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1 Introduction

The recent study of integrable systems has revealed unexpected relationship among dif-

ferent subjects in theoretical physics. Various integrable systems are often combined into

a single discrete integrable equation. Such a discrete equation can be interpreted dif-

ferently depending on the subject. For example the Hirota bilinear difference equation

(HBDE) includes all of soliton equations which belong to the KP hierarchy in various

continuum $\mathrm{l}\mathrm{i}\mathrm{m}\mathrm{i}\mathrm{t}\mathrm{s}[1,2]$. The same equation is satisfied by string correlation functions in

particle physics[3] as well as by transfer matrices of solvable lattice models in statistical
$\mathrm{p}\mathrm{h}\mathrm{y}\mathrm{s}\mathrm{i}\mathrm{c}\mathrm{s}[4]$ .

From mathematical point of view HBDE is nothing but Fay’s $\mathrm{i}\mathrm{d}\mathrm{e}\mathrm{n}\mathrm{t}\mathrm{i}\mathrm{t}\mathrm{y}[5]$ which charac-

terizes algebraic curves. On the other hand some of soliton equations, such as $\sin\#\mathrm{G}\mathrm{o}\mathrm{r}\mathrm{d}\mathrm{o}\mathrm{n}$

equation, Toda lattice etc., had been classical subjects studied in differential geometry or

projective geometry. Therefore it is quite natural that a geometry of discrete surface has

been recently $\mathrm{d}\mathrm{e}\mathrm{v}\mathrm{e}1_{\mathrm{o}\mathrm{p}}\mathrm{e}\mathrm{d}[6,7,8]$ and discrete version of soliton equations, including HBDE

itself, appear as equations satisfied by curvature of the discrete surface. This fact means

that the deformation of integrable systems to discrete space preserves integrability when

the deformation satisfies certain geometrical constraints.

There have been proposed several extentions of discrete integrable systems to higher

dimensional spaces $[8]-[14]$ . We do not know at this moment if there exists some correlation

among different extensions. It is, therefore, desirable to understand their $\mathrm{m}\mathrm{a}\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{m}\mathrm{a}\mathrm{t}_{[mathring]_{1}}\mathrm{c}\mathrm{a}1$

backgrounds. Physical interpretation of the extensions is another problem to be studied.

A beautiful interpretation by means of solvable lattice models has been $\mathrm{g}\mathrm{i}\mathrm{v}\mathrm{e}\mathrm{n}[15]$ to the

higher dimensional extension of HBDE. Some physical implication of tetrahedron equa-

tion has been also $\mathrm{d}\mathrm{i}\mathrm{s}\mathrm{c}\mathrm{u}\mathrm{s}\mathrm{s}\mathrm{e}\mathrm{d}[12]$ . The purpose of this report is to show that the higher

dimensional extension of the discrete conjugate $\mathrm{n}\mathrm{e}\mathrm{t}[8,14]$ can be naturally interpreted by

means of the string theory.

Brief reviews of the discrete conjugate net and the string theory will be given in \S 2

and \S 3. We present in \S 4 a realization of the discrete conjugate net in terms of correlation

functions of strings.
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2 Conjugate nets on a lattice

The concept of conjugate nets on a lattice space has been discussed by Doliwa and
$\mathrm{S}\mathrm{a}\mathrm{n}\mathrm{t}\mathrm{i}\mathrm{n}\mathrm{i}[8,14]$ . Let us summarize briefly, throughout this section, some of their results,

which are necessary in our discussion.

Laplace equation of quadrilateral lattice:

Let $q=(q_{1}, q_{2}, \cdots, q_{D})\in Z^{D}$ be the $D$ dimensional lattice space. Then the D-dim

quadrilateral lattice $x$ is a map from the lattice $q$ to $R^{M}$ , $M\geq D$ , such that every
elementaIy quadrilateral is planar. It can be characterized by the Laplace equation,

$\Delta_{\mu}\Delta_{\nu^{X-\tau}\mu}((\triangle_{\nu}H_{\mu})H_{\mu}-1)\Delta\mu^{X}-T\nu((\Delta_{\mu}H_{\nu})H_{\nu}^{-}1)\Delta\nu^{X}=0$ , (1)

where $T_{\mu}$ is the shift operator which brings $q_{\mu}$ into $q_{\mu}+1$ and $\Delta_{\mu}:=T_{\mu}-1$ . The Lame

coefficient $H_{\rho}$ itself satisfies

$\Delta_{\mu}\Delta_{\nu}H_{\rho}-\tau_{\mu}((\Delta_{\nu}H_{\mu})H_{\mu}^{-}1)\Delta_{\mu}H-\rho T_{\nu}((\triangle_{\mu}H_{y})H_{y}^{-1})\Delta\nu H\rho=0$ . (2)

If we define the tangent vector $X_{\nu}$ by

$\triangle_{\nu}x=(T_{p}H\nu)X_{\nu}$ , $\nu=1,2,$ $\cdots,D$ ,

then (1) and (2) turn out to be

$\Delta_{\mu}X_{\nu}=(\tau_{\mu}Q_{\nu}\mu)X_{\mu}$ , $\mu\neq\nu$, (3)

$\Delta_{\mu}H_{\nu}=(\tau_{\mu\mu}H)Q_{\mu}\nu$
’

$\mu\neq\nu$ . (4)

The consistency relation of these equations yields for the rotation coefficient $Q_{\mu\nu}$ ,

$\Delta_{\rho}Q_{\mu\nu}=(T_{\rho}Q\mu\beta)Q_{\beta}\nu$
’

$\mu\neq\nu\neq\rho\neq\mu$ . (5)

Equations (3), (4) and (5) are discrete analogue of the following classical results for

the continuous conjugate nets parameterized by $u_{\mu},$ $\mu=1,2,$ $\cdots,$
$D$ :

$\frac{\partial X_{\mu}}{\partial u_{\nu}}=\beta_{\mu\nu}X_{\nu}$ , $\mu\neq\nu$, (6)

$\frac{\partial H_{\mu}}{\partial u_{\nu}}=\beta_{\nu\mu}H_{\nu}$ , $\mu\neq\nu$, (7)

$\frac{\partial\beta_{\mu\nu}}{\partial u_{\rho}}=\beta\mu\beta\beta\rho\nu$

’
$\mu\neq\nu\neq\rho\neq\mu$ . (8)
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Focal lattice and Laplace transform:

The D-dim rectilinear congruence $l(q)$ is a map from the lattice to lines in $R^{M}$ , such

that every two neighbouring lines is coplanar. If all points of the quadrilateral lattice

$x(q)$ belong to the rectilinear congruence $l(q),$ $x$ and $l$ are called conjugate.

Th$e$ focal lattice $y_{\mu}(l)$ is a lattice constructed out of the intersection points of the lines

$l(q)$ and $l(q+e_{\mu})$ . Then the following theorem was shown.

Theorem: Focal lattices of congruences $conjuga_{\vee}te$ to quadrilateral lauices are quadrilat-

eral lattices.

The map from $x$ to the forcal lattice $y_{\mu}(l)$ is called Laplace transformation and is given

by
$\mathcal{L}_{\mu\nu}(X)=y\nu(l_{\mu}(x))=x-\frac{H_{\mu}}{Q_{\mu\nu}}X_{\mu}$. (9)

Doliwa has $\mathrm{s}\mathrm{h}\mathrm{o}\mathrm{w}\mathrm{n}[8]$ that HBDE arises as an equation satisfied by invariants under this

transformation. On the other hand the map of $x$ to the quadrilateral lattice conjugate to

the $\mu$-th tangent congruence of $x$ is called Darboux transformation and is given by

$\mathcal{L}_{\mu}(x)=x-\frac{\phi}{\triangle_{\mu}\phi}\triangle_{\mu^{X}}$, (10)

where $\phi$ is a solution of (1).

3 Elements of string theory

Analytical property of the string correlation functions in particle physics is characterized

by Hirota bilinear difference $\mathrm{e}\mathrm{q}\mathrm{u}\mathrm{a}\mathrm{t}\mathrm{i}_{\mathrm{o}\mathrm{n}}[3]$ . In this section I like to review briefly the elements

of the string theory.

Let $z\in C$ be a complex proper time of a string. Then the positive and negative

oscillation parts of the string coordinate

$X^{\mu}(z):=X_{+}^{\mu}(z)+X_{-}^{\mu}(Z)$ , $\mu=1,2,$ $\cdots,$
$D$ (11)

$\mathrm{s}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{S}6^{\mathit{7}}$

$[X_{+}^{\mu}(z), x_{-}^{\nu}(_{Z’})]=\delta\mu\nu_{\ln(z-\mathcal{Z}’)}$ . (12)

Interaction of a ground state particle with the string takes place through the vertex

operator
$V(k, z):= \exp[i\sum_{\mu}k_{\mu}x_{+}^{\mu}(Z)]\exp[i\sum_{\mu}k_{\mu}X^{\mu}-(Z)]$ . (13)
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where $k\in R^{D}$ is the momentum of the interacting particle. Since the string is quantized,
the vertex operators do not commute but enjoy the following relations:

$V(k, Z)V(k’, Z’)$ $=$ $(z-z’)^{k}$ :$V(k, zk’/)V(k, z’)$ :

$=$ $(-1)^{k}Vk’’(k,z’)V(k, Z)$ . (14)

For a given configuration of strings, say $|G\rangle$ , the correlation function can be calculated

$F_{G}(k_{1}, k_{2}, \cdots, k_{N}):=\langle 0|V(k_{1}, z1)V(k_{2},z_{2})\cdots V(k_{N,N}z)|G\rangle$ (15)

where $|0\rangle$ is the vacu.um state annihilated by $X_{-}^{\mu}(z)$ . When $|G\rangle$ itself is the vacuum we
can calculate the amplitude explicitly and obtain

$F_{0}(k_{1}, k_{2}, \cdots, kN)$ $:=$ $\langle 0|V(k1, z1)V(k2, z2)\cdots V(kN, ZN)|0\rangle$

$=$
$\prod_{l>j}(z_{j}-Z_{l})^{k_{j}k}\iota$ . (16)

It was shown in [3] that if we define

$f(k_{1}, k_{2,N} \ldots, k)=\frac{F_{G}(k_{1},k_{2},.\cdot.\cdot.\cdot,k_{N})}{F_{0}(k_{1},k2,,k_{N})}$ (17)

it solves the HBDE

$z_{a}(z_{b}-z_{c})f(k_{a}+e_{\mu}, k_{b}, k_{c})f(k_{a’ b}k+e_{\mu}, k_{c}+e_{\mu})$

$+z_{b}(z_{c}-z_{a})f(kk_{b}a’+e_{\mu}, k_{c})f(k_{a}+e_{\mu}, k_{b}, k_{c}+e_{\mu})$

$+z_{c}(z_{a}-Z_{b})f(ka’ kb, k_{c}+e_{\mu})f(k_{a}+e_{\mu},k_{b}+e_{\mu},k_{c})=0$, (18)

where $k_{a},$ $k_{b},$ $k_{c}$ are any three of $k_{1},$ $k_{2},$
$\cdots,$

$k_{N}$ and $e_{\mu}$ denotes the unit vector along the

$\mu$ direction.
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4String realization of the conjugate net

We have discussed two subjects, discrete geometry and string models, in the previous

sections. They belong to different fields. But they share HBDE in common. This fact

might imply that the discrete geometry is realized by the string nodel in particle physics.

I like to show that this happens to be correct. The main part of the argument owes to

the observation in $[14]^{1}$ , in which the KP hierarchy was describ $e\mathrm{d}$ in terms of discrete

geometry. On the other hand the correspondence between the KP hierarchy and the

string model was established in [3]. Therefore the problem which is left for us is to find

a way of the translation from one language to another. In conclusion we will see that the

string model variables can be associated directly to the discrete conjugate net. Hence the

string model interpretation of the discrete conjugate net tums out to be quite natural.

KP correspondence:

The KP $\mathrm{h}\mathrm{i}\mathrm{e}\mathrm{r}\mathrm{a}\mathrm{r}\mathrm{c}\mathrm{h}\mathrm{y}[1,2,9]$ is a set of infinitely many bilinear differential equations of

Hirota typ$e$ . All of their solutions are given by a single function $\tau(t_{1},t_{2,3}t, \cdots)$ , which is

called the KP $\tau$ function. $t_{n},$ $n=1,2,$ $\cdots$ are the soliton variables along which solitons

can propagate. The $D$-component KP $\mathrm{h}\mathrm{i}\mathrm{e}\mathrm{r}\mathrm{a}\mathrm{r}\mathrm{c}\mathrm{h}\mathrm{y}[9]$ is an extension of the KP hierarchy in

which the soliton variables $t_{n}’ \mathrm{s}$ are generalized to $D$-component vectors $t_{n}’ \mathrm{s}$ . In addition

we need charge variables $q$ which take values on the $D$-dimensional lattice space. We

write the corresponding $\tau$ function as $\mathcal{T}(q,t_{1},t_{2},t\mathrm{s}, \cdots)$ .
Then the matrix function, which is defined by $(\epsilon_{\mu\nu}:=sgn(\nu-\mu), \epsilon_{\mu\mu}:=1)$

$W_{\mu_{)}\nu}(z):= \epsilon\mu\nu Z^{\delta}\mu\nu^{-}1\frac{\tau(q+e_{\mu}-e_{\nu},t1^{-}ze\nu t2^{-}\frac{z^{2}}{2}e\nu’ t3-\frac{z^{3}}{3}e_{\nu},\cdots)}{\tau(q,t1,t2t3,\cdots)},,e^{\Sigma_{n}}z-nt_{n\nu}$ , (19)

satisfies the linear $e\mathrm{q}\mathrm{u}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}[9]$

$\frac{\partial W_{\mu,\nu}}{\partial t_{n\rho}}=B_{\mu}(n,\rho)W_{\rho}\rho’\nu$

’ (20)

where $B_{\mu,\rho}^{(n\rho)}$ is a matrix differential operator.

Doliwa et $al$ have found a geometrical interpretation of the multicomponent KP hier-

archy $\mathrm{b}\mathrm{a}s$ed on their theory of conjugate net [14]. According to their argument the soliton

variables $t_{1}$ are interpreted as the coordinates $u$ of the conjugate net, whereas the rest of

variables $t_{n},$ $n\geq 2$ describe iso–conjugate deformations of the nets. Then they associate

$W_{\mu,\nu}$ with the componet of the tangent vector $(X_{\mu})_{\nu}$ and $B_{\mu\nu}$ with the rotation matrix
$\beta_{\mu\nu}$ , so that the correspondence between (6) and (20) follows:

$t_{1}rightarrow u$, $W_{\mu,\nu}rightarrow(X_{\mu})_{\nu}$ , $B_{\mu\nu}rightarrow\beta_{\mu\nu}$ . (21)

$\overline{1\mathrm{I}}$like to thank Dr. A.Doliwa for his presentation of this paper prior to its publication.
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In tems of the KP $\tau$ function $\beta_{\mu\nu}$ is thus given by:

$\beta_{\mu\nu}=\epsilon_{\mu\nu}.\frac{\tau(q+e_{\mu}-e_{y},t1t_{2.3}t,\cdots)}{\tau(q,t_{1},t_{2},t_{3},)},.’.\cdot$ (22)

Moreover an operation of the vertex operator of the KP theory to the matrix $W$ is

interpreted as a Levy transformation of the tangent vector $X$ according to

$\mathcal{L}_{\mu}(X_{\nu})rightarrow z^{-\delta_{\mu\nu}}\exp[-\sum_{n=1}^{\infty}\frac{1}{n}Z^{n}\frac{\partial}{\partial t_{n\mu}}]W_{\nu}$ , (23)

where $W_{\nu}$ is the $\nu \mathrm{t}\mathrm{h}$ row vector of the matrix $W$.
String realization :

Now we will $\mathrm{p}\mathrm{r}\mathrm{o}\mathrm{C}\dot{\mathrm{e}}\mathrm{e}\mathrm{d}$ to show the realization of the lattice conjugate nets by means of

string theory. The key observation is the Miwa $\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{n}\mathrm{s}\mathrm{f}_{\mathrm{o}\mathrm{r}\mathrm{m}\mathrm{a}}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}[2]$ , which enables us to

interprete the string theory in terms of the soliton $\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{o}\mathrm{r}\mathrm{y}[3]$ . It is given by

$t_{0}:= \sum_{j=1}^{N}k_{j}$ , $t_{n}= \frac{1}{n}\sum_{j=1}^{N}k_{j^{\mathcal{Z}^{n}}}j$

’ $n=1,2,3,$ $\cdot$ . . (24)

Miwa did not introduce $t_{0}$ in [2], but it is natural to incorpolate it into the string theory

as the center of mass momentum of external particles.

It was $\mathrm{s}\mathrm{h}\mathrm{o}\mathrm{w}\mathrm{n}[3]$ that, after the change of $\mathrm{v}\Re\cdot \mathrm{i}\mathrm{a}\mathrm{b}\mathrm{l}\mathrm{f}\mathrm{f}\mathrm{i}$ , the KP $\tau$ function is the same as

the ratio of the string correlation functions in (17),

$\tau(t_{0},t_{1},t_{2,3}t, \cdots)=\frac{F_{G}(k_{1,2}k,k_{\mathrm{s}},.\cdot.\cdot.\cdot k_{N}))}{F_{0}(k1,k2k_{3},,k_{N})},\cdot$ (25)

From this we first notice that the center of $\mathrm{m}\mathrm{a}s\mathrm{s}$ momentum $t_{0}$ must be interpreted as the

fundamental lattice $q$ of the conjugate net. The other coordinates are related through

the second equation of (24). It is easy to verify the following identities,

$\frac{\partial}{\partial k_{j\mu}}=\frac{\partial}{\partial t_{0\mu}}+\sum_{n=1}^{\infty}\frac{1}{n}z_{j^{\frac{\partial}{\partial t_{n\mu}’}}}n$ $j=1,2,$ $\cdots$ , N. (26)

We denote by $T_{j\mu}$ the operation which shifts $k_{j}$ to $k_{j}+e_{\mu}$ ,

$T_{j\mu}:=e \mathrm{x}\mathrm{p}[\frac{\partial}{\partial k_{j\mu}}]$ . (27)

Then we can prove

$F_{0}^{-1}Tj \mu 0F=\prod_{l}(zj-z_{l})k_{\mathrm{t}}=Z_{j}^{t0_{\mu}}\exp[-\sum_{n=1}^{\infty}z^{-}jt_{n\mu]}n$ . (28)

Let us recall that the total momentum $t_{0}$ of the correlation function $F_{0}$ does not change

because it has no background, while one of $F_{G}$ can be changed by shifting the momentum
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of the state $|G\rangle$ to the opposite, simultaneously. We denote by $T_{\mu}$ the shift of $q$ into

$q+e_{\mu}$ . This is exactly what we defined before. Combining all these together the tangent

vector, which was once given by (19), can be rewritten as

$(X_{\mu})_{j\nu j\nu}=\epsilon_{\mu}\nu F^{-}1TT-1F_{G}c\mu$ . (29)

Similarly the rotation matrix is translated into

$Q\mu\nu=\epsilon F1T\mu\nu G^{-}\mu T^{-}1F\nu G$ . (30)

The operator of the Darboux transformation is proportional to the shift operator $T_{j\mu}^{-1}$

itself, as we see by comparison of (.23), (26) and (27). It will be, however, more convenient

to define it according to
$\mathcal{L}j\mu:=F^{-1}T-1F00j\mu\circ$ (31)

In this expression it is assumed that the operator $T_{j\mu}^{-1}$ acts to all of functions on its right.

Under this condition it is nothing but the vertex operator (13) of the string theory.

From th$e\mathrm{s}\mathrm{e}$ correspondences we can draw some picture of the lattice conjugate net

which is realized by the string models. Let us consider the space of momenta of $N$

extemal particles $(k_{1}, k_{2}, \cdots, k_{N})$ . We also consider the momenta of the background, so

that the total momenta $q$ of the external particles becomes independent variable. Suppose

the background space 1st compactified into torus in all $D\mathrm{d}\mathrm{i}\mathrm{r}\mathrm{e}\mathrm{c}\mathrm{t}[mathring]_{\mathrm{l}}\mathrm{o}\mathrm{n}\mathrm{s}$. Then its momenta,

henc$eq$ itself, can take only integer values. We consider the lattice space of $q\in Z^{D}$ as

the fundamental lattice of the conjugate net which is embedded in the space $R^{DN}$ of the

momenta of the $N$ external particles.

Based on this setting we can interprete the tangent vector $X_{\mu}$ of (29) by the gauge

covariant shift operator along the $\mu$-direction of the $q$ space. Similarly the rotation op-

erator $Q_{\mu\nu}$ of (30) has the meaning of a gauge covariant rotation operator in this space.

The Darboux transfomation operator of (31) is somewhat different. It acts on the space

of momenta of external particles $k_{j}\in R^{DN}$ , again in a gauge covariant form. These

manifestly gauge covariant forms make the string realization of the conjugate net quite

natural.
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