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Abstract

This paper investigates the dynamics of batch learning of multilayer neural net-
works in the asymptotic case where the number of training data is much larger than
the number of parameters. First, we present experimental results on the behavior in
the steepest descent learning of multilayer perceptrons and three-layer linear neural
networks. We see in these results that strong overtraining, which is the increase of
generalization error in training, occurs if the model has surplus hidden units to realize
the target function. Next, to analyze overtraining from the theoretical viewpoint, we
analyze the steepest descent learning equation of a three-layer linear neural network,
and theoretically show that a network with surplus hidden units presents overtraining.
From this theoretical analysis, we can see that overtraining is not a feature observed
in the final stage of learning, but it occurs in an intermediate time interval.

1 Introduction

This paper discusses the dynamics of batch learning in neural networks. Multilayer
networks like multilayer perceptrons have been extensively used in many engineering ap-
plications, in hope that their nonlinear structure inspired by biological neural networks
shows a variety of advantages. However, nonlinearity causes weaknesses also. For the
training of a neural network, for example, a numerical optimization method like the er-
ror back-propagation (Rumelhart et al., 1986) must be used to find the optimal weight
and bias parameters. It is very important from the practical and theoretical viewpoints
to elucidate the dynamical behavior of a network in training. Especially, the empirical
error, the objective function of minimization, and the generalization error, the difference
between the target function and its estimate, are of much interest in many researches.
However, the property of such learning rules have not been clarified completely because
of its complex nonlinearity.

In this paper, we focus on overtraining (Amari, 1996) as a typical behavior of learning
in multilayer networks. Overtraining is the increase of the generalization error after some
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Figure 1: Overtraining in batch learning. The empirical error decreases during iterative training,

while the generalization increases after some time point.

time point in learning (Fig.1). Although the empirical error is a decreasing function
in principle, it does not ensure the decrease of the generalization error defined by only
finite number of training examples. Overtraining is not only of theoretical interest but of
practical importance, because we should use an early stopping technique if overtraining
really exists.

There has been a controversy about the existence of overtraining. Some practitioners
assert that overtraining often happens and propose early stopping methods. Amari et

al. (1996) analyze overtraining theoretically and conclude that the effect of overtraining
is much smaller than what is believed by practitioners. Their analysis is true if the
parameter approaches to the global minimum of the empirical error following the statistical
asymptotic theory (Crame’r, 1946). However, the usual asymptotic theory cannot be
applied in overrealizable cases, where the model has surplus hidden units to realize the
target function (Fukumizu, 1996; Fbkumizu, 1997). Possibility of an overrealizable target
is a common property of multilayer models, and the existence of overtraining in such cases
has still been an open problem.

There have been other studies related to overtraining. Baldi and Chauvin (Baldi &
Chauvin, 1991) theoretically analyze the generalization error of two-layer linear networks
estimating the identity function from noisy data. Although they show overtraining phe-

nomena under several assumptions, their analysis is very limited in that the overtraining
can be observed only when the variance of the noise in the training sample is different from
that of the validation sample. In researches from the viewpoint of statistical mechanics,
overtraining is sometimes used for a different meaning. They observe the increase of the
generalization error in online learning when the number of data is smaller than the number
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of parameters, and call it overtraining.
The main purpose of this paper is to discuss overtraining of multilayer networks in

connection with overrealizability. We investigate two models: one is multilayer perceptrons
with the sigmoidal activation function, and the other is linear neural networks, which we
introduce for the simplicity of analysis. Through experimental results of these models, we
can conjecture that overtraining occurs for overrealizable targets. We theoretically verify
this conjecture in linear neural networks.

This paper is organized as follows. Section II gives basic definitions and terminology.
Section III shows experimental results concerning overtraining of multilayer perceptrons
and linear neural networks. In Section IV, we theoretically show the existence of over-
training in overrealizable cases of linear neural networks. Section V includes concluding
remarks.

2 Preliminaries

2.1 Framework of statistical learning

In this section, we present basic definitions and terminologies used in this paper. A feed-
forward neural network model can be defined by a parametric family of maps $\{f(x;\theta)\}$

from $\mathbb{R}^{L}$ to $\mathbb{R}^{M}$ , where $x$ is an input vector and 9 is a parameter vector. The three-layer
network model with $H$ hidden units is defined by

$f^{i}(_{X;} \theta)=j=1\sum Hw_{ij\varphi}(_{k=1}\sum^{L}u_{jkk}x+\zeta_{j})+\eta_{i}$ , $(1\leq i\leq M)$ (1)

where $\theta=$ $(w_{11}, \ldots, w_{MH}, \eta_{1}, \ldots , \eta_{M}, u_{11}, \ldots, u_{HL}, \zeta_{1}, \ldots , \zeta_{H})$ , and an activation func-
tion $\varphi(t)$ is a function from $\mathbb{R}$ to $\mathbb{R}$ . We call a three-layer network a multilayer perceptron,
if the sigmoidal function

$\varphi(t)=\frac{1}{1+e^{-t}}$ (2)

is used for the activation function.
We use such a model for regression problems, assuming that an output of the target

system is observed with a measurement noise. A sample $(x, y)$ from the target system
satisfies

$y=f(X)+v$ , (3)

where $f(x)$ is the target function which is unknown to a learner, and $v$ is a random vector
with $0$ as its mean and $\sigma^{2}I_{M}$ as its variance-covariance matrix. We write $I_{M}$ for the
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$M\cross M$ unit matrix. An input vector $x$ is generated randomly with its probability density
function $q(x)$ , which is unknown to a learner. ’baining data $\{(x^{(\nu)}, y)(\nu)|\mathcal{U}=1, \ldots , N\}$

are independent samples from the joint distribution of $q(x)$ and $\mathrm{e}\mathrm{q}.(3)$ . The parameter 9
is estimated based on the training data without knowing $f(x)$ so that a neural network
can give a good estimate of the target function $f(x)$ .

We discuss the least square error (LSE) estimator. The objective of training is to find
the parameter that minimizes the following empirical error:

$\mathrm{E}_{emp}(\theta)\equiv\sum_{\nu=1}||yNf(\nu)-(X(\nu)\theta);||^{2}$ . (4)

Generally, it is very difficult to solve the LSE estimator analytically if the model is non-
linear. Some numerical optimization method is needed to obtain an approximation. One
widely-used method is the steepest descent method, which iteratively updates the param-
eter vector 9 in the steepest descent direction of the error surface defined by $\mathrm{E}_{emp}(\theta)$ . The
learning rule is given by

$\theta(t+1)=\theta(t)-\beta\frac{\partial \mathrm{E}_{emp}(\mathit{9}(t))}{\partial\theta}$ , (5)

where $\beta>0$ is a learning constant. In this paper, we discuss only batch learning, in which
we calculate the gradient using all the training data. There are many researches on online
learning, in which the parameter is always updated for a newly generated data (Heskes&
Kappen, 1991).

The performance of a network is often evaluated by the generalization error, which
represents the average error between the target function and its estimate. More precisely,
it is defined by

$\mathrm{E}_{gen}(\mathit{9})\equiv\int||f(x;\theta)-f(x)||2q(x)dX$. (6)

It is easy to see

$\int\int||y-f(X;\mathit{9})||2p(y|X)q(X)dydx=M\sigma^{2}+\mathrm{E}_{gen}$ , (7)

where $p(y|x)$ is the density function of the conditional probability of $y$ given $x$ . Since the
empirical error divided by $N$ approaches to the left hand side of $\mathrm{e}\mathrm{q}.(7)$ when $N$ goes to
infinity, the rninimization of the empirical error roughly approximates the minimization of
the generalization error. However, they are not exactly the same, and the decrease of the
empirical error during learning does not ensure the decrease of the generalization error. It
is extremely important to elucidate the dynamical behavior of the generalization error. A
curve showing the $\mathrm{e}\mathrm{m}\mathrm{p}\mathrm{i}\mathrm{r}\mathrm{i}\mathrm{c}\mathrm{a}\mathrm{l}/\mathrm{g}\mathrm{e}\mathrm{n}\mathrm{e}\mathrm{r}\mathrm{a}\mathrm{l}\mathrm{i}\mathrm{z}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}$error as a function of time is called a learning
curve.
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Target Model

Figure 2: Illustration of an overrealizable case.

In our theoretical discussion, we consider the case where $f(x)$ is perfectly realized by
the prepared model; that is, there is a true parameter $\theta_{0}$ such that $f(x;\mathit{9}0)=f(x)$ .
Assume that the model has $H$ hidden units. If the target function $f(x)$ is realized by
a network with a smaller number of hidden units than $H$ , we call it overrealizable (see
Fig.2). Otherwise, we call it regular. We focus on the difference of dynamical behaviors
between these two cases.

2.2 Linear neural networks

We introduce the three-layer linear neural network model as the simplest multilayer
model whose theoretical analysis is possible. We must be very careful in discussing exper-
imental results on learning of a multilayer perceptron especially in an overrealizable case.
In such a case, around the global minimum there exists a high-dimensional subvariety on
which $\mathrm{E}_{emp}$ is very close to the minimum (Fukumizu, 1997). The convergence of learning
is much slower than the convergence in regular cases because the gradient is very small
around this subvariety. In addition, of course, learning with a gradient method suffers from
local minima, which is a common problem to all nonlinear models. We cannot exclude
their effects, and this often makes derived conclusions obscure. On the other hand, the
theoretical analysis of linear neural networks is possible (Baldi&Hornik, 1995; Fukumizu,
1997), and the dynamical behavior of the generalization error is analyzed in Section 4.

A linear neural network has the identity function for the activation function. In this
paper, we do not use the bias terms $\eta$ and $\zeta$ in linear neural networks for simplicity. Thus,
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a linear neural network is defined by

$f(x;A, B)=BAx$ , (8)

where $A$ is a $H\cross L$ matrix and $B$ is a $M\cross H$ matrix. We assume $H\leq L$ and $H\leq M$

throughout this paper. Although the function $f(x;A, B)$ is linear, $\mathrm{h}\mathrm{o}\mathrm{m}$ the assumption
on $H$ , the model is not equal to the set of all the linear maps from $\mathbb{R}^{L}$ to $\mathbb{R}^{M}$ , but is the
set of the linear maps of rank no greater than $H$ . Then, it is not equivalent to the usual
linear regression model $f(x;c)=Cx$ ( $C$ : $M\mathrm{x}L$ matrix). In this sense, the three-layer
linear neural network model is the simplest multilayer model.

3 Learning curves–experimental study-

In this section, we experimentally investigate the generalization error of multilayer per-
ceptrons and linear neural networks to see their actual behaviors, emphasizing on over-
training.

The steepest descent method $(\mathrm{e}\mathrm{q}.(5))$ in multilayer perceptron leads the well-known
error back-propagation rule (Rumelhart, 1986), which is given by

$w_{ij}(t+1)$ $=$ $w_{ij}(t)+ \beta\sum_{\nu}N=1i\delta^{(\nu)}(t)s_{j}^{(}(\nu)t)$ ,

$\eta_{i}(t+1)$ $=$ $\eta_{i}(t)+\beta\sum^{N}\nu=1\delta^{()}i\nu(t)$ ,

$u_{jk()}t+1$ $=$ $u_{jk}(t)+ \beta\sum^{N}\nu=1^{\sum w_{ij}\delta_{i}}i=M1(\nu)(t)_{S_{j}}(\nu)(t)(1-S(\nu)(jt))Xk(\nu)$,

$\zeta_{j}(t+1)$ $=$ $\zeta_{j(t)+\beta\sum\sum_{i1}}\nu=N1M=wij\delta_{i}(\nu)(t)_{S_{j}}(\nu)(t)(1-s_{j}(\nu)(t))$ , (9)

where

$\delta_{i}^{(\nu)}(t)=yi(\nu)-f_{i}(X)(\nu;\mathit{9}(t))$ , $s_{j}^{(\nu)}(t)=s( \sum_{k=1}^{L(}u_{j}k(t)X_{k}+\zeta j(\nu)t))$ . (10)

To avoid the problems discussed in Section 2.2 as much as possible, we adopt the following
configuration in our experiments. The model in use has 1 input unit, 2 hidden units, and
1 output unit. For a fixed set of training examples, 30 different values are tried for an
initial parameter vector. We select the trial that gives the least empirical error after 500000
iterations. Figure 3 shows the average of generalization errors over 30 different simulations
changing the set of training data. It shows clear overtraining in the overrealizable case. On
the other hand, the learning curve in the regular case shows no meaningful overtraining.

It is known that the LSE estimator of the linear neural network model can be analytically
solvable (Baldi&Hornik, 1995). Although it is practically absurd, of course, to use the
steepest descent method, our interest is not only the optimal estimator but the dynamics
of learning. Therefore, we perform the steepest descent learning of linear neural networks
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Figure 3: Average learning curves of MLP. The input samples are independent samples from
$N(\mathrm{O}, 4)$ , and the output samples include the observation noise subject to $N(\mathrm{O}, 10^{-4})$ . The total
number of training data is 100. The constant zero function is used for the overrealizable target
function, and $f(x)=s(x+1)+s(x-1)$ is used for the regular target. The dotted line shows the
theoretical expectation of the generalization error of the LSE estimator when the target function
is regular and the usual asymptotic theory is applicable.

here. For the training data of a linear neural network, we use the notations;

$X=$ , $\mathrm{Y}=$ . (11)

The empirical error can be written by

$\mathrm{E}_{emp}=\mathrm{b}[(\mathrm{Y}-xA\tau B^{\tau})T(Y-XATB\tau)]$ . (12)

The learning rule of a linear neural network is given by

$\{$

$A(t+1)$ $=A(t)+\beta\{B^{T}Y^{\tau\tau}X-BBAX^{\tau}X\}$,
$B(t+1)$ $=B(t)+\beta\{\mathrm{Y}\tau XAT-BAx\tau xAT\}$ .

(13)

It is also known that all the critical points but the global minimum of $\mathrm{E}_{emp}$ are saddle
points (Baldi&Hornik, 1995). Therefore, if we theoretically consider a continuous-time
learning equation, it converges to the global minimum for almost all initial conditions.
Figure 4 shows the average of learning curves for 100 simulations with various training
data from the same probability. The number of input units, hidden units, and output
units of the model are 5, 3, and 5 respectively. All the overrealizable cases show clear
overtraining. while the regular case does not show meaningful overtraining. We can also
see that overtraining is stronger when the rank of the target is smaller.
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Figure 4: Average learning curves of linear neural networks. The input samples are independent

samples from $N(0, I_{5})$ , and the output samples include the observation noise subject to $N(0,10^{-2})$ .
The total number of training data is 100. The dotted line shows the theoretical expectation of the

generalization error of the LSE estimator for the regular target.

From these results, we can conjecture that there is an essential difference in the dynam-
ics of learning between regular and overrealizable cases, and overtraining is a universal
property of the latter cases. If we use a good stopping criterion, the multilayer networks
may have an advantage over conventional linear models, in that the degrade of the gen-
eralization error by redundant parameters is not so critical as conventional linear models.
Such overtraining in overrealizable cases has not been explained theoretically yet. In the
next section, we theoretically verify the result in linear neural networks by obtaining the
solution of the steepest descent learning equation.
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4 Solvable dynamics of learning in linear neural networks
To verify the existence ofovertraining in linear neural networks, we analyze the continuous-

time differential equation instead of the discrete-time learning rule. Although the behavior
of the continuous one and the discrete one are not identical, they show very similar qualita-
tive behaviors in computer simulations. We further approximate the differential equation
to derive a solvable one. This approximation also affects the solution quantitatively. How-
ever, we can see in experiments that similar the original one and the approximated one
show similar properties in their learning curves, and we can show the existence of over-
training in overrealizable cases.

4.1 Solution of. learning dynamics

In the rest of the paper, we put the following assumptions;

(a) $H\leq L=M$ ,

(b) $f(x)=B0A0X$,

(c) $\mathrm{E}[xx^{T}]=\tau^{2}I_{L}$ ,

(d) $A(0)A(0)^{\tau}=B(0)^{\tau_{B(}}\mathrm{o})$ ,

(e) The rank of $A(\mathrm{O})$ (or, equivalently under (d), the rank of $B(\mathrm{O})$ ) is $H$ .

Under these assumptions, $A^{T}$ and $B$ are $L\cross H$ matrixes. The parameterization of a linear
neural network has $H^{2}$ dimensional redundancy by the multiplication of $H\cross H$ nonsingular
matrix from the left of $A$ and its inverse from the right of $B$ . The initial condition (d)
does not restrict possible initialization, since it reduces this redundancy with $\frac{1}{2}H(H+1)$

restrictions. The assumption (e) is important in the following discussion. If the rank of
$A(\mathrm{O})$ (or $B(\mathrm{O})$ ) is less than $H$ , the final state of the variables changes, while we do not
discuss it in this paper.

If we divide the output as

$\mathrm{Y}=XA_{00}^{\tau_{B^{\tau}V}}+$, (14)

the differential equation of the steepest descent learning is given by

$\{$

$\lrcorner\dot{4}$ $=\beta(B\tau B_{0}A_{0}X\tau x+B^{T}V\tau x-B\tau BAX\tau x)$ ,
$\dot{B}$ $=\beta(B_{00}Ax^{T\tau}xA+V^{T}XA^{\tau}-BAX^{T}XA\tau)$ . (15)

This is a nonlinear differential equation which has the terms of the third order. Let
$Z_{O}:= \frac{1}{\sigma}V^{\tau}X(XTx)^{-1}/2$ . It is easy to see that $Z_{O}$ is independent of $X$ , and that all the
elements of $Z_{O}$ are mutually independent and subject to $N(\mathrm{O}, 1)$ . We decompose $X^{T}X$ as

$X^{T}X=\tau^{2}NI_{L}+\tau^{2\sqrt{N}z_{I}}$ , (16)
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where the off-diagonal elements of $Z_{I}$ are subject to $N(\mathrm{O}, 1)$ and the diagonal elements are
subject to $N(0,2)$ if $N$ goes to infinity. Let

$F=B_{0}A_{0}+ \frac{1}{\sqrt{N}}(B_{0}A_{0}Z_{I}+\frac{\sigma}{\tau}Z_{O})$. (17)

We neglect the order $O(\sqrt{N})$ in the nonlinear terms to derive a solvable equation, and
approximate $\mathrm{e}\mathrm{q}.(15)$ by

$\{$

$I\dot{4}$ $=\beta\tau^{2}NBTF-\beta \mathcal{T}2NB^{T}BA$ ,
$\dot{B}$ $=\beta\tau^{2\tau}NFA-\beta_{\mathcal{T}N}2BAA^{\tau}$.

(18)

$\mathrm{E}\mathrm{q}.(18)$ is a good approximation of the original $\mathrm{e}\mathrm{q}.(15)$ if $N$ is very large.
We further put an assumption:

(f) The rank of $B(0)+FA(0)^{T}$ is $H$ .

This assumption is a technical one, which is used to prove overtraining. The assumption
(f) is almost always satisfied if the initial condition is independent of $F$ .

We have $AA^{T}=B^{T}B$ because of the fact $\frac{d}{dt}(AA^{T})=\frac{d}{dt}(B^{T}B)$ and the assumption (d).
If we introduce $2L\cross H$ matrix

$R=$ , (19)

then, $R$ satisfies the differential equation

$\frac{dR}{dt}=\beta\tau^{2}NSR-\frac{\beta\tau^{2}N}{2}RR^{T}R$, where $S=$ . (20)

This is very sinilar to Oja’s learning equation (Oja, 1989; Yan et al., 1994), or the general-
ized Rayleigh quotient (Helmke&Moore, 1994), which is known to be a solvable nonlinear
differential equation (Yan et al., 1994).

The key fact to solve $\mathrm{e}\mathrm{q}.(20)$ is to derive the differential equation on $RR^{T}$ :

$\frac{d}{dt}(RR^{T})=\beta\tau^{2}NsRR^{\tau}+\beta_{\mathcal{T}^{2}N}RR\tau s-\beta \mathcal{T}^{2T}N(RR)2$. (21)

This is a matrix Riccati differential equation and well-known to be solvable. We have the
following

Theorem 1. Assume that the rank of $R(\mathrm{O})$ is full. Then, the Riccati differential equation
(21) has a unique solution for all $t\geq 0$ , and the solution is given by

$R(t)R^{T}(t)=e^{\beta\tau^{2}N}Rst( \mathrm{o})[I_{H}+\frac{1}{2}R(\mathrm{o})T\{e^{\beta_{\mathcal{T}^{2}N}t}S-1\beta \mathcal{T}NSt-se-1\}S2R(\mathrm{o})]^{-1}R(0)^{T\beta t}e\tau N2S$ .

(22)
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For the proof, see Sasagawa (1982) and Yan et al. (1994). Using this theorem, we easily
obtain the following theorem in the same manner as Yan et al. (1994, Theorem 2.1).

Theorem 2. Assume that the rank of $R(\mathrm{O})$ is full. Then, the differential equation (20)
has a unique solution for all $t\geq 0$ , and the solution is expressed as

$R(t)$ $=$ $e^{\beta_{\mathcal{T}^{2}}NS}tR( \mathrm{o})[I_{H}+\frac{1}{2}R(0)^{\tau}\{e\tau\beta 2Ns_{S^{-}}t1\beta\tau^{2}Nst-se-1\}R(0)]^{-\frac{1}{2}}U(t)$ ,

(23)

where $U(t)$ is a $H\cross H$ orthogonal matrix.

4.2 Dynamical behavior of the generalization error

In this subsection, we write $M(l\cross n;\mathbb{R})$ for the set of real $l\cross n$ matrixes. Using the
assumption (c), the generalization error is written as

$\mathrm{E}_{gen}=\tau^{2}\mathrm{b}[(BA-B0A_{0})(BA-B0^{A_{0})^{\tau}}]$. (24)

It is easy to see that the derivative of $\mathrm{E}_{gen}$ is

$\frac{d}{dt}\mathrm{E}_{gen}=\beta\tau^{4}N$ {Tr $[(F-BA)A^{\tau}A(BA-B_{0^{A0}})^{\tau}]+\mathrm{n}[BB^{\tau_{()(}T}F-BABA-B0^{A_{0})}]$ }
(25)

Note that a transform of the input or output vectors by an orthogonal matrix does not
change the generalization error. Therefore, using the singular value decomposition of
$B_{0^{A}0_{)}}$ we can assume without loss of generality that $B_{0}A_{0}$ is diagonal;

$B_{0}A_{0=}$ , $\Lambda^{(0)}=$ , (26)

where $r$ is the rank of $B_{0}A_{0}$ , and $\lambda_{1}^{(0)}\geq\cdots\geq\lambda_{r}^{(0)}>0$ are the singular values of $B_{0}A_{0}$ .
The rank $r$ is equal to or less than $H$ . The target function is overrealizable if and only if
$r<H$ .

We employ the singular value decomposition of $F$ ,

$F=W\Lambda U^{T}$ . (27)

In this equation, $U$ and $W$ are $L$ dimensional orthogonal matrixes, and

$\Lambda=$ , (28)

33



where $\lambda_{1}\geq\lambda_{2}\geq\cdots\lambda_{L}\geq 0$ are the singular values of $F$ . We assume that $\lambda_{1}>\lambda_{2}>\cdots>$

$\lambda_{L}>0$ . This is satisfied almost surely because of the stochastic noise in $F$ . We write, for
simplicity,

$F=B_{0}A_{0}+\mathcal{E}Z$, (29)

where $\epsilon=\frac{1}{\sqrt{N}}$ . We further put an assumption:

(g) $\lambda_{r}^{(0)}>>\epsilon$ and $1\gg\epsilon$ .

The above assumption asserts that the number of data is large enough to discriminate
between $\lambda_{r}^{(0)}$ and the stochastic deviation from zero. We say $a$ is of the constant order if
$a>>\epsilon$ .

It is known that a small perturbation of a matrix causes a perturbation of the same
order to the singular values (see Bartia, 1997, Section III, for example). The diagonal
matrix A is decomposed as

$\Lambda=$ , (30)

where

$\Lambda_{1}==$ , (31)

$\epsilon\tilde{\Lambda}_{2}==$ , (32)

$\epsilon\tilde{\Lambda}_{3}==$ . (33)

Note that the normalized singular values $\overline{\lambda}_{j}(r+1\leq j\leq L)$ are of the constant order.
The purpose of this subsection is to show that

$\frac{d}{dt}\mathrm{E}_{gen}>0$ (34)

if $r<H$ (overrealizable) and $t$ satisfies

$\frac{1}{\beta\tau^{2\sqrt{N}}(\tilde{\lambda}_{H}-\tilde{\lambda}H+1)}<<t<<\frac{\log\sqrt{N}}{\beta\tau^{2}\sqrt{N}(\tilde{\lambda}H-\tilde{\lambda}H+1)}$ . (35)
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If this is proved, it means the existence of overtraining in overrealizable cases. Before
entering into the details, we give an intuitive description of what happens in the learning
process of a network (Fukumizu, 1998). The final state of the solution can be written by

$W\Lambda^{\frac{1}{2}}\Lambda^{\frac{1}{2}}U^{T}$ . (36)

This can be considered as the projection of A to the first $H$ eigenspaces. We can deduce
from $\mathrm{e}\mathrm{q}.(22)$ that the solution is also approximately considered to be a projection of A to
a $H$ dimensional subspace, which converges to $I_{H}$ exponentially. An important point is
that the convergence speed of the first $r$ components and the rest are different if $r<H$ .
The order of the former is roughly $o(e^{-aNt})$ and the latter is $o(e^{-b\sqrt{N}t})$ for some constant
$a$ and $b$ . When the slow dynamics of the latter is the leading factor, the subspace of the
projection is approximately

$\Pi=(_{0}^{I_{r}}0$ $o(e^{-})I_{Hr)}\mathrm{o}-\sqrt{N}t$ . (37)

It is easy to see the shrinkage of the components corresponding to $H-r$ redundant pa-
rameters in the projection $\Lambda^{-\frac{1}{2}}\Pi(\Pi\tau\Pi)-1_{\Pi}\tau_{\Lambda^{-}}\frac{1}{2}$ . This suppresses the effect of stochastic
noise and makes a better estimation than the final one.

Let us start the theoretical verification with the singular value decompositions to simplify
$\mathrm{e}\mathrm{q}.(25)$ . We have

$S=\Phi\Phi^{T}$ , (38)

where $\Phi=\frac{1}{\sqrt{2}}(_{W-W}^{UU})$ . From the assumption (d), the singular value decomposition of
$R(\mathrm{O})$ has the following form;

$R(0)=\Theta J\Gamma G^{\tau}$ , (39)

where

$\Theta=$ , $J=$ , and $\Gamma=$ . (40)

The matrixes $P,$ $Q$ and $G$ are $L,$ $L$ , and $H$ dimensional orthogonal matrixes respectively.
Because of the assumption (e), $\Gamma$ is invertible. Using these decompositions, $RR^{T}$ can be
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rewritten as

$RR^{T}=\Phi(e^{\beta\tau_{0}^{2}N}0\Lambda te^{-\beta N\Lambda}\tau^{2}t)\Phi^{T}\Theta J$

$\cross[\Gamma^{-2}+\frac{1}{2}J\tau\ominus\tau_{\Phi\{}-\}\Phi^{T}\ominus J]^{-1}$

$\mathrm{x}J^{T}\ominus T\Phi(e^{\beta\tau_{0}^{2}}0N\Lambda te^{-\beta_{\mathcal{T}N}}2\Lambda t)\Phi^{T}$. (41)

Let $C=(U^{T}P+W^{T}Q)$ and $D=(U^{\tau_{P-W}\tau}Q)$ . Decompose these two matrixes as

$C=$ , $D=$ , (42)

where $C_{H},$ $D_{H}\in M(H\cross H;\mathbb{R})$ , and $C_{3},$ $D_{3}\in M((L-H)\cross H;\mathbb{R})$ . Then, we have

$\Phi^{T}\Theta J=\frac{1}{\sqrt{2}}$ , (43)

where $\Lambda_{H}=(_{0}^{\Lambda_{1}}\Lambda_{2}0)$ . Since $B(0)+FA(0)^{T}=Q(_{\mathit{0}}^{\mathrm{r}})G^{T}+W\Lambda U\tau P(_{\mathit{0}}\Gamma)c^{\tau_{7}}$ the assump-
tion (f) assures that $C_{H}$ is invertible. If we introduce

$K=$ (44)

$\mathrm{e}\mathrm{q}.(41)$ can be rewritten as

$RR^{T}=2\Phi(_{0}^{\Lambda^{\frac{1}{2}}}$ $\sqrt{-1}\Lambda^{\frac{1}{2}\mathrm{I}^{K}\Psi}0-1KT(_{0}^{\Lambda^{\frac{1}{2}}}$ $\sqrt{-1}\Lambda^{\frac{1}{2})}0\Phi^{T}$ , (45)

where

$\Psi=K^{\tau_{K+\Lambda}\frac{1}{H2}\beta N\Lambda_{H}}e^{-}\tau 2tC_{H}^{\tau}\Gamma-2CHe-\beta\tau^{2}N\Lambda H{}^{t}\Lambda^{\frac{1}{H2}}$

$+e^{-2\beta_{\mathcal{T}^{2}N}H}+ \Lambda t\Lambda e-\beta \mathcal{T}N2\Lambda_{H}{}^{t}C\frac{1}{H2}-1Tc3\tau\Lambda-1\mathit{0}3C_{H}-1\beta\tau N2\Lambda H{}^{t}\Lambda H3\frac{1}{H2}e^{-}$

$- \Lambda^{\frac{1}{H2}}e-\beta_{\mathcal{T}}2N\Lambda_{H}tC_{H}-1T-1-D^{\tau_{\Lambda D_{H}C_{H}{}^{t}\Lambda}}HH\frac{1}{H2}1-e\beta\tau^{2}N\Lambda H$

$-\Lambda^{\frac{1}{H2}}e-\beta_{\mathcal{T}^{2}}N\Lambda HtC_{H}^{-}1^{T\frac{1}{H2}}D_{3}T\Lambda^{-}1DC_{H}^{-}1-33e{}^{t}\Lambda\beta \mathcal{T}^{2}N\Lambda H$. (46)

36



Note that $K\Psi^{-1}K^{T}$ is exponentially close to the orthogonal projection onto the subspace
spanned by the.first $H$ components.

In the matrix $K$ , the $(H+1, H)$-component has the slowest order in the convergence,
and the order is $\exp\{-\beta\tau^{2\sqrt{N}-}(\tilde{\lambda}H\tilde{\lambda}H+1)t\}$ . Hereafter, we assume that there is a time
interval such that the value of this component is very small but sufficiently larger than $\epsilon$ ;
that is,

$\epsilon<<\exp\{-\beta_{\mathcal{T}}2\sqrt{N}(\tilde{\lambda}_{H}-\tilde{\lambda}H+1)t\}<<1$ . (47)

This is equivalent to the condition of $\mathrm{e}\mathrm{q}.(35)$ . We consider the main part of $K\Psi^{-1}K^{T}$ ,
neglecting terms of faster convergence.

The matrix $K$ can be further decomposed as

$K==$, (48)

where $K_{21},$ $K_{41}\in M((L-H)\cross r;\mathbb{R}),$ $K_{22},$ $K_{42}\in M((L-H)\cross(H-r)),$ $K_{31}\in M(H\mathrm{x}r;\mathbb{R})$ ,
and $K_{32}\in M(H\cross(H-r))$ . The convergence of $K_{21},$ $K_{3}$ , and $K_{41}$ is equal to or faster
than the order of $\exp\{-\beta_{\mathcal{T}N}2(\lambda r-\epsilon\tilde{\lambda}r+1)t\}$ . We further assume that

$\exp\{-\beta\tau^{2}N(\lambda r-\epsilon\tilde{\lambda}_{r}+1)t\}<<\epsilon^{\frac{3}{2}}\exp\{-2\beta\tau 2_{\sqrt{N}()t}\tilde{\lambda}_{H}-\tilde{\lambda}H+1\}$ (49)

holds in the interval of $\mathrm{e}\mathrm{q}.(47)$ . This assumption is naturally satisfied under the condition
of $\mathrm{e}\mathrm{q}.(35)$ if $N$ is sufficiently large, since it is equivalent to

$t>> \frac{\frac{3}{2}\log^{\sqrt{N}}}{\beta_{\mathcal{T}^{2}N}\{\lambda r+\frac{1}{\sqrt{N}}(\tilde{\lambda}H-\tilde{\lambda}r+1+\tilde{\lambda}_{H+1})\}}$ . (50)

Hereafter, we $\mathrm{u}\mathrm{s}\mathrm{e}\sim \mathrm{f}\mathrm{o}\mathrm{r}$ an approximation up to the leading order of each component in
matrixes. Then, the solution can be rewritten as

$RR^{T}$ $2\Phi(_{0}^{\Lambda^{\frac{1}{2}}}$ $\sqrt{-1}\Lambda^{\frac{1}{2})\tau_{K)K^{T}}}0K(I_{H}-K22(_{0}^{\Lambda^{\frac{1}{2}}}$ $\sqrt{-1}\Lambda^{\frac{1}{2})}0\Phi^{T}$

$2\Phi\Phi^{T}$ .

(51)
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Therefore, we obtain

$A^{T}.A$ $U\Lambda^{\frac{1}{2}}\Lambda^{\frac{1}{2}}U^{T}$ ,

$BA$ $W\Lambda^{\frac{1}{2}}\Lambda^{\frac{1}{2}}U^{T}$ ,

$BB^{T}$ $W\Lambda^{\frac{1}{2}}\Lambda^{\frac{1}{2}}W^{T}$. (52)

Now, we are in a position to prove overtraining. The first term in the right hand side
of $\mathrm{e}\mathrm{q}.(25)$ is written as

Tr $[(F-BA)A\tau A(BA-B0A\mathrm{o})T]$

$\sim \mathrm{h}[\Lambda^{\frac{1}{2}}\Lambda\Lambda^{\frac{1}{2}}$

$\cross\{\Lambda^{\frac{1}{2}}\Lambda^{\frac{1}{2}}-W^{T}B_{0}A0U\}]$ . (53)

Lemma 1 in Appendix and further decomposition of $K_{2}$ and $K_{4}$ show

Tr $[(F-BA)A\tau A(BA-B_{0}A0)^{\tau}]$

$\sim \mathrm{b}[(_{-\epsilon’\tilde{\Lambda}^{\frac{12}{32}}K_{2}}^{\Lambda^{\frac{1}{\tilde{\Lambda}12}}}\epsilon^{\frac{1}{2}\frac{1}{\underline 2,1\sim 2}}K\tau_{2}K_{2}1\frac{3}{12}K21TK_{21}\Lambda^{\frac{3}{\Lambda 12}}1\Lambda\frac{3}{12}$ $\epsilon^{2}\overline{\Lambda}^{\frac{1}{22}}(KK\tilde{\Lambda}--\epsilon^{2}\tilde{\Lambda}^{\frac{2T1}{\mathrm{s}^{2}}}K\epsilon_{222}^{\frac{3}{2}}\Lambda^{\frac{1}{12}\tau_{12}}22\tilde{\Lambda}^{\frac{32}{22}}+\epsilon^{2}\tilde{\Lambda}^{\frac{3}{\mathrm{s}^{2}}}K2K2\tilde{\Lambda}^{\frac{3}{\tilde{\Lambda}22}}K2\tau K22\tilde{\Lambda}\frac{1}{22}23K22\tilde{\Lambda}^{\frac{)1}{22}} \epsilon^{2}\overline{\Lambda}^{\frac{1}{32}}(-222+K_{22})T\tau\overline{\Lambda}\epsilon^{\frac{3}{2}\Lambda}\epsilon_{K\tilde{\Lambda}_{22}}2\tilde{\Lambda}^{\frac{\frac{1}{112}}{22}}K\tau K_{2}2\tilde{\Lambda}K222K_{2}\tau\tilde{\Lambda}\frac{\frac{1}{212}}{3K2}2\tau_{K\tilde{\Lambda}_{3}}K\tilde{\Lambda}2K2\tau 1222\tilde{\Lambda}222\frac{1}{\mathrm{s}^{2}})$

$\cross(_{\epsilon^{\frac{1}{2}}\tilde{\Lambda}^{\frac{1}{32}}}-\epsilon^{\frac{1}{2}}\overline{\Lambda}^{\frac{1}{22}}K_{222}^{\tau_{2}}K)KO(\epsilon\Lambda\frac{1}{12}+1\Lambda\frac{11}{12}+O(\in)O(\Xi) \epsilon\tilde{\Lambda}_{2^{-\mathcal{E}}}\tilde{\Lambda}\frac{1}{22}K\tau K_{22}-\epsilon^{\frac{1}{2}}\Lambda^{\frac{1}{12}}K\tau_{12}K\Xi\tilde{\Lambda}^{\frac{1}{32}}K_{2}2\tilde{\Lambda}\frac{1}{22}+O^{+}(\epsilon 2)22222\tilde{\Lambda}\frac{1}{\tilde{\Lambda}22}\frac{1}{22}+o_{(}o(\epsilon)\mathcal{E})$ $\epsilon\tilde{\Lambda}^{\frac{1}{32}}K_{2}2K6^{\frac{1}{2}\frac{1}{12}}\epsilon\tilde{\Lambda}\frac{\Lambda 1}{22}KT2K_{2}22\tau\frac{1}{32}\tilde{\Lambda}^{\frac{\tilde{\Lambda 1}}{32}}O(\epsilon)2)_{(54)}1\tau\tilde{\Lambda}\frac{+1}{32}2++o(\Xi O(\in))2]$

.

The leading order is $\epsilon^{3}\exp\{-2\beta\tau\sqrt{N}2(\tilde{\lambda}_{H}-\tilde{\lambda}_{H+1})t\}$ . Note that the order $O(\epsilon^{4})\cross$

$\exp\{-\beta_{\mathcal{T}}2\sqrt{N}(\tilde{\lambda}H-\tilde{\lambda}H+1)t\}$ , appeared in $(3, 2)$ $\cross(2,3)$ part in $\mathrm{e}\mathrm{q}.(54)$ , is smaller under
the condition of $\mathrm{e}\mathrm{q}.(47)$ , and the order $o(\epsilon^{\frac{3}{2}})\cross K_{21}$ , appeared in the $(3, 1)$ $\cross(1,3)$ part,
is also smaller under the assumption of $\mathrm{e}\mathrm{q}.(49)$ . Thus, the main part is included in

Tr $[ \epsilon^{3}\tilde{\Lambda}^{\frac{1}{22}}K_{22}\tau K22\tilde{\Lambda}\frac{5}{22}-\mathit{6}3\tilde{\Lambda}^{\frac{1}{22}}K2T\tilde{\Lambda}_{3}2K22\overline{\Lambda}^{\frac{3}{22}}-\epsilon^{32}\tilde{\Lambda}^{\frac{1}{32}}K_{22}\tilde{\Lambda}_{2}K^{\tau_{2}}2\tilde{\Lambda}\frac{1}{32}\in^{3}+\tilde{\Lambda}^{\frac{3}{32}}K22\tilde{\Lambda}2K2\tau_{2}\tilde{\Lambda}\frac{1}{32}]$

$= \in^{3}\sum_{i=1j}^{L-H}\sum_{1=}\overline{\lambda}r+j(\tilde{\lambda}r+i-\tilde{\lambda}H+i)^{2}\mathrm{t}(K_{2}H-r)2ij\}^{2}$. (55)

All the terms in $\mathrm{e}\mathrm{q}.(55)$ are positive, and this proves the trace is strictly positive. It can
be proved in almost the same way that the second term in $\mathrm{e}\mathrm{q}.(25)$ is also strictly positive.
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Thus, we obtain

$\frac{d}{dt}\mathrm{E}_{gen}>0$ (56)

if the target is overrealizable and $t$ is in the interval of $\mathrm{e}\mathrm{q}.(35)$ .
From the above discussion, we can see that overtraining occurs in an intermediate in-

terval, while overtraining of the average learning curve in Fig.4 seems to continue to the
end. If we look at each trial for one set of training data, we find that some learning
curves slightly decreases after showing overtraining. However, the effect of the decrease
is very small, and the global figure of the curve is determined by the initial decrease and
overtraining. It is also easy to see theoretically that this final decrease or increase is very
small because it is caused by $o(e^{-aNt})$ terms.

5 Conclusion

We showed that strong overtraining is $0\dot{\mathrm{b}}$served in batch learning of multilayer neural
networks when the target is overrealizable. According to the experimental results on
multilayer perceptrons and linear neural networks, this overtraining seems to be a universal
property of multilayer models. We theoretically analyzed the batch training of linear
neural networks, showed the existence of overtraining in an intermediate time interval in
overrealizable cases.

Although the theoretical analysis in this paper is only on the linear neural network
model, it is very suggestive to the phenomena of overtraining, which is observed in many
application of multilayer neural networks. It will be extremely important to clarify this
overtraining phenomena theoretically also in other models.
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Appendix

A Perturbation of singular value decomposition

We prove the following

Lemma 1. Let $Z$ be a $L\cross L$ matrix, and $C_{0}$ be a $L\cross L$ matrix of the $f_{or}m_{f}$.

$C_{0}=$ , (57)
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where $C^{(0)}i\mathit{8}$ a $r\cross r$ matrix. For a sufficiently small positive number $\epsilon$ , we define $C_{\epsilon}$ $:=$

$C_{0}+\epsilon Z$ . Let

$C_{\epsilon}=W\Sigma_{\epsilon}U^{T}$ (58)

be the singular value decomposition of $C_{\in}$ , where $W$ and $U$ are orthogonal matrixes and
$\Sigma_{\epsilon}$ is a diagonal matrix which has the singular values of $C_{\epsilon}$ . Then, the matrix $W^{T}C_{0}U$

has the following form;

$W^{T}C0U=$ . (59)

Proof. It is known (Bartia, 1997, Section III) that $\Sigma_{\epsilon}$ has the form;

$\Sigma_{\epsilon}=$ , (60)

where $\Sigma^{(0)}$ is the diagonal matrix of the singular values of $C^{(0)}$ . For a $L\cross L$ matrix $A$ , we
write $A=(_{A_{21}A_{22}}^{A_{1}}1A12)$ , where $A_{11}$ is a $r\cross r$ matrix. Then, the upper-left block of $\mathrm{e}\mathrm{q}.(58)$

leads

$W_{11}^{T}(\Sigma^{(}0)+O(\epsilon))U_{11}+W_{21}^{T}O(\mathcal{E})U21=C^{(0)}+\epsilon Z_{11}$ . (61)

This shows that $W_{\underline{1}1}$ and $U_{11}$ are of the constant order and

$W_{11}^{T}\Sigma^{(}0)U11=C(0)+o(\mathcal{E})$ . (62)

We know that $W_{11}$ and $U_{11}$ are invertible for a small $\epsilon$ . From the upper-right block of
$\mathrm{e}\mathrm{q}.(58)$ , we have

$W_{11}^{T}(\Sigma^{(}0)+O(\epsilon))U_{12}+W_{21}^{T}O(\epsilon)U_{2}2=\epsilon Z12$ . (63)

Therefore, $U_{12}$ must be of the order $O(\epsilon)$ . Likewise, $W_{12}=O(\epsilon)$ . Now the assertion is
straightforward. $\square$
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