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Reverse Mathematics and weak second-order systems

of 0-1 strings

Takeshi Yamazaki ( [LHIF & )

Mathematical Institute, Tohoku University

Abstract. From a standpoint congenial to Reverse Mathematics, we develop a basic part of
real analysis within weak second-order systems of 0-1 strings, e.g., BTFA. Among others, we
show within BTFA that a version of the maximum principle is equivalent to TE-CA.
§1. Introduction. |

The purpose of Reverse Mathematics is to determine which set existence axioms are
needed to prove a popular theorem of mathematics. For the main-stream researches of
this program, the system RCAj is presupposed as a base theory in which most of basic
concepts of ordinary mathematics (e.g., reals, continuous functions) are defined. However,
it has been claimed by several people that the phenomena of Reverse Mathematics depend
on the base theory, so that necessary axioms for a theorem may be changing if one replaces
RCA, by a weaker system. Actually, Simpson and Smith [6] already studied Reverse
Mathematics over RCAj, which is roughly RCA( minus X-induction plus E3-induction
plus exponentiation. F.Ferreira [2] proposed to do Reverse Mathematics over BTFA (or
BTFA+X? -WKL), a second-order systems of 0-1 strings whose provably total functions

are the polynomial time computable functions.
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In this paper, we bcarry out Ferreira’s plan and show, for instance, that the intermediate
value theorem on [0, 1] is provable in BTFA, and a version of the maximum principle is
equivalent to ¥-CA within BTFA.

In thé rest of this section, we quickly review the basic concepts about second-order
syétems of 0-1 strings following [2]. Then in §2, we develop real analysis within such
systems, and in §3, we prove our main results.

The language of second-order systems of 0-1 strings consists of three constant symbols
g, 0, and 1, two binary function symbols ~(for concatenation) and x(z x y means the
word z concatenated with itself the length of y times) and a binary relation symbol C
(for initial subwordness). The class of s.w.q. formulae (where s.w.q. stands for “subword
quantification”) is the smallest class of formulae containing the atomic formulae and closed
under the Boolean operations and quantifications of the form Vx C* ¢ or dz C* ¢ where
2z C* y means 3z C y(2"z C y) and ¢ is a term in which the variable z does not occur.
The relation z < y is defined bylli X £ C 1 X y to express that the length of z is less
than or equal to the length of y. We write 1 x z for |z|. Z8-formula is a formula of the
form 3z < tp where ¢ is a s.w.q. formula and ¢ is a term in which the variable z does
not occur. The class of X2 -formulas is the smallest class containing the s.w.q. formulas
and closed under Boolean operations and bounded quantification, i.e., quantification of

the form 3z < ¢(...) or Vz < ¢(...), where the variable z does not occur in the term £.

Definition 1 i) ($)-CA is the set of universal closures of formulas of the form
Vz(3yp(z,y) <> Vap(z, 2)) = IXVz(z € X © Jyp(z,y)),

where @ and v are X8 -formulae X does not occur in .
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ii) X-CA is the set of universal closures of formulas of the form
AXVz(z € X + ¢(z)),
‘where ¢ is L-formulae and X does not occur in .
iii) $5-NI (notation induction) is the set of universal closures of formulas:
50(6) AVz(p(z) = ¢(x0) A p(z1)) = Vzp(z),
where ¢ is ¥8-formula.
iv) BX is Ithe set of universal closures of formulas:
Vz < adyp(z,y) = 2V < ady < z2¢(z,y),
where ¢ is ¥8_-formula.

Definition 2 (See [2] for a complete statement) i) X3-NIA consists of the azioms

for basic word operators ™, x, etc. plus L8-NI.
ii) BTFA is 5! -NIA+BS?_+($)-CA.

We notice that X2-NIA and Buss’ S} are mutually interpretable. Originally, BTFA,
which stands for base theory for feasible analysis, is introduced by F. Ferreira [2] to
answer Siég’s problem: find a mathematically significant subsystem of analysis whose
~ class of provably recursive functions consists only of the computationally “feasible” ones.
It is obvious that the smallest model of BTFA. is (2@, A9), though it is unknown whether
or not (§)-CA implies $8-CA. The following theorem is a major characterization of

systems ¥5-NIA and BTFA.

Theorem 1 i) Z8-NIA+BX2, is conservative over £8-NIA with respect to I13-formulas. |
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ii) BTFA is conservative over ¥8-NIA+BX with respect to I1i-formulas.

For a proof of this theorem and other related results, see Ferreira [2].
§2. Basics of real analysis.

We begin with defining a real number and a (uniformly) continuous function on the
reals in BTFA. We here have two sorts of natural numbers, i.e., tally naturai numbers
and dyadic natural numbers. A tally natural number is defined by a string of 1’s, i.e., ¢, 1,
11, .... Let N be the set of tally natural numbers. We can define On, <n, +n~ and ‘N by
g, C, ™ and x, respectively. Then it is easy to show in BTFA that N is an ordered semi-
ring. We use n, m, [, k, ... as variables over N. A tally natural number is used to express
the length of a string or the index of a sequence. A string o is a dyadic natural number
if o = 17 for some 7, or ¢ = 0. In the standard model, o can be seen as the ordinary
dyadic notation of a natural number. The éet of all dyadic natural numbers is denoted
by N,. Also we can define On,, <n,, +n, and ‘N, in the usual way (cf. Ferreira [3]),
and show in BTFA that N is an ordered semi-ring. We should notice that there exists
a natural embeddingvof N into Ny, but not vice versa. Without misunderstanding, we
omit subscripts of +n, <n,, etc.

A 3-tuple (i,n, o) denotes a dyadic rational number (—1)12" ¥ o(j)277~! where i =0
or 1 and o(j) is the j'th element (0 or 1) of 0. Let D' be the set of dyadic rational
numbers. Then we define =p, <pr, +pr, ', etc. in the usual way. We have a natural
embedding of Ny into D'/ =pr. Let D be the set of D'N[0, 1]. D, is the set of all elements
(0,m, o) of D where the length of o is m + n.

To simplify the notation, we write o for (0,n,0%) € D, where 0" is the string of 0’s

whose length is n. Moreover, we write 27" for 0"~'1.

Definition 3 (BTFA) A function f : N — D’ is a real number if |f(n) — f(m)| < 27"
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Jor each n < m. Two real numbers f and g are said to be equal if Yn € N(|f(n)—g(n)| <

2——n+1).

The relations <, < and basic operations on the real numbers are defined as usual. Note
that =, < on the real numbers can be defined by a formula of the form Vop(o) where ¢
is 1.

Definition 4 (BTFA) F = ({f.}, m) is a (code for a ) (uniformly) continuous function

from [0,1] to [0,1] if F' satisfies the following conditions:
1. m: N = N is an increasing function, called a modulus function for F.

2. {fn} is a sequence of piecewise linear functions f, : D — D whose break points are in

Dm(ﬂ.); |
3. |fa(d) — fo(d+27™™)| < 27" for eachn € N and d € D,

4. |fu(d) = fosm(d)| <27 for eachn,m € N and d € D.

We define F(z) = (r,) for each z € [0,1] by ($)-CA. Namely, if z is not equal
to any ¢ € D, then we define 7, = f,1(0) where o is the unique String such that
|z — o] < 270 *D-1 A5 € Dpyguyry. If £ =7 for some 7 € D, 1y = firjan (7).

Remark 1. It is easy to extend the above definition to define a continuous function from
any bounded closed interval to any bounded closed interval. Also a multi-dimensional
continuous function can be defined in an obvious way. The identity function, the constant
function, +, -, ", etc. are all continuous. The continuous functions are closed under the
composition.

Remark 2. We could adopt another definition of continuous functions such as given in
Simpson [5]. However, with such a definition, we may‘ not compute F(z) even if F' has a

modulus function (except for a polynomial.)
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The following lemma can be used to show that functions defined by power series, e.g.,

exp(z) and sin(z), are continuous on [0, 1].

Lemma 2 (BTFA) Let {F,} be a sequence of continuous functions F, : [0,1] — [0,27"]
with the modulus function m,. Suppose that there exists m : N — N such that m,(k) <

m(k +n) for each n,k € N. Then F =Y N Fr is continuous.

Proof. We reason in BTFA. Let F, = ({f*},m,). Let o[n denote the initial segment
of o whose length is n. Since we can compute Y jr,0x[n, then we have a continuous
function F = ({3r_, f.[2n},m). O

§3. The intermediate value theorem and the maximum principle.

Before proving the intermediate value theorem, we show a useful lemma.

Lemma 3 (BTFA) Let g, hy and hy be functions and t be a term. Assume that there is

a term ' such that g(r) < ¥'(r) for each 7. Then, there exists f such that
fle,7) = g(r)
f(00,7) = ho(f (0, 7),0,7)[t(c0,T)
f(ol,7) = hi(f(o,7),0,7)[t{c1,T)

Proof. By modifying the proof of proposition 7 in Ferreira [1], f is obtained by a
formula of the form Jyp with ¢ € X%, which just describes the course of values. By

($)-CA, f exists. O

Theorem 4 (BTFA) Let F be a continuous function from [0,1] to [0, 1] such that F'(0) <

1/2 < F(1). Then, there ezists a real z € (0,1) such that F(z) =1/2.

Proof. We may assume that F(o) # 0 for all o € D. Then by ($)-CA there exists

a set X consisting of all 0 € D such that F(o) > 0. By the above lemma, we define
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g:N—-> Dby
' 0 ifn=c¢,
g(n) = g(n—1)0 ifn#e¢and g(n—1)1€ X,
\ gln—1)1 otherwise
By X8-NI,

Vn € NVm € N[n <m — g(n) C g(m) Ag(n) =n+1].

Thus g is a real. By X8-NI again, Vn € N[F(g(n)) < 1/2 < F(g(n) + 2~™)]. Therefore,
F(z) =1/2 where z =¢. O |

If the modulus function for a continuous function F is of the form |t| where ¢ is a term,
then we say that F' has a polynomial modulus function.
| We now prove a lemma saying that a weak version of the maximum principle can Be

shown in BTFA adding a very weak comprehension scheme.

Lemma 5 (BTFA+X%-CA) For each continuous function F' on [0, 1] with a polynomial

modulus function, then there erists supy<,<; F(y).

Proof. Let F = ({f,},m). By £3-CA, there is X! = {r[l: 30 € Din(ny fa(0) = T}

We define (1, n,0) by
cEX:No=IAVYd =l(0' <o =o' ¢ X}).

Since ¢ is I, we can show that Vn € NVI € N3lop(l,n,0) by II’-NI on I. Let g(n) = o

such that ¢(n + 2,n + 2,0). Then, for each n € N,
fa+2(d) < g(n) + 2772 for each d € Dp(n42)-
frr2(d)[(n +2) = g(n) for some d' € Dyn2)-

Therefore, we can show that g is a real and that g is the least upper bound. O
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Corollary 6 (BTFA+X!-CA) For each continuous function F on [0,1] x [0,1] with a

polynomial modulus function, then there exists a continuous function G(z) = SUPg<y<t F (z,y).
Proof. It is straightforward from the proof of the above lemma. O

Corollary 7 (BTFA+X%-CA) For each continuous function F on [0,1] with a polyno-

mial modulus function, then there ezists a continuous function G(z) = suPy<,<, F(Y)-

Proof. We define a continuous function F” on [0, 1] x [0,1] by

F(0 if x <y,
F(o) = (0)
F(z—y) ify <z

Then F' has a polynomial modulus function. By the above lemma, we can obtain a

continuous function G(z) = supgcy<, F(y). O
Theorem 8 (BTFA) The following are equivalent:
1. X-CA.

2. For each continuous function F on [0,1] with a polynomial modulus function, then

there erists a continuous function G() = SuPpcy<, F(Y)-

Proof. The implication from 1 to 2 is Corollary 7. It remains to prove 'phat 2 implies 1.
We reason in BTFA.

Let ¢(c) be X8, For simplicity, we assume ¢(0) is of the form 37 = t(0)1(0, 7) where
¥(0,7) is a s.w.q. formula. (It is a routine to extend the following argument to the general
case.)

Foreachn e N ,leta, =1 - 2>‘" e D. (Namely, a,, = n in the sense of strings.) If .0
is the length of n, then let u, = a, + 0"*'s and v, = uy + 272*71. If 7 is the length of

[t(P), Yo,r = e + 0221 and 25 = Yor + 9—2n—2-|t(n)|_



33

Define a function H : [0,1] — {0, 1] by

2z if0<z<1/2,
H(z) =
2-2z  ifl/2<u.
Now we define a continuous function F' = ({f,},m). Let m(n) = |[t(n)| + 2n + 3. Let

fu(o) = fu_1(0) for o0 < a,, f(0) = any1 for o > ayy1, and for o € [ay,, Gnt1),

)
20 — Uy if o € [Yet2e v,],
fal0) =4 u, if 0 € [Yo,r, 20,7] and —p(o, 7),
Uy 4 27 HBI=20=2p olm)+2042 ., (5 — ) if 0 € [Yo,r, 20,r] and (o, 7).
\

If G(z) = supycy<, F(y), then it is easy to see that I < t(0)y(o, 7) iff G(%t%=)
27121013 > 4y, iff gy 2jops(25E2=) > u,, where G = ({gn}, m’). Therefore, there
exists X = {0 : p(0)}. O

Note. The above theorem can be viewed as a formalized version of theorem 3.7 in Ko’s

book [4].
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