ON THE VANISHING OF IWASAWA INVARIANTS OF ABSOLUTELY ABELIAN p-EXTENSIONS

GEN YAMAMOTO (山本 現)

ABSTRACT. Let p be any odd prime. We determine all absolutely abelian p-extension fields such that Iwasawa λ_p , μ_p and ν_p -invariants of the cyclotomic \mathbb{Z}_p -extension are zero, in terms of congruent conditions, p-th power residues, and genus fields.

1. Introduction

Let p be a prime and \mathbb{Z}_p the ring of p-adic integers. Let k be a finite extension of the rational number field \mathbb{Q} , k_{∞} a \mathbb{Z}_p -extension of k, k_n the n-th layer of k_{∞}/k , and A_n the p-Sylow subgroup of the ideal class group of k_n . Iwasawa proved the well-known theorem about the order $\#A_n$ of A_n that there exist integers $\lambda = \lambda(k_{\infty}/k) \geq 0, \mu = \mu(k_{\infty}/k) \geq 0, \nu = \nu(k_{\infty}/k)$, and $n_0 \geq 0$ such that

$$\#A_n = p^{\lambda n + \mu p^n + \nu}$$

for all $n \geq n_0$. These integers $\lambda = \lambda(k_{\infty}/k)$, $\mu = \mu(k_{\infty}/k)$ and $\nu = \nu(k_{\infty}/k)$ are called Iwasawa invariants of k_{∞}/k for p. If k_{∞} is the cyclotomic \mathbb{Z}_p -extension of k, we write $\lambda_p(k)$, $\mu_p(k)$ and $\nu_p(k)$ for the above invariants, respectively.

In [7], Greenberg conjectured that if k is a totally real, $\lambda_p(k) = \mu_p(k) = 0$. We call this conjecture Greenberg conjecture. For Iwasawa λ_p , μ_p -invariants of abelian p-extension fields of \mathbb{Q} , there are results by Greenberg ([7], V), Iwasawa([9]), Fukuda, Komatsu, Ozaki and Taya([6]), Fukuda([4]), and the author([12]), etc. On the other hand, Ferrero and Washington have shown that $\mu_p(k) = 0$ for any abelian extension field k of \mathbb{Q} .

In this paper, we will consider a stronger condition than Greenberg conjecture that $\lambda_p(k) = \mu_p(k) = \nu_p(k) = 0$ and determine all absolutely abelian p-extensions k, i.e. k is an abelian extension of the rational number field \mathbb{Q} , with $\lambda_p(k) = \mu_p(k) = \nu_p(k) = 0$ for an odd prime p, using the results of G. Cornell and M. Rosen([1]).

2. Main Theorem

Throughout this section, we fix an odd prime p. For an absolutely abelian p-extension field k, let f_k be its conductor, i.e. f_k is the minimum positive integer with $k \subseteq \mathbb{Q}(\zeta_{f_k})$. Then, it follows easily that $f_k = p^a p_1 \cdots p_t$, where a is a non-negative integer and p_1, \dots, p_t are distinct primes which are congruent to 1 modulo p. We denote k_G by the genus field of k. So k_G is the maximal unramified abelian extension of k such that k_G/\mathbb{Q} is an abelian extension. In general, if k/\mathbb{Q} is an abelian extension of odd degree, then

it has shown by Leopoldt that

$$[k_G:k] = \frac{e_1 e_2 \cdots e_t}{[k:\mathbb{Q}]},$$

where $e_1, \dots e_t$ are ramification indices of primes which ramify in k/\mathbb{Q} . Hence in our case, k_G is also an abelian p-extension of \mathbb{Q} . For instance we denote by $(\frac{\cdot}{r})_p$ the p-th power residue symbol, i.e., for integers $x, y, (\frac{x}{y})_p = 1$ if and only if x is the p-th power modulo y.

Our main theorem gives a necessary and sufficient condition for $\lambda_p(k) = \mu_p(k) = \nu_p(k) = 0$ in terms of p-th power residue symbol, congruent conditions and genus fields:

Theorem 1. Let k be an abelian p-extension of \mathbb{Q} , and $f_k = p^a p_1 \cdots p_t$ the prime decomposition of its conductor, where primes p_1, \dots, p_t are distinct. If

$$\lambda_p(k) = \mu_p(k) = \nu_p(k) = 0, \tag{1}$$

then $t \leq 2$. Conversely, in each case of t = 0 or 1 or 2, the followings are a necessary and sufficient condition of (1):

In case of t = 0: (1) holds.

In case of t = 1: (1) is equivalent to $k_1 = k_{1,G}$ and,

$$\left(\frac{p}{p_1}\right)_p \neq 1 \text{ or } p_1 \not\equiv 1 \pmod{p^2}. \tag{2}$$

In case of t = 2: (1) is equivalent to $k_1 = k_{1,G}$, and for (i, j) = (1, 2) or (2, 1),

$$\left(\frac{p}{p_i}\right)_p \neq 1, \left(\frac{p_i}{p_j}\right)_p \neq 1, p_j \not\equiv 1 \pmod{p^2},\tag{3}$$

and, there exist $x, y, z \in \mathbb{F}_p$ such that

$$\left(\frac{p_j p^x}{p_i}\right)_p = 1, \left(\frac{p p_i^y}{p_j}\right)_p = 1, p_i p_j^z \equiv 1 \pmod{p^2}, and \ xyz \neq -1 in \ \mathbb{F}_p$$
 (4)

In case of t=2, the conditions in Theorem 1 are complicated. So we will give an example. We consider the case $p=3, p_1=7$ and $p_2=19$. We denote $k_7(\text{resp. }k_{19})$ by the subfield of $\mathbb{Q}(\zeta_7)$ (resp. $\mathbb{Q}(\zeta_{19})$) with degree 3 over \mathbb{Q} . As for the condition $k_1=k_{1,G}$, there exists a field F such that $k_7 \subseteq F \subseteq k_7 k_{19} \mathbb{Q}_1$ and $F \neq k_7 k_{19}, k_7 \mathbb{Q}_1$, where \mathbb{Q}_1 is the first layer of cyclotomic \mathbb{Z}_3 -extension of \mathbb{Q} . Then $k_7 k_{19} \mathbb{Q}_1/F$ is a nontrivial unramified extension and $k_7 k_{19} \mathbb{Q}_1$ is abelian, hence $F \subseteq k_7 k_{19} \mathbb{Q}_1 \subseteq F_G$. But, for $F_1 = k_7 k_{19} \mathbb{Q}_1$, it follows easily that $F_1 = F_{1,G}$. If we restrict the case p is unramified in k, i.e. a=0, then the statement $k_1 = k_{1,G}$ can be simplified to $k = k_G$ because $k_1 = k \mathbb{Q}_1$. This restriction is not so strong: In general, for an absolutely abelian p-extension field k, there exists an absolutely abelian extension field k' such that p is unramified in k' and $k_\infty = k'_\infty$. Note that if k is the maximal subfield of $\mathbb{Q}(\zeta_m)$ ($m = p^a p_1 \cdots p_t$ as above) which is abelian p-extension of \mathbb{Q} , then $k = k_G$.

We continue to examine the above example. If we put (i, j) = (1, 2), then $p_j = 19 \equiv 1 \pmod{3^2}$, so the condition (3) is not satisfied. But if we put (i, j) = (2, 1), then we can

verify that $p_i = 19$ and $p_j = 7$ satisfy the conditions (3) and (4). Hence, for example, if K is the maximal subfield of $\mathbb{Q}(\zeta_{7.19})$ which is 3-extension of \mathbb{Q} , then K satisfies the conditions of Theorem 1. Therefore we get

$$\lambda_p(K) = \mu_p(K) = \nu_p(K) = 0.$$

As for Greenberg conjecture, we can also get the following: In general, it is known that if $L \subseteq M$ then $\lambda_p(L) \leq \lambda_p(M)$ and $\mu_p(L) \leq \mu_p(M)$ for number fields L, M. Hence for any subfield k of $\mathbb{Q}(\zeta_{7\cdot 19})$ which is 3-extension of \mathbb{Q} , i.e. $k \subseteq K$, then $\lambda_p(k) = \mu_p(k) = 0$. This consideration is generalized as follows:

Corollary 2. Let $m = p^a p_1 \cdots p_t$ satisfy the condition (2) or (3), (4). Then for any subfield k of $\mathbb{Q}(\zeta_m)$ which is p-extension of \mathbb{Q} , Greenberg conjecture for k and p is valid.

3. The results of G. Cornell and M. Rosen

In this section, we review briefly part of [1]. Let K/\mathbb{Q} be an abelian p-extension, p a prime. In the 1950's, A. Fröhlich determined all such fields with class number prime to p (cf. [2]). In [1],G. Cornell and M. Rosen reconsidered this problem in the case where p is an odd prime, and reduced the problem to the case when $\operatorname{Gal}(K/\mathbb{Q})$ is an elementary abelian p-group, i.e. $\operatorname{Gal}(K/\mathbb{Q}) \simeq (\mathbb{Z}/p\mathbb{Z})^m$ for some integer m.

We suppose that p is an odd prime and $Gal(K/\mathbb{Q})$ is an abelian p-group. Then the genus field K_G of K is also abelian p-extension. If p does not divide the class number h_K of K, then K does not have any non-trivial unramified abelian p-extension by class field theory, hence $K_G = K$. In the following we will assume $K_G = K$. Further, we consider the central p-class field K_C of K, i.e. K_C is the maximal p-extension of K such that K_C/K is abelian and unramified, K_C/\mathbb{Q} is Galois and $Gal(K_C/K)$ is in the center of $Gal(K_C/\mathbb{Q})$. Since a p-group must have a lower central series that terminates in the identity, one sees that p h_K if and only if $K_C = K$. So we are interested in which case $K_C = K$. This can be reduced the case when $Gal(K/\mathbb{Q})$ is an elementary abelian p-group by the following result:

Lemma 3 ([1] **Theorem 1).** Let K/\mathbb{Q} be an abelian p-extension with $K_G = K$. Let k be the maximal intermediate extension between \mathbb{Q} and K such that $Gal(k/\mathbb{Q})$ is an elementary abelian p-group. Then p-rank of $Gal(K_C/K)$ is equal to the p-rank of $Gal(k_C/k)$.

In the case $Gal(K/\mathbb{Q})$ is an elementary abelian p-group, by the results of Furuta and Tate, we have the following lemma:

Lemma 4 ([1] Section 1). Let K be an absolutely abelian p-extension such that $Gal(K/\mathbb{Q})$ is an elementary abelian p-group and $K_G = K$. Then, we have

$$\operatorname{Gal}(K_C/K) \simeq \operatorname{Coker}(\bigoplus_{i=1}^n \wedge^2(G_i) \longrightarrow \wedge^2(G)),$$

where G_i 's are the decomposition groups of primes ramified in K/\mathbb{Q} and $G = Gal(K/\mathbb{Q})$.

We will assume $Gal(K/\mathbb{Q}) \simeq (\mathbb{Z}/p\mathbb{Z})^m$. Let $p_1, \dots p_t$ be the primes ramified in K and h_K the class number of K. From genus theory, it follows that if h_K is not divisible by p, then t=m. Also it follows that if $m \geq 4$ then p divides h_K by Lemma 4. So, we assume t=m and m=2 or 3. (In case of t=m=1, $p \nmid h_K$. cf. [8].)

Lemma 5 ([1] Proposition 2). Suppose m=2 and $p_i \neq p$ for i=1,2. Then $p|h_K$ if and only if $(\frac{p_1}{p_2})_p = 1$ and $(\frac{p_2}{p_1})_p = 1$.

Next, we consider the case where one of the ramified primes is p. Suppose m=2 and p and p_1 are the only primes ramified in K. Then we can get easily $K=k(p_1)\mathbb{Q}_1$ and $p_1 \equiv 1 \pmod{p}$, where $k(p_1)$ is the unique subfield of $\mathbb{Q}(\zeta_{p_1})$ which is cyclic over \mathbb{Q} of degree p, ζ_{p_1} is a primitive p_1 -th root of unity, and \mathbb{Q}_1 is the first layer of the cyclotomic \mathbb{Z}_p -extension of \mathbb{Q} .

Lemma 6 ([1] **Proposition 3**). Suppose m=2 and p and p_1 are the only primes ramified in K. Then $p|h_K$ if and only if $(\frac{p}{p_1})_p=1$ and $p_1\equiv 1\pmod{p^2}$.

Suppose t = m = 3 and p_1, p_2 and p_3 all the primes ramified in K. We put D_{p_i} the decomposition field of $p_i (i = 1, 2, 3)$ in K. In [1], the following simple result is given:

Lemma 7 ([1] **Theorem 2).** Suppose t = m = 3. Following statements (a) and (b) are equivalent:

- (a) h_K is not divisible by p,
- (b) $[D_{p_1}:\mathbb{Q}] = [D_{p_2}:\mathbb{Q}] = [D_{p_3}:\mathbb{Q}] = p \text{ and } D_{p_1}D_{p_2}D_{p_3} = K.$

In the next section, we shall prove Theorem 1, using these results.

4. Proof of Theorem 1

Notations are as in previous section.

Firstly, we suppose $\lambda_p(k) = \mu_p(k) = \nu_p(k) = 0$. Clearly, this condition is equivalent to $A(k_n) = 0$ for any sufficiently large n. Then, k_n satisfies $k_n = k_{n,G}$ and $k_1 = k_{1,G}$, because all ramified primes are totally ramified in k_n/k_1 . Since k_n is also an abelian p-extension of \mathbb{Q} , we can apply the results of Cornell-Rosen:

Let L be the maximal subfield of k_n such that $Gal(L/\mathbb{Q})$ is an elementary abelian extension of \mathbb{Q} . Since $k_n = k_{n,G}$, $Gal(k_n/\mathbb{Q})$ is the direct sum of the inertia groups of primes ramified in k_n/\mathbb{Q} , hence it follows that $L = k(p_1) \cdots k(p_t)\mathbb{Q}_1$. By Lemma 3, $A(k_n) = 0$ is equivalent to $p \not|h_L$. Note that if $t \geq 3$ then we always have $p|h_L$ as in the previous section. Hence we may examine in each case of t = 0 or 1 or 2.

If t = 0 then $L = \mathbb{Q}_1$, hence it is well known that $A(L) = A(\mathbb{Q}_1) = 0$ (cf. [8]).

If t = 1 then $L = k(p_1)\mathbb{Q}_1$. By lemma 6, we get the statement in Theorem 1.

In the following we assume that t=2. In this case, $L=k(p_1)k(p_2)\mathbb{Q}_1$. Let $G_p, G_{p_i}(i=1,2)$ be the decomposition groups for p, p_i in $\mathrm{Gal}(L/\mathbb{Q})$ and let D_p, D_{p_i} be the fixed field of G_p, G_{p_i} , respectively. We note that $D_p \subset k(p_1)k(p_2), D_{p_1} \subset k(p_2)\mathbb{Q}_1$ and $D_{p_2} \subset k(p_1)\mathbb{Q}_1$.

Now, from our assumption $p \not|h_L$, we have $[D_p:\mathbb{Q}] = [D_{p_1}:\mathbb{Q}] = [D_{p_2}:\mathbb{Q}] = p$ and $D_p D_{p_1} D_{p_2} = L$ by Lemma 7. Here, we assume that either $(\frac{p}{p_1})_p = 1$ or $(\frac{p_1}{p_2})_p = 1$ or

 $p_2 \equiv 1 \pmod{p^2}$ holds, and either $(\frac{p}{p_2})_p = 1$ or $(\frac{p_2}{p_1})_p = 1$ or $p_1 \equiv 1 \pmod{p^2}$. This is equivalent to

$$D_p = k(p_i) \text{ or } D_{p_i} = k(p_j) \text{ or } D_{p_j} = \mathbb{Q}_1 \text{ for } (i,j) = (1,2) \text{ and } (2,1),$$
 (5)

because $[D_p : \mathbb{Q}] = [D_{p_1} : \mathbb{Q}] = [D_{p_2} : \mathbb{Q}] = p$.

If $D_p = k(p_1)$, then $D_{p_2} \neq k(p_1)$ because $D_p D_{p_1} D_{p_2} = L$. Hence by (5) (put (i,j) = (2,1)), we have $D_{p_1} = \mathbb{Q}_1$. Then $D_{p_2} \subseteq k(p_1)\mathbb{Q}_1 = D_p D_{p_1}$, which contradicts $D_p D_{p_1} D_{p_2} = L$. In the same way, if $D_p = k(p_2)$, then $D_{p_1} \neq k(p_2)$ and we have $D_{p_2} = \mathbb{Q}_1$ by (5), which contradicts. Thus, it follows that the assumption (5) cause contradiction. Therefore, for (i,j) = (1,2) or (2,1), $(\frac{p}{p_i})_p \neq 1$, $(\frac{p_i}{p_j})_p \neq 1$, and $p_j \neq 1$ (mod p^2).

Without loss of generality, we may assume (i,j)=(1,2). Since $(\frac{p}{p_1})_p \neq 1$, p is inert in $k(p_1)$. Hence $\sigma=(\frac{k(p_1)/\mathbb{Q}}{p})\neq 1$, where $(\frac{k(p_1)/\mathbb{Q}}{p})$ is the Artin symbol, and σ generates $\operatorname{Gal}(k(p_1)/\mathbb{Q})$: $<\sigma>=\operatorname{Gal}(k(p_1)/\mathbb{Q})$. We often regard $<\sigma>=\operatorname{Gal}(k(p_1)k(p_2)/k(p_2))$ or $\operatorname{Gal}(L/k(p_2)\mathbb{Q}_1)$ in the natural way. Similarly, we put $\tau=(\frac{k(p_2)/\mathbb{Q}}{p_1})$ and $\eta=(\frac{\mathbb{Q}_1/\mathbb{Q}}{p_2})$, then $<\tau>=\operatorname{Gal}(k(p_2)/\mathbb{Q})$ and $<\eta>=\operatorname{Gal}(\mathbb{Q}_1/\mathbb{Q})$.

Since $(\frac{p}{p_1})_p \neq 1$, there exists $x \in \mathbb{F}_p$ such that $(\frac{p_2p^x}{p_1})_p = 1$. Then

$$\left(\frac{p_2 p^x}{p_1}\right)_p = 1 \Leftrightarrow \left(\frac{k(p_1)/\mathbb{Q}}{p_2 p^x}\right) = \left(\frac{k(p_1)/\mathbb{Q}}{p_2}\right) \left(\frac{k(p_1)/\mathbb{Q}}{p}\right)^x = 1.$$

Therefore $(\frac{k(p_1)/\mathbb{Q}}{p_2}) = \sigma^{-x}$. Similarly, we obtain $y, z \in \mathbb{F}_p$ such that $(\frac{pp_1^y}{p_2})_p = 1$ and $p_1p_2^z \equiv 1 \pmod{p^2}$, and hence $(\frac{k(p_2)/\mathbb{Q}}{p}) = \tau^{-y}$ and $(\frac{\mathbb{Q}_1/\mathbb{Q}}{p_1}) = \eta^{-z}$.

Since $\left(\frac{k(p_1)k(p_2)/\mathbb{Q}}{p}\right) = \left(\frac{k(p_1)/\mathbb{Q}}{p}\right)\left(\frac{k(p_2)/\mathbb{Q}}{p}\right) = \sigma\tau^{-y}$, D_p is the fix field of $\sigma\tau^{-y} > in$ $k(p_1)k(p_2)$. Therefore, when we consider G_p in $Gal(L/\mathbb{Q})$,

$$G_p = <\eta, \sigma\tau^{-y}>.$$

And similarly,

$$G_{p_1} = <\sigma, \tau\eta^{-z}>,$$

and

$$G_{p_2} = <\tau, \eta \sigma^{-x}>,$$

in $Gal(L/\mathbb{Q})$.

By a direct computation, we have,

$$G_p \cap G_{p_1} = \langle \sigma \tau^{-y} \eta^{yz} \rangle$$
.

Hence,

$$\begin{split} G_{p} \cap G_{p_{1}} \cap G_{p_{2}} &= <\sigma\tau^{-y}\eta^{yz}> \cap <\tau, \eta\sigma^{-x}> \\ &= \left\{ \begin{array}{c} \{1\} & \text{, if } xyz \neq -1, \\ <\sigma\tau^{-y}\eta^{yz}> & \text{, if } xyz = -1. \end{array} \right. \end{split}$$

But , our assumption $D_p D_{p_1} D_{p_2} = L$ implies $G_p \cap G_{p_1} \cap G_{p_2} = \{1\}$. Hence $xyz \neq -1$.

Conversely, we assume k satisfies the conditions of Theorem 1 in case of t=2. Since $k_1=k_{1,G}$, it follows easily that $L=k(p_1)k(p_2)\mathbb{Q}_1$ is the maximal intermediate extension between \mathbb{Q} and $k_n (n \geq 1)$ such that $\operatorname{Gal}(L/\mathbb{Q})$ is an elementary abelian p-group. Without loss of generality, we may assume (i,j)=(1,2). Since $\operatorname{Gal}(k(p_1)k(p_2)/\mathbb{Q})\simeq (\mathbb{Z}/p\mathbb{Z})^2$ and p is unramified in $k(p_1)k(p_2)$, p must decompose in $k(p_1)k(p_2)$. But the condition $(\frac{p}{p_1})_p \neq 1$ implies p is inert in $k(p_1) \subset k(p_1)k(p_2)$, hence we obtain $[D_p:\mathbb{Q}]=p$. Similarly, $(\frac{p_1}{p_2})_p \neq 1$ and $p_2 \not\equiv 1 \pmod{p^2}$ imply $[D_{p_1}:\mathbb{Q}]=[D_{p_2}:\mathbb{Q}]=p$. Therefore, as in the above computation of G_p, G_{p_i} , we have $D_p D_{p_1} D_{p_2} = L$, by $xyz \neq -1$. \square

5. Remarks

The condition of Theorem 1 in [12] means xyz = 0 which is a special case of $xyz \neq -1$. Hence, our Corollary 2 contains some known results and there exist infinitely many fields satisfying the conditions of Theorem 1 (cf. [12]).

If $K = k(p_1)k(p_2)$ satisfies the conditions of Theorem 1, then $\lambda_p(k) = \mu_p(k) = 0$ for any field $k \subseteq K$ with $[k : \mathbb{Q}] = p$. This is a result of Fukuda [4]. He has shown this result using a technic of capitulation of ideal class group. The case xyz = -1 is a difficult case. But we can get some results:

Proposition 8. Notations are as in section 3. Assume that $(\frac{p}{p_1})_p \neq 1, (\frac{p_1}{p_2})_p \neq 1$, and $p_2 \not\equiv 1 \pmod{p^2}$. Then $\lambda_p(k) = \mu_p(k) = 0$ for the decomposition field k of p in $k(p_1)k(p_2)$.

Proof. We apply a result of [6]:

Lemma 9 ([6] Corollary 3.6). Let k be a cyclic extension of \mathbb{Q} of degree p. Then the following conditions are equivalent:

- (a) $\lambda_p(k) = \mu_p(k) = 0$,
- (b) For any prime ideal w of k_{∞} which is prime to p and ramified in $k_{\infty}/\mathbb{Q}_{\infty}$, the order of the ideal class of w is prime to p.

If $xyz \neq -1$ then we have $\lambda_p(k) = \mu_p(k) = 0$ by Corollary 2. So we only consider the case xyz = -1. In this case we have $k \neq k(p_i)$ (i = 1, 2). It follows easily that A(k), the p-part of the ideal class group of k, is cyclic of order p, and it is generated by products of primes of k above p. On the other hand, for i = 1, 2, the prime \mathfrak{p}_i of k above p_i generates A(k), and is inert in k_{∞}/k . Since the primes of k above p is principal for some k_n by the natural mapping $A(k) \to A(k_n)$ (cf. [7]), \mathfrak{p}_i is principal in k_{∞} .

Since the primes ramified in $k_{\infty}/\mathbb{Q}_{\infty}$ are \mathfrak{p}_1 and \mathfrak{p}_2 , which is principal in k_{∞} , we can apply Lemma 9 and obtain $\lambda_p(k) = \mu_p(k) = 0$. \square

Recently, Fukuda verified Greenberg conjecture for various cubic cyclic fields k with $f_k = p_1p_2$ and p = 3. He gives an example, which is the case $p_1 = 7$ and $p_2 = 223$. Note that there exist two such fields, and these p_1 and p_2 do not satisfy condition (3) in Theorem 1. He verified $\lambda_3 = \mu_3 = 0$ for one of such fields by using his result concerning with the unit group of k (cf. [5]).

When $t \geq 3$, i.e. at least 3 primes are ramified in k/\mathbb{Q} , there are a few results for Greenberg conjecture. In this case, the p-rank of A(k) is greater than 2. Greenberg([7]) gave the following example, but the proof are omitted in his paper: p=3 and k is an cubic cyclic field with conductor $7 \cdot 13 \cdot 19$ and 3 is inert in k/\mathbb{Q} . He mentioned that by "delicate" arguments one can show $\lambda_3(k) = \mu_3(k) = 0$. The author had a chance to contact Prof. Greenberg, and asked him about this example. He kindly taught the author the "delicate" arguments, which is a system to examine relations of the ideal class group of intermediate fields of $k\mathbb{Q}_1$. Applying his idea, we can show the following result:

Theorem 10 ([13]). Let p be any odd prime. For any integer $0 \le m \le p-1$, there exist infinitely many cyclic extension fields k of \mathbb{Q} with $[k:\mathbb{Q}] = p$ such that p-rankA(k) = m and $\lambda_p(k) = \mu_p(k) = 0$.

REFERENCES

- 1. G.Cornell and M.Rosen, The class group of an absolutely abelian *l*-extension, *Illinois J. Math* **32** (1988), 453-461.
- 2. A.Fröhlich, Central extensions, Galois groups, and ideal class groups of number fields, Contemp. Math., vol. 24, Amer. Math. Soc., Rhode Island, 1983.
- 3. T.Fukuda, Remarks on \mathbb{Z}_p -extensions of Number fields, Proc. Japan Acad. 70A (1994), 264–266.
- 4. T.Fukuda, On the vanishing of Iwasawa invariants of certain cyclic extensions of \mathbb{Q} with prime degree, *Proc. Japan Acad.* **73A** (1997), 108-110.
- 5. T.Fukuda, On the vanishing of Iwasawa invariants of certain cyclic extensions of Q with prime degree II, Proc. Japan Acad. 74A (1998), 160-164.
- 6. T.Fukuda, K.Komatsu, M.Ozaki, and H.Taya, On Iwasawa λ_p -invariants of relative real cyclic extension of degree p, Tokyo J. Math. 20 (1997), 475-480.
- R.Greenberg, On the Iwasawa invariants of totally real number fields, Amer. J. Math. 98 (1976), 263-284.
- 8. K.Iwasawa, A note on class numbers of algebraic number fields, Abh. Math. Sem. Univ. Hamburg, 20 (1956), 257-258.
- 9. K.Iwasawa, A note on capitulation problem for number fields, II, *Proc. Japan Acad.* **65A** (1989), 183–186.
- K.Iwasawa, Riemann-Hurwitz formula and p-adic Galois representations for number fields, Tôhoku Math. Japan 33 (1981), 263-288.
- 11. L.C.Washington, Introduction to Cyclotomic Fields, Springer-Verlag, New York-Heidelberg-Berlin, 1982.
- 12. G.Yamamoto, On the vanishing of Iwasawa invariants of certain (p, p)-extensions of \mathbb{Q} , *Proc. Japan Acad.* 73A (1997), 45-47.
- 13. G.Yamamoto, On capitulation problem for cyclic p-extensions of \mathbb{Q} , preprint.

DEPARTMENT OF MATHEMATICAL SCIENCE, SCOOL OF SCIENCE AND ENGINEERING, WASEDA UNIVERSITY, 3-4-1, OKUBO SHINJUKU-KU, TOKYO 169-8555, JAPAN *E-mail address*: 697m5068@mse.waseda.ac.jp