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ON THE VANISHING OF IWASAWA INVARIANTS OF
ABSOLUTELY ABELIAN p-EXTENSIONS

GEN YAMAMOTO (U 5)

ABSTRACT. Let p be any odd prime. We determine all absolutely abelian p-extension
fields such that Iwasawa A, y, and yp-invariants of the cyclotomic Z,-extension are
zero, in terms of congruent conditions, p-th power residues, and genus fields.

1. INTRODUCTION

Let p be a prime and Z, the ring of p-adic integers. Let k be a finite extension of
the rational number field Q, ko, a Z,-extension of k, k, the n-th layer of koo /k, and A,
the p-Sylow subgroup of the ideal class group of k,. Iwasawa proved the well-known
theorem about the order #A, of A, that there exist integers A = Akoo/k) > 0,p =
koo /k) > 0,v = v(ks/k), and ng > 0 such that

#An — p/\n+up +v

for all n > ng. These integers A = M koo /k), p = plkoo/k) and v = v(ky/k) are called
Iwasawa invariants of ky, [k for p. If k., is the cyclotomic Z,-extension of k, we write
Ap(k), pp(k) and v,(k) for the above invariants, respectively.

In [7], Greenberg conjectured that if & is a totally real, A,(k) = p,(k) = 0. We call this
conjecture Greenberg conjecture. For Iwasawa A, p,-invariants of abelian p-extension
fields of Q, there are results by Greenberg ([7], V), Iwasawa([9]), Fukuda, Komatsu,
Ozaki and Taya([6]), Fukuda([4]), and the author([12]), etc. On the other hand, Ferrero
and Washington have shown that p,(k) = 0 for any abelian extension field k£ of Q.

In this paper, we will consider a stronger condition than Greenberg conjecture that
A(k) = pp(k) = v,(k) = 0 and determine all absolutely abelian p-extensions k, i.e. &
is an abelian extension of the rational number field Q, with A\, (k) = p,(k) = v,(k) =0

for an odd prime p, using the results of G. Cornell and M. Rosen([1]).

2. MAIN THEOREM

Throughout this section, we fix an odd prime p. For an absolutely abelian p-extension
field k, let f; be its conductor, i.e. f is the minimum positive integer with k& C Q((y, ).
Then, it follows easily that f = p*p;---p;, where a is a non-negative integer and
p1,- -+ ,p; are distinct primes which are congruent to 1 modulo p. We denote kg by the
genus field of k. So kg is the maximal unramified abelian extension of & such that kq/Q
is an abelian extension. In general, if k/Q is an abelian extension of odd degree, then
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it has shown by Leopoldt that

€169 €
kg : k] = ———
[k:Q] ’
where €1, - e; are ramification indices of primes which ramify in k/Q. Hence in our

case, kg is also an abelian p-extension of Q. For instance we denote by (), the p-th
power residue symbol, i.e., for integers z, y, (-;5),, = 1 if and only if z is the p-th power

modulo y. .
Our main theorem gives a necessary and sufficient condition for A\, (k) = p,(k) =
vp(k) = 0 in terms of p-th power residue symbol, congruent conditions and genus fields:

Theorem 1. Let k be an abelian p-extension of Q, and fr = p°py---p; the prime |
decomposition of its conductor, where primes py,--- , p; are distinct. If

Ap(k) = pp(k) = 1p(k) =0, » (1)
then t < 2. Conversely, in each case of t =0 or 1 or 2, the followings are a necessary
and sufficient condition of (1):

In case of t =0 : (1) holds.
In case of t =1 : (1) is equivalent to ky = k1 g and,

(ﬂ) # lorp; Z1 (mod p?). (2)
P/,
In case of t =2 : (1) is equivalent to ky = k1 i, and for (i,7) = (1,2) or (2,1),

(ﬂ)p £1, (Ei)p #1,p; # 1 (mod p?), | (3)

pi i
and, there exist z,y,z € F, such that
- y
(M) =1, (E—R’—) = 1,p;p? =1 (mod p*), and zyz # —1lin F, (4)
pi /, \Pi/, , .

In case of ¢ = 2, the conditions in Theorem 1 are complicated. So we will give an
example. We consider the case p = 3,p; = 7 and p; = 19. We denote kr(resp. ki9) by
the subfield of Q(({7) (resp.Q({19)) with degree 3 over Q. As for the condition k; = k; ¢,
there exists a field F' such that k; C F C krk190Qq and F # krkyg, £7Q;, where Q; is the
first layer of cyclotomic Zs-extension of Q. Then k7k,9Q,/F is a nontrivial unramified
extension and krk;9Qq is abelian, hence F' C krk19Qq C Fi. But, for Fi = krk19Qy, it
follows easily that Fy = Fj . If we restrict the case p is unramified in k, i.e. ¢ = 0, then
the statement ky = ky ¢ can be simplified to k£ = kg because ky = kQ,. This restriction
is not so strong: In general, for an absolutely abelian p-extension field %, there exists an
absolutely abelian extension field £’ such that p is unramified in &’ and k., = k/,. Note
that if k£ is the maximal subfield of Q({,) (m = p®p; - -- p; as above) which is abelian
p-extension of Q, then k = kg.

We continue to examine the above example. If we put (¢,7) = (1,2), thenp;, =19 =1
(mod 32), so the condition (3) is not satisfied. But if we put (z,j) = (2,1), then we can
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verify that p; = 19 and p; = 7 satisfy the conditions (3) and (4). Hence, for example,
if K is the maximal subfield of Q((7.19) which is 3-extension of Q, then K satisfies the
conditions of Theorem 1. Therefore we get

A(K) = pp(K) = 1(K) = 0.

As for Greenberg conjecture, we can also get the following: In general, it is known that
if L € M then )\,(L) < \,(M) and p,(L) < pp(M) for number fields L, M. Hence for
any subfield k of Q((r.19) which is 3-extension of Q, i.e. ¥ C K, then A\, (k) = pp(k) = 0.
This consideration is generalized as follows:

Corollary 2. Let m = p®py---p; satisfy the condition (2) or (3),(4). Then for any
subfield k of Q((,,) which is p-extension of Q, Greenberg conjecture for k and p is valid.

3. THE RESULTS OF G. CORNELL AND M. ROSEN

In this section, we review briefly part of [1]. Let K/Q be an abelian p-extension, p a
prime. In the 1950’s, A. Frohlich determined all such fields with class number prime to
p (cf. [2]). In [1],G. Cornell and M. Rosen reconsidered this problem in the case where p
is an odd prime, and reduced the problem to the case when Gal(K/Q) is an elementary
abelian p-group, i.e. Gal(K/Q) ~ (Z/pZ)™ for some integer m .

We suppose that p is an odd prime and Gal(K/Q) is an abelian p-group. Then the
genus field Kg of K is also abelian p-extension. If p does not divide the class number
hi of K, then K does not have any non-trivial unramified abelian p-extension by class
field theory, hence K¢ = K. In the following we will assume K5 = K. Further, we
consider the central p-class field K¢ of K, i.e. K¢ is the maximal p-extension of K such
that Ko/K is abelian and unramified, K¢ /Q is Galois and Gal(K¢/K) is in the center
of Gal(K¢/Q). Since a p-group must have a lower central series that terminates in the
identity, one sees that p Jhk if and only if K¢ = K. So we are interested in which
case Ko = K. This can be reduced the case when Gal(K/Q) is an elementary abelian
p-group by the following result:

Lemma 3 ([1] Theorem 1). Let K/Q be an abelian p-extension with Kg = K. Let
k be the mazimal intermediate extension between Q and K such that Gal(k/Q) is

an elementary abelian p-group. Then p-rank of Gal(K¢/K) is equal to the p-rank of
Gal(kc/k).

In the case Gal(K/Q) is an elementary abelian p-group, by the results of Furuta and
Tate, we have the following lemma: '

Lemma 4 ([1] Section 1). Let K be an absolutely abelian p-extension such that Gal(K /Q)
is an elementary abelian p-group and Kg = K. Then, we have

Gal(K¢/K) ~ Coker(®™, A? (G;) — N(G)),
where G;’s are the decomposition groups of primes ramified in K/Q and G = Gal(K/Q).
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We will assume Gal(K/Q) ~ (Z/pZ)™. Let py,-- - p;: be the primes ramified in K and
hx the class number of K. From genus theory, it follows that if hx is not divisible by
p, then ¢t = m. Also it follows that if m > 4 then p divides hx by Lemma 4. So, we
assumet =mand m =2or 3. (In case of t =m =1, p fhk. cf. [8].)

Lemma 5 ([1] Proposition 2). Suppose m = 2 and p; # p for i = 1,2. Then p|lhg if
and only if(g—;—)p =1 and (%)p =1.

Next, we consider the case where one of the ramified primes is p. Suppose m = 2 and
p and p; are the only primes ramified in K. Then we can get easily K = k(p;)Q,; and
p1 =1 (mod p), where %(p;) is the unique subfield of Q((,,) which is cyclic over Q of -
degree p, (,, is a primitive p;-th root of unity, and Q; is the first layer of the cyclotomic
Zy-extension of Q.

Lemma 6 ([1] Proposition 3). Suppose m = 2 and p and p; are the only primes
ramified in K. Then plhg if and only if (), =1 and p; =1 (mod p?).

Suppose t = m = 3 and py, p, and p; all the primes ramified in K. We put D,, the
decomposition field of p;(7 = 1,2,3) in K. In [1], the following simple result is given:

Lemma 7 ([1] Theorem 2). Suppose t = m = 3. Following statements (a) and (b)
are equivalent:

(a) hx is not divisible by p,

(b) [DPI': Q= [Dpz : Q} = [Dps : Q] = p and Dy, Dy, Dy = K.

In the next section, we shall prove Theorem 1,using these results.

4. PrROOF oF THEOREM 1

Notations are as in previous section. v

Firstly, we suppose A,(k) = u,(k) = v,(k) = 0. Clearly, this condition is equivalent
to A(k,) = 0 for any sufficiently large n. Then, k, satisfies k, = k, g and k; = ki g,
because all ramified primes are totally ramified in k,/k;. Since k, is also an abelian
p-extension of QQ, we can apply the results of Cornell-Rosen:

Let L be the maximal subfield of k, such that Gal(L/Q) is an elementary abelian
extension of Q. Since k, = k, g, Gal(k,/Q) is the direct sum of the inertia groups
of primes ramified in k,/Q, hence it follows that L = k(p;)---k(p;)Q;. By Lemma 3,
A(k,) = 0is equivalent to p fhz. Note that if ¢ > 3 then we always have p|h;, as in the
previous section. Hence we may examine in each case of t = 0 or 1 or 2.

If ¢ = 0 then L = Q, hence it is well known that A(L) = A(Q) = 0 (cf. [8]).

Ift =1 then L = k(p;)Q,. By lemma 6, we get the statement in Theorem 1.

In the following we assume that ¢ = 2. In this case, L = k(p;)k(p2)Qy. Let G,, G,, (3 =
1,2) be the decomposition groups for p,p; in Gal(L/Q) and let D,, D,, be the fixed
field of G, Gy, respectively. We note that D, C k(p1)k(p2), Dy, C k(p2)Qy and D, C
k(p1)Q1- '

Now, from our assumption p fhr, we have [D, : Q] = [D,, : Q] = [D,, : Q] = p and
Dy Dy, Dp, = L by Lemma 7. Here, we assume that either (£), = 1 or (B)p =1or
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p2 = 1 (mod p?) holds, and either (£), = 1 or (&), =1 or p; = 1 (mod p*). This is
equivalent to

D, = k(p;) or Dy, = k(p;) or Dp; = Q, for (4,5) = (1,2) and (2,1), (5)

because [D, : Q] = [D,, : Q] = [D,, : Q] =
If D, = k(p1), then D,, # k(pl) because D,D,, D,, = L. Hence by (5) (put
(1,j) = (2,1)), we have D,, = Q;. Then D,, C k(p1)Q: = D,D,,, which contra-
dlc‘cs D,D,,D,, = L. In the same way, if D, = k(p;), then D,, # k(p;) and we have
D,, = @ by (5), which contradicts. Thus, it follows that the assumption (5) cause
contradiction. Therefore, for (i,7) = (1,2) or (2,1), (£), # 1 (p; )p # 1, and p; # 1

(mod p?).
Without loss of generality, we may assume (7,j) = (1,2). Since (pil)p # 1, p is inert
in k(p;). Hence o = (ﬂp—;u—) # 1, where (—ip—l/L) is the Artin symbol, and o generates

Gal(k(p1)/Q): < o >= Gal(k(p1)/Q). We often regard < o >= Gal(k(p1)k(p2)/k(p2))
or Gal(L/k(p;)Q,) in the natural way. Similarly, we put 7 = (M) and n = (M),

then < 7 >= Gal(k(p;)/Q) and < n >= Gal(@l/Q)
Since (Z), # 1, there exists z € F, such that (p”’ )p = 1. Then

(I_’sz) e ( (Pl)/Q) _ (k(m)/(@) (Hm)/@)m _1

p/, p2p” P2 p

Therefore (ﬂ%}&) = o~%. Similarly, we obtain y,z € F, such that (ppl) = 1 and
p1pi =1 (mod p?), and hence (-(—L—p;/ ) =7"Y and (@;{Q) =77

Since (’“@1)’“;?2)/@) :ﬁ(p;)/@xk(p;)/@) = o77Y, D, is the fix field of < 077 > in
k(p1)k(pz). Therefore, when we consider G, in Gal(L/Q),

G, =<mn,077%>.
And similarly,

Gp, =< o, >
and

Gp, =< T,n0" " >,
in Gal(L/Q).

By a direct computation, we have,
Gy NGy =< o77% >

Hence,

G,NG, NGy, =<ot™ ¥ >N <1007 " >

— { {1} ) if TYz # _]-a

<or¥n¥* > | if zyz = —1.

But , our assumption D, Dy, Dy, = L implies G, N Gp, N Gy, = {1}. Hence zyz # —1.
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Conversely, we assume k satisfies the conditions of Theorem 1 in case of ¢ = 2. Since
ki = k1, it follows easily that L = k(p;)k(pz)Q; is the maximal intermediate exténsion
between Q and k,(n > 1) such that Gal(L/Q) is an elementary abelian p-group. With-
out loss of generality, we may assume (7, j) = (1,2). Since Gal(k(p1)k(p2)/Q) =~ (Z/pZ)*
and p is unramified in k(p;)k(p2), p must decompose in k(p;)k(py). But the condition
(£)p # 1 implies p is inert in k(p1) C k(p1)k(p2), hence we obtain [D, : Q] = p. Simi-
larly, ( %;—)p # 1 and p; # 1 (mod p?) imply [D,, : Q] = [D,, : Q] = p. Therefore, as in
. the above computation of G,, Gy, we have D,D, D,, = L, by zyz # —1. O

5. REMARKS

The condition of Theorem 1 in [12] means zyz = 0 which is a special case of zyz # —1.
Hence, our Corollary 2 contains some known results and there exist infinitely many fields
satisfying the conditions of Theorem 1 (cf. [12]).

If K = k(p1)k(p2) satisfies the conditions of Theorem 1, then A, (k) = u,(k) = 0
for any field £ C K with [k : Q] = p. This is a result of Fukuda [4]. He has shown
this result using a technic of capitulation of ideal class group. The case zyz = —1 is a
difficult case. But we can get some results:

Proposition 8. Notations are as in section 3. Assume that (£), # 1,(2), # 1,
and p; Z 1 (mod p*). Then A\, (k) = p,(k) = 0 for the decomposztzon field k of p in
k(p1)k(pa).

Proof. We apply a result of [6]:

Lemma 9 ([6] Corollary 3.6). Let k be a cyclic extension of Q of degree p. Then the
following conditions are equivalent:

(a) Ap(k) = pp(k) =0,
(b) For any prime ideal w of ko which, s prime to p and ramified in koo /Qoo,
the order of the ideal class of w is prime to p.

If 2yz # —1 then we have A\,(k) = p,(k) = 0 by Corollary 2. So we only consider
the case zyz = —1. In this case we have k # k(p;) (¢ = 1,2). It follows easily that
A(k), the p-part of the ideal class group of k, is cyclic of order p, and it is generated
by products of primes of k& above p. On the other hand, for : = 1,2, the prime p; of &k
above p; generates A(k), and is inert in ko, /k. Since the primes of & above p is principal
for some k, by the natural mapping A(k) — A(k,) (cf. [7]), p; is principal in k.

Since the primes ramified in k.,/Q., are p; and py, which is principal in k., we can
apply Lemma 9 and obtain A,(k) = p,(k) =0. O

Recently, Fukuda verified Greenberg conjecture for various cubic cyclic fields & with
f&e = p1pe and p = 3. He gives an example, which is the case p; = 7 and p, = 223.
Note that there exist two such fields, and these p; and py do not satisfy condition (3) in
Theorem 1. He verified A3 = ps = 0 for one of such fields by using his result concerning
with the unit group of k (cf. [5]).
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When ¢t > 3, i.e. at least 3 primes are ramified in k/Q, there are a few results for
Greenberg conjecture. In this case, the p-rank of A(k) is greater than 2. Greenberg([7])
gave the following example, but the proof are omitted in his paper: p = 3 and k is an
cubic cyclic field with conductor 7-13 - 19 and 3 is inert in k£/Q. He mentioned that
by ”delicate” arguments one can show A3(k) = ps(k) = 0. The author had a chance
to contact Prof. Greenberg, and asked him about this example. He kindly taught the
author the ”delicate” arguments, which is a system to examine relations of the ideal
class group of intermediate fields of kQ;. Applying his idea, we can show the following
result:

Theorem 10 ([13]). Let p be any odd prime. For any integer 0 <m < p—1, there exist
infinitely many cyclic extension fields k of Q with [k : Q] = p such that p-rankA(k) = m
and A\y(k) = p,(k) = 0. ’
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