standard model, $\sigma$ can be seen as the ordinary

dyadic notation of a natural number. The set of all dyadic natural numbers is denoted

by $\mathrm{N}_{2}$ . Also we can define $0_{\mathrm{N}_{2}},$ $\leq_{\mathrm{N}_{2}},$ $+_{\mathrm{N}_{2}}\mathrm{a}\mathrm{n}\mathrm{d}.\mathrm{N}_{2}$ in the usual way (cf. Ferreira [3]),

and show in BTFA that $\mathrm{N}_{2}$ is an ordered semi-ring. We should notice that there exists

a natural embedding of $\mathrm{N}$ into $\mathrm{N}_{2}$ , but not vice versa. Without misunderstanding, we

omit subscripts $\mathrm{o}\mathrm{f}+_{\mathrm{N}},$ $\leq_{\mathrm{N}_{2}}$ , etc.

A 3-tuple $(i, n, \sigma)$ denotes a dyadic rational number $(-1)^{i}2^{n} \sum\sigma(j)2^{-j}-1$ where $i=0$

or 1 and $\sigma(j)$ is the $j’ \mathrm{t}\mathrm{h}$ element ($0$ or 1) of $\sigma$ . Let $D’$ be the set of dyadic rational

numb$e\mathrm{r}\mathrm{s}$ . Then we define $=_{D’},$ $\leq_{D’},$ $+_{D’},$ $\cdot D’$ , etc. in the usual way. We have a natural

embedding of $\mathrm{N}_{2}$ into $D’/=_{D^{l}}$ . Let $D$ be the set of $D’\cap[0,1]$ . $D_{n}$ is the set of all elements

$(0, m, \sigma)$ of $D$ where the length of $\sigma$ is $m+n$.

To $\mathrm{s}\mathrm{i}\mathrm{m}\mathrm{p}\mathrm{l}\mathrm{i}\Phi$ the notation, we write $\sigma$ for $(0, n, \mathrm{o}^{n}\sigma)\in D$ , where $0^{n}$ is the string of $\mathrm{O}’ \mathrm{s}$

whose length is $n$ . Moreover, we write $2^{-n}$ for $0^{n-1}1$ .

Definition 3 (BTFA) A function $f$ : $\mathrm{N}arrow D’i\mathit{8}$ a real number $if|f(n)-f(m)|\leq 2^{-n}$
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for each $n\leq m$ . Two real $number\mathit{8}f$ and $g$ are said to be equal if $\forall n\in \mathrm{N}(|f(n)-g(n)|\leq$

$2^{-n+1})$ .

The relations $<,$ $\leq$ and basic operations on the real numbers are defined as usual. Note

that $=,$ $\leq \mathrm{o}\mathrm{n}$ the real numbers can be defined by a formula of the form $\forall\sigma\varphi(\sigma)$ where $\varphi$

is $\Pi_{1}^{b}$ .

Definition 4 (BTFA) $F=(\{f_{n}\}, m)$ is a (code for a) (uniformly) $continuou\mathit{8}$ function

from $[0,1]$ to $[0,1]$ if $Fsati\mathit{8}fies$ the following conditions:

1. $m:\mathrm{N}arrow \mathrm{N}$ is an increasing functionf called a $modulu\mathit{8}$ function for $F$ .

2. $\{f_{n}\}$ is a $\mathit{8}equenCe$ of $piecewi_{\mathit{8}}e$ linear functions $f_{n}$ : $Darrow D$ whose break points are in

$D_{m(n)}$ ,

3. $|f_{n}(d)-fn(d+2^{-m(n)})|\leq 2^{-n}$ for each $n\in \mathrm{N}$ and $d\in D$ ,

4. $|f_{n}(d)-fn+m(d)|\leq 2^{-n}$ for each $n,$ $m\in \mathrm{N}$ and $d\in D$ .

We define $F(x)=\langle r_{n}\rangle$ for each $x\in[0,1]$ by ($)-CA. Namely, if $x$ is not equal

to any $\sigma\in D$ , then we define $r_{n}=f_{n+1}(\sigma)$ where $\sigma$ is the unique string such that

$|x-\sigma|\leq 2^{-m(+1)-}n1\wedge\sigma\in D_{m(n+1)}$ . If $x=\tau$ for some $\tau\in D,$ $r_{n}=f_{|\tau|+n}(\mathcal{T})$ .

Remark 1. It is easy to extend the above definition to define a continuous function from

any bounded closed interval to any bounded closed interval. Also a multi-dimensional

continuous function can be defined in an obvious way. The identity function, the constant

function, $+,$ $\cdot,$

$x^{n}$ , etc. are all continuous. The continuous functions are closed under the

composition.

Remark 2. We could adopt another definition of continuous functions such as given in

Simpson [5]. However, with such a definition, we may not compute $F(x)$ even if $F$ has a

modulus function (except for a polynomial.)
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The following lemma can be used to show that functions defined by power series, e.g.,

$e\mathrm{x}\mathrm{p}(x)$ and $\sin(x)$ , are continuous on $[0,1]$ .

Lemma 2 (BTFA) Let $\{F_{n}\}$ be a $\mathit{8}equence$ of continuous $function\mathit{8}Fn:[0,1]arrow[0,2^{-n}]$

with the modulus function $m_{n}$ . Suppose that there $exist\mathit{8}m:\mathrm{N}arrow \mathrm{N}\mathit{8}uch$ that $m_{n}(k)\leq$

$m(k+n)$ for each $n,$ $k\in$ N. Then $F=\Sigma_{k\in \mathrm{N}}F_{k}$ is continuous.

Proof. We reason in BTFA. Let $F_{n}=(\{f_{m}^{n}\}, m_{n})$ . Let $\sigma\lceil n$ denote the initial segment

of a whose length is $n$ . Since we can compute $\sum_{k=0^{\sigma}k}^{m}\lceil n$ , then we have a continuous

function $F=(\{\Sigma_{k=}^{n}0f_{2}^{k}n\lceil 2n\}, m)$ . $\square$

\S 3. The intermediate value theorem and the maximum principle.

Before proving the intermediate value theorem, we show a useful lemma.

Lemma 3 (BTFA) Let $g,$ $h_{0}$ and $h_{1}$ be functions and $t$ be a term. Assume that there is

a term $t’\mathit{8}uch$ that $g(\tau)\leq t’(\tau)$ for each $\tau$ . Then, there $exi\mathit{8}tsf$ such that

$f(\epsilon, \tau)=g(\tau)$

$f(\sigma 0, \tau)=h0(f(\sigma, \tau),$ $\sigma,$
$\tau)\mathrm{r}t(\sigma 0, \mathcal{T})$

$f(\sigma 1, \tau)=h_{1}(f(\sigma, \mathcal{T}),$ $\sigma,$
$\tau)\mathrm{r}t(\sigma 1, \tau)$

Proof. By modifying the proof of proposition 7 in Ferreira [1], $f$ is obtained by a

formula of the form $\exists y\varphi$ with $\varphi\in\Sigma_{1}^{b}$ , which just describes the course of values. By

($)-CA, $f$ exists. $\square$

Theorem 4 (BTFA) Let $F$ be a $continuou\mathit{8}$ function from $[0,1]$ to $[0,1]_{\mathit{8}}uch$ that $F(\mathrm{O})<$

$1/2<F(1)$ . Then, there exists a real $x\in(\mathrm{O}, 1)\mathit{8}uch$ that $F(x)=1/2$ .

Proof. We may assume that $F(\sigma)\neq 0$ for all $\sigma\in D$ . Then by ($)-CA there exists

a set $X$ consisting of all $\sigma\in D$ such that $F(\sigma)>0$ . By the above lemma, we define
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$g$ : $\mathrm{N}arrow D$ by

$g(n)=\{$

$0$ if $n=\epsilon$ ,

$g(n-1)0$ if $n\neq\epsilon$ and $g(n-1)1\in X$ ,

$g(n-1)1$ otherwise

By $\Sigma_{1^{-}}^{b}\mathrm{N}\mathrm{I}$ ,

$\forall n\in \mathrm{N}\forall m\in \mathrm{N}[n\leq marrow g(n)\subseteq g(m)\wedge g(n)\equiv n+1]$ .

Thus $g$ is a real. By $\Sigma_{1^{-}}^{b}\mathrm{N}\mathrm{I}$ again, $\forall n\in \mathrm{N}[F(g(n))<1/2<F(g(n)+2^{-n})]$ . Therefore,

$F(x)=1/2$ where $x=g$ . $\square$

If the modulus function for a continuous function $F$ is of the form $|t|$ where $t$ is a term,

then we say that $F$ has a polynomial modulus function.

We now prove a lemma saying that a weak version of the maximum principle can be

shown in BTFA adding a very weak comprehension scheme.

Lemma 5 $(\mathrm{B}\mathrm{T}\mathrm{F}\mathrm{A}+\Sigma_{1^{-}}^{b}\mathrm{C}\mathrm{A})$ For each continuous function $F$ on $[0,1]$ with a polynomial

modulus function, then there exists $\sup_{0\leq y\leq}1(Fy)$ .

Proof. Let $F=(\{f_{n}\}, m)$ . By $\Sigma_{1}^{b_{-}}\mathrm{C}\mathrm{A}$ , there is $X_{n}^{l}=\{\tau\lceil l:\exists\sigma\in D_{m(n)}f_{n}(\sigma)=\tau\}$ .

We define $\varphi(l, n, \sigma)$ by

$\sigma\in X_{n}^{l}$ A $\sigma\equiv l$ A $\forall\sigma’\equiv l(\sigma/<\sigmaarrow\sigma’\not\in X_{n}^{l})$ .

Since $\varphi$ is $\Pi_{1}^{b}$ , we can show that $\forall n\in \mathrm{N}\forall l\in \mathrm{N}\exists!\sigma\varphi(l, n, \sigma)$ by $\Pi_{1^{-}}^{b}\mathrm{N}\mathrm{I}$ on $l$ . Let $g(n)=\sigma$

such that $\varphi(n+2, n+2, \sigma)$ . Then, for each $n\in \mathrm{N}$ ,

$f_{n+2}(d)\leq g(n)+2^{-n-2}$ for each $d\in D_{m(n+2)}$ .

$f_{n+2}(d’)\lceil(n+2)=g(n)$ for some $d’\in D_{m(n+2)}$ .

Therefore, we can show that $g$ is a real and that $g$ is the least upper bound. $\square$
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Corollary 6 $(\mathrm{B}\mathrm{T}\mathrm{F}\mathrm{A}+\Sigma_{1}b_{-}\mathrm{C}\mathrm{A})$ For each continuous function $F$ on $[0,1]\mathrm{x}[0,1]$ with a

polynomial modulus function, then there exists a continuous function $G(x)= \sup 0\leq y\leq 1F(x, y)$ .

Proof. It is straightforward from the proof of the above lemma. $\square$

Corollary 7 $(\mathrm{B}\mathrm{T}\mathrm{F}\mathrm{A}+\Sigma_{1^{-}}^{b}\mathrm{C}\mathrm{A})$ For each continuous function $F$ on $[0,1]$ with a polyno-

mial modulus function, then there $exi_{\mathit{8}}t_{S}$ a $continuou\mathit{8}$ function $G(x)= \sup 0\leq y\leq xF(y)$ .

Proof. We define a continuous function $F’$ on $[0,1]\cross[0,1]$ by

$F’(x)=\{$
$F(0)$ if $x<y$ ,

$F(x-y)$ if $y\leq x$ .

Then $F’$ has a polynomial modulus function. By the above lemma, we can obtain a

continuous function $G(x)= \sup_{0\leq}y\leq xF(y)$ . $\square$

Theorem 8 (BTFA) The following are equivalent:

1. $\Sigma_{1}^{b_{-}}\mathrm{C}\mathrm{A}$ .

2. For each continuous function $F$ on $[0,1]$ with a polynomial $modulu\mathit{8}$ function, then

there $exi\mathit{8}t\mathit{8}$ a continuous function $G(x)= \sup_{0\leq}y\leq xF(y)$ .

Proof. The implication from 1 to 2 is Corollary 7. It remains to prove that 2 implies 1.

We reason in BTFA.

Let $\varphi(\sigma)$ be $\Sigma_{1}^{b}$ . For simplicity, we assume $\varphi(\sigma)$ is of the form $\exists\tau\equiv t(\sigma)\psi(\sigma, \mathcal{T})$ where

$\psi(\sigma, \tau)$ is a s.w.q. formula. (It is a routine to extend the following argument to the general

case.)

For each $n\in \mathrm{N}$ , let $a_{n}=1-2^{-n}\in D$ . (Namely, $a_{n}=n$ in the sense of strings.) If $\sigma$

is the length of $n$ , then let $u_{\sigma}=a_{n}+0^{n+1}s$ and $v_{\sigma}=u_{\sigma}+2^{-2n-1}$ . If $\tau$ is the length of

$|t(n)|,$ $y_{\sigma},\mathcal{T}=u_{\sigma}+0^{2n+2}\tau$ and $z_{\sigma,\tau}=y_{\sigma,\tau}+2^{-2n-2-|}t(n)|$ .
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Define a function $H:[0,1]arrow[0,1]$ by

$H(x)=\{$
$2x$ if $0\leq x\leq 1/2$ ,

$2-2x$ if $1/2\leq x$ .

Now we define a continuous function $F=(\{f_{n}\}, m)$ . Let $m(n)=|t(n)|+2n+3$ . Let

$f_{n}(\sigma)=f_{n-}1(\sigma)$ for $\sigma\leq a_{n},$ $f(\sigma)=a_{n+1}$ for $\sigma\geq a_{n+1}$ , and for $\sigma\in[a_{n}, a_{n+1}]$ ,

$f_{n}(\sigma)=\{$

$2\sigma-v_{\sigma}$ if $\sigma\in[\frac{u+v_{\sigma}}{2}, v_{\sigma}]$ ,

$u_{\sigma}$ if $\sigma\in[y_{\sigma,\tau}, Z_{\sigma,\mathcal{T}}]$ and $\neg\psi(\sigma, \mathcal{T})$ ,

$u_{\sigma}+2^{-|t(n})|-2n-2h(2|t(n)|+2n+2. (\sigma-y\sigma,\mathcal{T}))$ if $\sigma\in[y_{\sigma T})’ z_{\sigma,\mathcal{T}}]$ and $\psi(\sigma, \tau)$ .

If $G(x)= \sup_{0\leq y\leq}x(Fy)$ , then it is easy to see that $\exists\tau\leq t(\sigma)\psi(\sigma, \mathcal{T})$ iff $G( \frac{u+v}{2})-$

$2^{-|t(\sigma)|}-2\cdot|\sigma|-3>u_{\sigma}$ iff $g|t( \sigma)|+2\cdot|\sigma|+5(\frac{u_{\sigma}+v_{\sigma}}{2})>u_{\sigma}$ , where $G=(\{g_{n}\}, m’)$ . Therefore, there

exists $X=\{\sigma:\varphi(\sigma)\}$ . $\square$

Note. The above theorem can be viewed as a formalized version of theorem 3.7 in Ko’s

book [4].
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