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$0$ . Introduction
In [Vol], Voiculescu began studying the operator algebra free products from the

probabilistic point of view. His idea is to look at free products as an analogue
of tensor products and to develop a corresponding highly noncommutative proba-
bilistic framework, where freeness is given as the notion of independence (see the
monograph [VDN] $)$ . It has been introduced in [Vo2] the operation of the additive
free convolution as analogue of the usual convolution. In order to compute it, it
was also introduced the $R$-transform which linearlizes the additive free convolu-
tion. The definition of the $R$-transform goes in terms of a certain family of formal
Toeplitz operators, which is given in [Vo2] by Voiculescu. An alternative, combi-
natorial approach to the $R$-transform was found by Speicher in [Sp]. The most
important advantages of this combinatorial a.pproach is that it can be generalized
in a straightforward way to multi-dimensional situations as in [Ni]. And they have
been developed much more the conbinatorial approaches to free random variables.
The machinery of the $R$-transform was found independently and simultaneously by
Woess in [Wo], by Soardi in [So], and by Cartwight and Soardi in [CS1], [CS2],
from the studies of the random walks on free product groups to obtain the walk
generating function or the Plancherel measures.

The spectral theory of the infinite graphs such as the homogenuous tree or the
infinite distance regular graphs, has been studied in [BMS], [FP], [IP], and [KS],
for example. The survey on the spectra of infinite graphs is now available in [NW].
Especially, many authors have contributed to spectral theory and harmonic analysis
for the homogeneous tree $T_{m}$ . The results conceming with its harmonic analysis
are subsumed in [FTP]. If $m$ is even, then $T_{m}$ is the Cayley graph of a free group,
and many papers have dealed with this structure. The ancestor is Kesten [Ke], who
calculates the closed walk generating function of the transition operator. In [Vo4],
Voiculescu has also treated it by using the $R$-transform, which is called generally
free harmonic analysis in [VDN].
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In this lecture, we make a breif introduction of the free probability theory and

show some exapmles of free harmonic analysis on a free family of projections. We

treat the typical two cases of them. The first one is $\{p_{i}\}_{i=}1,2,\ldots,n$ with the same

state $\phi(p_{i})=\alpha$ , and we consider the operator $\lambda\sum_{i=1}^{n}p_{i}$ . The other is $\{p, q\}$ with

different states $\phi(p)=\alpha$ and $\phi(q)=\beta$ , and we consider the operator $\lambda p+\mu q$ .
The former corresponds to the radial case in the theory of representations (see, for

example, [FTP] or [Co] $)$ and the latter to the semiradial case as in [CT1].

1. Noncommutative probability spaces
This section contains preliminaries concerning with noncommutative probability

spaces and free random variables. Recall that a usual probability space is $(\Omega, \Sigma, \nu)$ ,

where $\Omega$ is a base space, $\Sigma$ is a a-algebra and $\nu$ is a probability measure (i.e. positive

and satisfying $\nu(\Omega)=1)$ . A random variable is a mesurable function $f$ : $\Omegaarrow \mathbb{C}$ ,

and if $f$ is integrable then its expectation $E(f)$ is given by

$E(f)= \int_{\omega\in\Omega}fd\nu(\omega)$ . (1.1)

We can consider a noncommutative probability space in a purely algebraic frame

as an analogue of the above usual probability space.

Definition 1.1. A noncommutative probability space is $(A, \phi)$ , where $A$ is a
unital algebra and $\phi$ : $Aarrow \mathbb{C}$ is a linear functional with $\phi(1)=1$ . We say that
$(A, \phi)$ is a $C^{*}$-probability space when, in addition, $A$ is a $C^{*}$-algebra and $\phi$ is a

state.

One can define independence in a noncommutative probability space as gener-
alization of the usual definition, which is based on the tensor product of algebras.
Inst $e\mathrm{a}\mathrm{d}$ of the tensor product the reduced free product, we can introduce a much
more noncommutative independence called free, which is due to Voiculescu and
explained below.

Definition 1.2. Let $(A, \phi)$ be a noncommutative probability space and $A_{i}$ be

subalgebra of $A$ containing the identity element of $A,$ $1\in A_{i}\subset A$ , for $i\in I$ . We
say that the family $(A_{i})_{i\in I}$ is free if

$\phi(x_{12}X\cdots X_{n})=0$ (1.2)
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whenever $x_{j}\in A_{i_{j}}$ and $i_{1}\neq i_{2}\neq\cdots\neq i_{n}$ and $\phi(x_{j})=0$ for all $j$ .
A family of $\cdot \mathrm{s}\mathrm{u}\mathrm{b}_{\mathrm{S}}\mathrm{e}\mathrm{t}\mathrm{s}X_{i}\subset A$ (resp. elements $x_{i}\in A$) will be called free if the

family of subalgebras $A_{\dot{*}}$ generated by $\{1\}\cup X_{i}$ (resp. {1, $x_{\dot{*}}\}$) is free.

Example 1.3. For a discrete group $G$, consider the left regular representation of
$G$ on $\ell^{2}(G)$ , given by $grightarrow\lambda_{G}(g)$ , where $(\lambda_{G}(g)\xi)(h)=\xi(g^{-1}h)$ for $g,$ $h\in G$ and
$\xi\in\ell^{2}(G)$ . The $\mathrm{r}e$duced group $C^{*}$ -algebra of $G$ is

$C_{r}^{*}(G)=\overline{\mathrm{s}\mathrm{p}\mathrm{a}\mathrm{n}}||\{11\lambda_{G}(g):g\in G\}$ , (1.3)

the operator norm $\mathrm{c}\mathrm{l}\mathrm{o}\mathrm{s}\mathrm{e}\mathrm{d}*$ -algebra generated by $\{\lambda_{G}(g) : g\in G\}$ . It has the canon-
ical faithful tracial state $\tau_{G}(\cdot)=\langle\cdot\delta_{\mathrm{e}}|\delta_{\mathrm{e}}\rangle*$ where $\delta_{\epsilon}$ is the characteristic function of
the identity $e$ of $G$ .

If $G$ is the free product of a family $\{G_{j}\}_{j=}1,2,\cdots,k$ of discrete groups and

$A_{j}=\overline{\mathrm{s}_{\mathrm{P}}\mathrm{a}\mathrm{n}}^{1}|||\{\lambda G(g) : g\in cj\}$ (1.4)

then $(A_{j})$ is free in the $C^{*}$ -probability spac$e(C_{r}^{*}(G), \tau_{G})$ .

Definition 1.4. Let $(A, \phi)$ be a noncommutative probability space. A random
variable is an element $x\in A$ . The distribution of $x$ is the linear functional $\nu_{x}$ on
$\mathbb{C}[X]$ (the algebra of complex polynomials in the variable $X$ ), defined by

$\nu_{x}(P(X))=\phi(P(X))$ , for all $P\in \mathbb{C}[X]$ . (1.5)

Note that the distribution of a random variable $x\in A$ is nothing more than a
way of discribing the simple moment.s.
Remark 1.5. In a $C^{*}$ -probability space $(A, \phi)$ , if $x$ is a self-adjoint element of $A$

then the distribution of $x,$ $\nu_{x}$ , extends to a compactly supported measure on $\mathbb{R}$,
namely there exists a unique probability measure $d\nu_{x}$ on $\mathbb{R}$ such that

$I^{P(t)d\nu(t}x)=\phi(P(X))$ . (1.6)

Thus, for a self-ajoint element $x$ , we simply call $\nu_{x}$ the probability measure of $x$ in
this paper.
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Definition 1.6. If $x_{1}$ and $x_{2}$ are free random variables with distributions $\nu_{x_{1}}$ and

$\nu_{x_{2}}$ then the distribution $\nu_{x_{1}+x_{2}}$ (which depends only on $\nu_{x_{1}}$ and $\nu_{x_{2}}$ ) is called the

additive free convolution of $\nu_{x_{1}}$ and $\nu_{x_{2}}$ , and denoted by $\nu_{x_{1}}$ ffl $\nu_{x_{2}}$ .

As a tool for computing the additive free convolution, Voiculescu introduced the

notion of the $R$-transform [Vo2] instead of the Fourier transform of a distrubution

in the usual probability theory.

Definiti-on 1.7. For a distribution $\nu$ on $\mathbb{C}[X]$ , we consider the formal power series

of $\zeta^{-1}$

$G_{\nu}( \zeta)=\zeta^{-1}+\sum_{1k=}\nu\infty(xk)\zeta^{-}k-1$ (1.7)

and the formal power series of $z$

$K_{\nu}(z)=z^{-1}+ \sum_{k=0}^{\infty}\alpha k+1z^{k}$ , (1.8)

where $G_{\nu}(\zeta),$ $\mathrm{A}_{\nu}’(Z)$ are mutually inverse, that is,

$G_{\nu}(K_{\nu}(z))=z$ and $K_{\nu}(G_{\nu}(\zeta))=$ ( (1.9)

The $R$ -transform $R_{\nu}(z)$ of the distribution $\nu$ is defined by the following form:

$R_{\nu}(z)=K_{\nu}(Z)- \frac{1}{z}=\sum_{k=0}^{\infty}\alpha k+1z^{k}$ . (1.10)

Example 1.8. Suppose $p\in A$ is a projetion in a $C^{*}$ -probability space $(A, \phi)$ with
$\phi(p)=\alpha$ . Let $\nu$ be the distribution of $p$ . Then we have, for $k\geq 1$ ,

$\nu(X^{k})=\phi(p^{k})=\phi(p)=\alpha$ (1.11)

and

$G_{\nu}( \zeta)=\zeta^{-1}+\alpha\sum_{1k=}^{\infty}\zeta^{-}k-1=\frac{(-(1-\alpha)}{\zeta(\zeta-1)}$ . (1.12)

Thus we can find the $R$-transform of $\nu$ by

$z=G_{\nu}(R_{\nu}(Z))= \frac{R_{\nu}(z)-(1-\alpha)}{R_{\nu}(z)(R_{\nu}(_{Z})-1)}$ (1.13)

and. obtain
$R_{p}(z)= \frac{1}{2z}\{(z-1)+\sqrt{(z-1)^{2}+4\alpha z}\}$ (1.14)

where the analytic square root is choosen as $\mathrm{l}\mathrm{i}\mathrm{m}zarrow 0R_{\mathrm{P}}(Z)=\alpha$.
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Theorem 1.9. For free random variables $x_{1},$ $x_{2}f$ we have

$R_{\nu_{x_{1}}\mathrm{f}\mathrm{f}\mathrm{l}\nu x_{2}}(Z)=R_{\nu_{\emptyset_{1}}}(z)+R_{\nu_{x_{2}}}(z)$. (1.15)

This theorem says that the $R$-transform linearizes the additive $\mathrm{f}\mathrm{r}e\mathrm{e}\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{V}\mathrm{o}\mathrm{l}\mathrm{u}^{t}$ tion.
Hence we can regrad it as a free analogue of the logarithm of the Fourier transform,
or of the cumulants generating series, in the ususal probability theory.

Futhermore the following formulae can be easily shown:

$R_{\nu_{\gamma_{\Phi}}}(z)=\gamma R_{\nu_{x}}(\gamma z)$ , (1.16)

$R_{\nu_{x+\gamma\cdot 1}}(z)=R_{\nu_{x}}(z)+\gamma$ for $\gamma\in \mathbb{C}$ . (1.17)

Remark 1.10. If $\nu$ is the distribution of an element, $x\in A$ , of a $C^{*}$ -probability
space $(A, \phi)$ , then for $|\zeta|>||x||$ ,

$G_{\nu_{l}}(\zeta)=\phi((\zeta I-x)-1)$ . (1.18)

If, in addition, $x$ is a self-adjoint element, then $\nu_{x}$ is a probability measure compactly
supported on $\sigma(x)\subset \mathbb{R}$ , the spectrum of $x$ , and thus

$G_{\nu_{x}}( \zeta)=\int_{\sigma(a)}\frac{d\nu_{x}(t)}{\zeta-t}$ (1.19)

is precisely the Cauchy transform of $\nu$ , which is an analytic function defined for $\zeta$

in a neighborhood of $\infty$ . Hence, in such a case, we can recover the measure $\nu_{x}$ from
$G_{\nu_{x}}$ by using the Stieltjes inversion formula (see [Ak]).

2. The linear combinations of a free family of projetions
Let $p$ be a projections in a $C^{*}$ -probability space $(A, \phi)$ with $\phi(p)=\alpha$ . Then the

$R$-transform of the projection $p$ can be given by $\dot{\mathrm{E}}\mathrm{x}\mathrm{a}\mathrm{m}\mathrm{p}\mathrm{l}\mathrm{e}1.8$ . By the property of
the $R$-transform for a dilation, we have

$R_{\lambda p}(z)= \frac{1}{2_{Z}}\{(\lambda z-1)+\sqrt{(\lambda z-1)2+4\alpha\lambda z}\}$ . (2.1)

Let $\{p_{i}\}_{i=1},2,\cdots,n$ be a free family of projections with $\phi(p_{i})=\alpha_{\dot{*}}$ for each $i$ . We
consider the linear combination,

$\ell=\sum\lambda_{ip_{i}}n$ (2.2)
$*\cdot=1$
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of these projections, where $\lambda_{i}$ is assumed to be positive. The $R$-transform of the

element $\ell$ is now given by

$R_{l}(z)= \sum_{\dot{\iota}=1}^{n}\frac{1}{2z}\{(\lambda_{\dot{*}}z-1)+\sqrt{(\lambda_{i}z-1)2+4\alpha:\lambda iz}\}$ . (2.3)

Hence we have

$K_{t}(z)=R_{l}(Z)+ \frac{1}{z}$

$=-( \frac{n-2}{2z})+\frac{1}{2_{Z}}\sum_{i=1}^{n}\{\lambda i^{Z+\sqrt{(\lambda_{i}z-1)^{2}+4\alpha i\lambda z\iota}\}}$ . (2.4)

In order to obtain $G_{l}(\zeta)$ , it will be required to invert the function $K_{\ell}$ , that is to
solve the equation $\zeta=K_{\ell}(Z)$ in $z$ .

It is immediately seen that $G_{l}(\zeta)$ is an algebraic function, but in general case,

it can not be solved in radicals. However, this can be done, for instance, in the
cases where at most two different square roots will appear in the right hand side
of the equation (2.4). That is, in the cases where the family $\{(\alpha_{\dot{*}}, \lambda i)\}_{i=1,2,\cdots,n}$ is
constituted from at most two different pairs. From now on, we shall concentrate
our attention upon the following typical two cases and find the probability measure
of the random variable $\ell$ in each case:
Case 1) $(\alpha_{i}, \lambda_{i})=(\alpha, \lambda)$ for $i=1,2,$ $\ldots,$

$n$ , with $n\geq 2,0<\alpha<1,$ $\lambda>0$ ,
Case 2) $n=2$ and $\{(\alpha_{i}, \lambda_{i})\}i=1,2$ with $0<\alpha_{i}<1,$ $\lambda_{i}>0$ .

First we shall investigate Case 1). In this case, the equation $\zeta=K_{\ell}(Z)$ becomes

$\zeta=-(\frac{n-2}{2z})+\frac{n}{2z}(\lambda z+\sqrt{(\lambda_{Z-}1)2+4\alpha\lambda z})$ , (2.5)

which yields the quadratic equation in $z$ that

$\zeta(\zeta-n\lambda)z^{2}+((n-2)(+n\lambda(1-n\alpha))_{Z}+(1-n)=0$. (2.6)

We put
$\gamma\pm=\lambda\{(n-2)\alpha+1\}\pm 2\lambda\sqrt{(n-1)\alpha(1-\alpha)}$ (2.7)

then the $G$-series of the element $l$ can be obtained as

$G_{\ell}( \zeta)=\frac{-\{(n-2)\zeta+n\lambda(1-n\alpha)\}+n\sqrt{(\zeta-\gamma_{+})(\zeta-\gamma_{-})}}{2\zeta((-n\lambda)}$ , (2.8)
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where the branch of the analytic square root should be determined by

${\rm Im}\zeta>0$ $\Rightarrow$ ${\rm Im} G(\zeta)\leq 0$ . (2.9)

Here we note that we can have the inequalities

$0\leq\gamma_{-}<\gamma+\leq n\lambda$ . (2.10)

We shall calculate the probability measure $\nu$ of the self-adjoint element $l$ by
using the Stieltjes inversion formula on $G_{l}$ . For this purpose, we should take into
accounts the some algebraic structure of $G_{l}(\zeta)$ . $\zeta=0$ is removable singularity if
$1-n\alpha\leq 0$ . When $1-n\alpha>0$ , it is a simple pole with $\mathrm{r}e$sidue $1-n\alpha$ . Similary,
$\zeta=n\lambda$ is removable singularity if $1-n(1-\alpha)\leq 0$ . When $1-n(1-\alpha)>0$ , it is a
simple pole with residue $1-n(1-\alpha)$ . The Stieltjes inversion formula says that $\nu$ is
absolutely continuous with respect to Lebesgue measure where $G_{\ell}(()$ has non-zero
imaginary part on the real axis, in our case, on the interval $[\gamma_{-},\gamma_{+}]$ . The density of
the absolutely continuous part of the measure $\nu$ with respect to Lebesgue measure
can be given by

$f(t)=- \frac{1}{\pi}\lim_{6arrow+0}{\rm Im} G_{l}(t+i\epsilon)=\frac{-n\sqrt{-(t-\gamma_{+})(t-\gamma_{-)}}}{2\pi t(t-n\lambda)}$ . (2.11)

for $t\in[\gamma_{-}, \gamma_{+}]$ . From the above observations, we have the following theorem:

Theorem 2.1. Let $\{p_{i}\}_{i=1},2,\cdots,n$ be a free family of projections with $\phi(p_{\dot{*}})=\alpha$ for
all $i$ and we put $\ell=\lambda\sum_{i=1}^{n}p_{i}$ where $\lambda>0$ . Then the distribution $\nu$ for the element
$l$ is given by

$d \nu=\frac{-n\sqrt{-(t-\gamma_{+})(t-\gamma_{-})}}{2\pi t(t-n\lambda)}\chi_{[\gamma-,\gamma+}]dt$

$+ \max(\mathrm{O}, 1-n\alpha)\delta_{0}+\max(0,1-n(1-\alpha))\delta nx$ , (2.12)

where $dt$ denotes the Lebesgue measure; $\delta_{t}$ is the Dirac unit mass at $t_{f}$ and $\chi_{I}$ means
the characteristic function for the interval $I$ .

Next we shall consider Case 2). That is $\ell=\lambda p+\mu q$ where $p$ and $q$ are free
projections with $\phi(p)=\alpha$ and $\phi(q)=\beta$ , and let $\lambda$ and $\mu$ are positive scalars.
The structure of the $C^{*}$ -algebra generated by the projections $p,$ $q$ and the identity,
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$C^{*}(p\text{ノ}.q, 1)$ has been investigated in [ABH] and a certain spectral analysis is also

studied in [Vo4] and [VDN]. We shall, however, give the measures directly by using

the $R$-transform here.
In this case, the equation $\zeta=\cdot K_{l}(z)$ becomes

(2.13)

This equation yeilds the following equation:

$(\{(\lambda+\mu)-2\zeta\}^{2}z-2\{(\lambda Z-1)^{2}+4\lambda\alpha z\}-\{(\mu z-1)24+\mu\beta z\})2$

$=4\{(\lambda z-1)2+4\lambda\alpha z\}\{(\mu z-1)2+4\mu\beta_{Z}\}$ , (2.14)

which is rather large but its degree in $z$ might be at most 4. After some more

tedious calculation, we can see that it will be reduced to the quadratic equation

$Az^{2}+Bz+C=0$ , wher$e$

$A=\zeta(\zeta-\lambda)(\zeta-\mu)(\zeta-\lambda-\mu)$ ,

$B=\{\lambda(1-2\alpha)+\mu(1-2\beta)\}\zeta(\zeta-\lambda-\mu)+\lambda\mu(\lambda+\mu)(1-\alpha-\beta)$, (2.15)

$C=-\{(\zeta-\mu)-(\lambda\alpha-\mu\beta)\}\{(\zeta-\lambda)+(\lambda\alpha-\mu\beta)\}$ .

Here put $D=B^{2}-4AC$ , it follows by direct calculation that

$D=(2\zeta-\lambda-\mu)^{2}(\zeta-\gamma 1)(\zeta-\gamma 2)(\zeta-\gamma 3)(\zeta-\gamma 4)$, (2.16)

where $\gamma_{i}’ \mathrm{s}$ are given by

(2.17)

Swap $p$ and $q$ , and replace $p$ by $1-p$ or $q$ by $1-q$ if necessary, we may assume

that $\lambda\geq\mu$ and $\alpha\leq\beta\leq\frac{1}{2}$ without any loss of generality. Now we shall pay our

attention upon the case where strictly $\lambda>\mu$ . It is easy to have the inequalities

$0\leq\gamma_{1}\leq\gamma_{2}\leq\mu<\lambda\leq\gamma_{3}\leq\gamma_{4}\leq\lambda+\mu$ . (2.18)
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In this case, $G_{l}(\zeta)$ , can be written in the form

$G_{l}( \zeta)=\frac{1}{2\zeta(\zeta-\lambda)(\zeta-\mu)(\zeta-\lambda-\mu)}\cross$

$(-\{\lambda(1-2\alpha)+\mu(1-2\beta)\}\zeta(\zeta-\lambda-\mu)-\lambda\mu(\lambda+\mu)(1-\alpha-\beta)$

$+\sqrt{(2\zeta-\lambda-\mu)^{2}(\zeta-\gamma 1)(\zeta-\gamma 2)(\zeta-\gamma 3)(\zeta-\gamma 4)})$ ,
(2.19)

where the branch of the analytic square root should be determined by the condition
(2.9) as we mentioned before. We shall find the probability measure $\nu$ by applying
the Stieltjes inversion formula on $G_{\mathit{1}}(\zeta)$ .
We consider the.case that $\alpha<\beta$ . It is the most generic case where $G_{\ell}(\zeta)$ has
two removable singularities and two simple poles. Taking care of the choices of the
branch of the analytic square root in $G_{\ell}(\zeta)$ , we obtain $\dot{\mathrm{t}}$he residues at simple poles
$0$ and $\lambda$ as

Res(O) $=1-\alpha-\beta$ , ${\rm Res}(\lambda)=\beta-\alpha$ . (2.20)

Here $z=\mu$ and $z=\lambda+\mu$ are removable singularities. As we have done before, from
Stieltjes inversion formula, it follows that $\nu$ is absolutely continuous with respect
to Lebesgu$e$ measure on the intervals $[\gamma_{1},\gamma_{2}]$ and $[\gamma_{3},\gamma_{4}]$ . For $t\in[\gamma_{1}, \gamma_{2}]$ , it is easy
to see that the density is given by

$f_{1}(t)=-^{\underline{1}} \lim{\rm Im} c_{l}(t+i\epsilon)$

$\pi\epsilonarrow+0$

$= \frac{(t-\frac{\lambda+\mu}{2})\sqrt{-(t-\gamma 1)(t-\gamma 2)(t-\gamma_{3})(t-\gamma 4)}}{\pi t(t-\lambda)(t-\mu)(t-\lambda-\mu)}$

(2.21)

and, for $t\in[\gamma_{3}, \gamma_{4}]$ ,

$f_{2}(t)=-^{\underline{1}} \lim{\rm Im} G_{\ell}(t+i\epsilon)$

$\pi\epsilonarrow+0$

$= \frac{-(t-\frac{\lambda+\mu}{2})\sqrt{-(t-\gamma 1)(t-\gamma 2)(t-\gamma_{3})(t-\gamma 4)}}{\pi t(t-\lambda,-)(t-\mu)(t-\lambda-\mu)}$ . (2.22)

Thus, we have the probability measure as

$d\nu=f_{i}(t)\chi_{[}\gamma 1,\gamma_{2}]dt+f_{2}(t)\chi_{[\gamma_{4}}\gamma\S,]dt+(1-\alpha-\beta)\delta 0+(\beta-\alpha)\delta_{\lambda}$. (2.23)

This measure has the two intervals and the two points as its support.

In the other cases, we can also find the probability measure without much diffi-
culties by using Stieltjes inversion formula via the similar arguments. So we would
like to omit the details.
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Theorem 2.2. Let $\{p, q\}$ be a free pair ofprojections with $\phi(p)=\alpha$ and $\phi(q)=\beta_{f}$

and let $\lambda$ and $\mu$ are positive scalars. Put $\ell=\lambda p+\mu q$ then the $di\mathit{8}tribution\nu$ for
the element $\ell$ is given in the following:

(I) $\lambda>\mu$

(i) $\alpha<\beta$ ,

$d \nu=\frac{-|t-\frac{\lambda+\mu}{2}|\sqrt{-(t-\gamma 1)(t-\gamma 2)(t-\gamma_{3})(t-\gamma 4)}}{\pi t(t-\lambda)(t-\mu)(t-\lambda-\mu)}x_{1)}\gamma 1\gamma 21\cup 1^{\gamma}3,\gamma 4]dt$

$+(1-\alpha-\beta)\delta_{0}+(\beta-\alpha)\delta_{\lambda}$ (2.24)

(ii) $\alpha=\beta\neq\frac{1}{2}$ .

$d \nu=\frac{-|t-\frac{\lambda+\mu}{2}|}{\pi t(t-\lambda-\mu)}\sqrt{-\frac{(t-\gamma_{1})(t-\gamma 4)}{(t-\lambda)(t-\mu)}}x_{[\gamma_{1},\lambda]}\cup 1\mu,\gamma_{4}]dt$

$+(1-2\alpha)\delta_{0}$ (2.25)

(iii) $\alpha=\beta=\frac{1}{2}$ ,

$d \nu=\frac{|t-\frac{\lambda+\mu}{2}|}{\pi\sqrt{-t(t-\lambda)(t-\mu)(t-\lambda-\mu)}}.x_{[0,\lambda]\cup[]}\mu,\lambda+\mu td$ (2.26)

(II) $\lambda=\mu_{f}$.
(i) $\alpha<\beta$ ,

$+(\perp-\alpha-P)\mathit{0}0+(P-\alpha_{)\lambda}0$ (2.27)

(ii) $\alpha=\beta\neq\frac{1}{2}$

$d \nu=\frac{\sqrt{-(t-\gamma_{1})(t-\gamma 4)}}{-\pi t(t-2\lambda)}x_{1\gamma_{1},\gamma 4}]dt+(1-2\alpha)\mathit{5}0$ (2.28)

(iii) $\alpha=\beta=\frac{1}{2}$ .
$d \nu=\frac{1}{\pi\sqrt{-t(t-2\lambda)}}\chi_{[0,2\lambda}]dt$ . (2.29)

where $\gamma_{i}’ s$ are given by (2.17).

Of course, the last two cases in Theorem 2.2 are included in the case of $n=2$ of

Theorem 2.1 and the last one is nothing but the $\arcsin$ law on the interval $[0,2\lambda]$ .

128



In the rest of this section, we should like to make some comments on the measures
which have been obtained in this section, as applications. The special cases of these
measures have been obtained as the spectral measures of the adjacency operators of
some infinite graphs and the Plancherel neasures for some infinite discrete groups.
Here we shall show their definitions and explain how they connect to our results.

Deflnition 2.3. Let $\mathcal{G}=(V, E)$ be an unoriented infinite graphs with the set
of vertices $V$ and one of edges $E$ . One consider the Hilbert spac$e\ell^{2}(V)$ of all
the square summable functions on $V$ . Suppose $\mathcal{G}$ is uniformly locally finite, that
is, $\deg(\mathcal{G})=\sup\{.\deg(u) : u\in V\}<\infty$ , where $\deg(u)$ is the number of edges
emanating $\mathrm{h}\mathrm{o}\mathrm{m}u$ .

Then the bounded self-adjoint operator $A$ on $\ell^{2}(V)$ called the adjacency operator
of $\mathcal{G}$ , is definied by

$(Af)(u)= \sum_{(u,v)}f(v)$
$f\in\ell^{2}(V)$ , (2.30)

where $(u, v)$ forms an edge.

Many references of the papers concerning with the adjacency operators can be
found in [MW], which contains the good survey on spectra of many interest $e\mathrm{d}$

infinite graphs.

On the measures in Theorem 2.1, the some of them have been obtained as the
spectral measures of the adjacency operators of the infinite distance-regular graphs.

Definition 2.4. A connected graph $\mathcal{G}$ is called $di_{\mathit{8}}tance$-regular if there exists a
function $f$ : $(\mathrm{N}_{0})^{3}arrow \mathrm{N}_{0}$ such that for all $u,$ $v\in V(\mathcal{G})$ and $j,$ $k\in \mathrm{N}_{0}$ ,

$\#\{w\in V(\mathcal{G}):d(u, w)=i, d(v, w)=k\}=f(j, k, d(u, v))$ , (2.31)

where $V(\mathcal{G})$ is the set of all vatices of the graph $\mathcal{G}$ and, as usual, $d(u, v)$ is the
distance between $u$ and $v$ , the length of a shortest walk from $u$ to $v$ .

The infinite distance-regular graphs have been completely characterized [Iv].
They are tree-like graphs and parameterized by two integers $m,$ $s\geq 2$ . The infinite
distance-regular graph $D_{m,s}$ can be obtained from the biregular tree $T_{m,s}$ . Here,
the biregular $T_{ms,)}$ is an infinite tree where the vertex degree is constant on each of
the two bipartite classes, with values $m$ and $s$ , respectively. The set of vertices of
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the infinite distance-regular graph $D_{m,s}$ is the bipartite block of degree $m$ , and two

vertices constitute an edge if and only if their distance in $T_{m,s}$ is two. Hence, each

vertex of $D_{m,s}$ lies in the intersection of exactly $m$ copies of the finite complete

graph $K_{s}$ , in particular, $D_{m,2}$ is nothing but the $m$-homogeneous tree $T_{m}$ , and the

spectral theory of the graph $D_{m,s}$ is similar to that of the homogenuous tree.

We consider the free product group

(2.32)

and the reduced group $C^{*}$-algebra $C_{r}^{*}(G)$ . Let $u:(i=1,2, \ldots, m)$ be the unitary

generator of each cyclic group in $C_{r}^{*}(c)$ . Then it is easy to see that, for all $i$ ,

$p_{i}= \frac{1}{s}\sum_{j=1}(u_{i})sj$ (2.33)

is a projection with $\tau_{G}(p_{i})=1/s$ . Furthermore, $(p_{i})_{i=}1,2,\ldots,m$ is a free family of

projections in a $C^{*}$ -probability space $(C^{*}(G), \tau_{G})$ ; see Example 1.3.
From the definitions of the free product and of the infinite distance-regular graph,

it is clear that there exsists a bijection between the set of vertices of the graph $D_{m,s}$

and the group $G$ , Then the adjacency operator $A$ can be represented as

$A= \sum_{i=1}^{m}(u_{i}+(u_{i})^{2}+\cdots+(u_{i})^{s-1})=\sum_{i=1}^{m}(\mathit{8}p_{i}-1)=s\sum_{i=1}^{s}p_{i}-m\cdot 1$ (2.34)

in $C_{r}^{*}(G)$ . . Now Theorem 2.1 is applicatable with $n=m,$ $\lambda=s$ , and $\alpha=1/s$ .
Making $m$-shift, we have the spectral measure $\nu_{m,s}$ for the adjacency operator of
$D_{m,s}$ in the following:

Writing

$I_{m,s}=[s-2-2\sqrt{(m-1)(s-1)}, S-2+2\sqrt{(m-1)(s-1)}]$ (2.35)

and
$f_{m,s}= \frac{-m\sqrt{-(t-s+2)2+4(m-1)(s-1)}}{2\pi(t+m)(t-m(_{S}-1)}$ , (2.36)

we obatain

$d\nu_{m,s}=\{$
$f_{m,s}\chi_{I_{m,s}}dt$ if $m\geq s$ ,
$f_{m,s} \chi_{I_{m,\epsilon}}dt+(1-\frac{m}{s})\delta_{-m}$ if $m<s$ .

(2.37)

Remark 2.5. The measures that we obtained in Theorem 2.1 can be also found in

[Co] and [CT]. Especially in [CT], they calculated the measure for which a sequence
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of polynomials generated from a recursion formula with constant Jacobi paraneters,

is orthogonal.

Next let us make a comment on the measures in Theorem 2.2. In [CS1], they
consider the free product group $G=\mathbb{Z}_{r}*\mathbb{Z}_{s}$ , where $r>s\geq 2$ and the length for the
elements of $G$ is defined. They study the convolution $C^{*}$ -algebra generated by the
characteristic function $\chi_{1}$ on the elements of the length 1 and obtain the associated
Plancherel measure. This measure can be regarded as the special case of ours as
follows :

Let $u_{1}$ and $u_{2}\mathrm{b}.e$ the unitary generators of the cyclic groups in the reduced $C^{*}-$

algebra $C_{r}^{*}(G)$ for $\mathbb{Z}_{r}$ and $\mathbb{Z}_{s}$ , respectively. Then their convolution operator $\tau_{x1}$

associated to the characteristic function $\chi_{1}$ is in the form

$T_{\chi_{1}}= \sum(u_{1}r-1)^{:}+\sum(u_{2})s-1j$ . (2.38)
$i=1$ $j=1$

As we mentioned before, $\sum_{i1}^{r-1}=(u_{1})^{i}$ can be written as $rp_{1}-1$ , where $p_{1}$ is a pro-
jection of trace $1/r$ . Similarly, we have $\sum_{j1}^{s-1}=(u_{2})j=\mathit{8}p_{2}-1$ with a projection $p_{2}$

of trac$e1/s$ . Hence we can write

$T_{\chi_{1}}=rp_{1}+sp_{2}-2$ (2.39)

and $p_{1}$ and $p_{2}$ are free. Now it is clear that the Plancherel measure can be obtained
as the $\mathrm{s}\mathrm{p}e$cial case of Theorem 2.2; see also [CS2].

As we stated in the beginning of this section, if the family $\{(\alpha_{i}, \lambda_{i})\}_{i=1,2,\ldots,n}$ is
constituted from at most two diffrent pairs then we can find the generating function
$G(\zeta)$ exactly. That is, in the case where

$\alpha_{1}=\alpha_{2}=\cdots=\alpha_{m_{\wedge}}=\alpha$, $\alpha_{m+1}=\cdots=\alpha_{n}=\beta$ ,

$\lambda_{1}=\lambda_{2}=\cdots=\lambda m=\lambda$, $\lambda_{m+1}=\cdots=\lambda_{n}=\mu$ .

Thus, for example, we can also obtain the Plancherel measure for the group of the
free product of $k$ copies of $\mathbb{Z}_{r}$ and $m$ copies of $\mathbb{Z}_{s}$ .
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