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1. INTRODUCTION

In this note I would like to report my result on the scattering of large
energy solutions to the nonlinear Klein-Gordon equation (NLKG) of the
following form:

$\ddot{u}-\Delta u+m^{2}u+|u|^{p-1}u=0$ , (NLKG)

where $(t, x)\in \mathbb{R}^{1+n}$ with $n\geq 3$ and $m\geq 0$ . We will consider the case

$p=p^{*}:= \frac{n+2}{n-2}$ .

Then $p^{*}+1=2n/(n+2)$ is the Sobolev critical exponent. This equation
has the conserved energy:

$E(u;t):= \int_{\mathbb{R}^{n}}\frac{1}{2}(\dot{u}^{2}+|\nabla u|^{2}+(mu)2)+\frac{|u|^{p+1}}{p+1}d_{X=E}(u;0)$ .

Denote by $X$ the energy space:

$X:= \{(\varphi, \psi)|\int\psi^{2}+|\nabla\varphi|^{2}+|m\varphi|^{2}dX<\infty\}$ .

We consider the asymptotic behavior of solutions to (NLKG) with finite
energy, as $t$ tends to $\infty$ , compared with solutions to the linear Klein-Gordon:

$\ddot{v}-\triangle v+m^{2}v=0$ . $(\mathrm{K}\mathrm{G})$

We find $v$ from $u$ or $u$ from $v$ , where $u$ is a solution of (NLKG) and $v$ is a
solution of $(\mathrm{K}\mathrm{G})$ , such that

$||(u(t),\dot{u}(t))-(v(t),\dot{v}(t))||x$
.

$arrow 0$ as $tarrow\infty$ .
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Then, the aim of this study is to show that

$(v(\mathrm{O}),\dot{v}(\mathrm{O}))\vdash+(u(\mathrm{O}),\dot{u}(\mathrm{o})):Xarrow X$ homeo. (S)

This means the asymptotic completeness of the wave operators.

Now I mention the known results on the scattering for (NLKG). First, for

the subcritical case, if $1+4/n<p<p^{*}$ and $m>0$ , then (S) was obtained by

Brenner [3] and Ginibre and Velo [5]. In the critical case $p=p^{*}$ , there were

2 results available. If the solutions are radially symmetric, the scattering

(S) can be obtained easily from the a priori estimate derived by Ginibre,

Soffer and Velo [4]. If $m=0$, namely for the nonlinear wave, (S) easily

follows from the decay property of the solutions obtained by Bahouri and

Shatah [1].
But, in the case where $p$ is the critical power, the data is nonsymmetric

and $m>0$ , none of the arguments in the above results can be applied, so
the scattering (S) in this case was left open. I have proved the scattering

in that case, which is the main result in this note:

Theorem. Let $p=p^{*}$ and $m\geq 0$ . Then we have (S).

In the rest of this note, I describe the outline of the proof of this theorem.

For a more detailed, rigorous and general proof, see [7].

2. OUTLINE OF THE PROOF

For simplicity, assume that $n=3$ and $m=1$ . Then we have $p=5$ . It is

known that if we have global a priori estimates for certain space-time norms
depending only on the energy:

$||u||sT(\mathrm{R})<C(E)$ , (G)

then we obtain the desired result (S). Hereafter, $‘ \mathrm{S}\mathrm{T}$
’ denotes a certain

appropriate space-time norm, which is, in our context, $L_{t}^{8}(L_{x}^{8})$ norm, and
$‘ E$ ’ denotes the energy of the solution $u$ . So, our aim is to derive the global

a priori estimate (G). It is known that there is a unique global solution of
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(NLKG) for any initial data with finite energy such that the $\mathrm{S}\mathrm{T}$-norm of
the solution on any bounded time interval is finite (see, e.g., [6, 8]). But, it
was not known that there are estimates for the $\mathrm{S}\mathrm{T}$-norm depending only on
the energy. lt was unknown even on a finite time interval. This is a typical
difficulty in the critical case.

In order to prove the a priori estimate (G), first I use Bourgain’s idea,
which he used to solve the nonlinear Schr\"odinger equation with the critical
exponent in the radial case [2]. Roughly speaking, his idea is to relate the
distribution of the $\mathrm{S}\mathrm{T}$-norm in time with the distribution of the energy in
space-time. Remark that the $\mathrm{S}\mathrm{T}$-norm is a Lebesgue norm for $t$ . At first, we
do not know how large it is. But we can divide the time interval into small
subintervals such that each subinterval contains the same small ST-norm,
say, $\epsilon$ . Then Bourgain’s lemma below tells us that in each subinterval,
somewhere in the space, there is a certain amount of localized energy. See
Figure 1.

Lemma 1 (Bourgain). $Let||u||_{ST()}I=\epsilon<C(E)$ is sufficiently small. Then
we have some subinterval $J\subset I$ and some ball $D\subset \mathbb{R}^{n}$ such that diam $D<$

$C(E, \epsilon)|J|$ and for any $t\in J_{f}$

$\int_{D}|\nabla u|^{2}+u^{2}dx>\epsilon^{\alpha}$ , $\int_{D}u^{6}dx>\epsilon^{\alpha}$ ,

where $\alpha>1$ is a certain constant.

141



So, we obtain such an energy lump in $J\cross D$ for each subintervals. If

the $\mathrm{S}\mathrm{T}$-norm is large, then the number of the subintervals is also large,

and we obtain a lot of energy lumps correspondingly. Thus, to estimate

the $\mathrm{S}\mathrm{T}$-norm, it suffices to estimate the number of such energy lumps. If

the $\mathrm{S}\mathrm{T}$-norm in a finite interval is very large, then many energy lumps are
crowding there, and so gathering at some point in space-time, which means

concen.tration of the energy. I have obtained a new estimate to bound the

number of such gathering energy lumps.

Lemma 2. For any finite energy solution $u$ of (NLKG) and any $\lambda>0$ , we
have

$\sum_{k\in \mathrm{N}}\sup_{<2^{-k}t<2^{-k+1}}\int_{|x|<\lambda t}u^{6}dX<c(E, \lambda)$ . (N)

From this, the energy lumps in a fat cone $\{|x|<\lambda t\}$ can not be contained

in so many of dyadic intervals $(2^{-}k, 2-k+1)$ (see Figure 2). Combinig this

FIGURE 2. Counting the energy concentration

estimate with the finite propagation property and the well-known Morawetz
estimate

$\int_{\mathbb{R}^{n+1}}\frac{u^{6}}{|x|}dXdt<C(E)$ , (M)

we can bound the number of the energy lumps in the time interval $(0,1)$

so that we obtain the time-local a priori estimate for the $\mathrm{S}\mathrm{T}$-norm by the
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energy:

$||u||sT(0,1)<o(E)$ . (L)

In the massless case $m=0$ , we obtain the global estimate (G) from this
local estimate (L) by a simple scaling argument. However, in the massive
case $m>0$ , there is no scaling which preserves the equation or the energy
space. Moreover, we do not know whether the global version of (N) holds
in the massive case. So, for the global estimate in the massive case, we can
use only the Morawetz estimate (M), the finite propagation property and
the local estimate (L). Again consider the distributed energy lumps given
by Bourgain’s lemma.

$0=T_{0}<T_{1}<\cdots$ , $I_{j}:=(T_{j}, T_{j+1})$ , $||u||_{S\tau(I_{j})}=\epsilon$ ,

$J_{j}\subset I_{j}$ , $D_{j}$ : ball $\subset \mathbb{R}^{n}$ ,

$\int_{D_{\mathrm{j}}}u^{6}dX>\epsilon^{\alpha}$ , $(t\in J_{j})$ .

Let $c_{j}$ and $R_{j}$ be the center and the radius of $D_{j}$ , and let $t_{j}:=$ inf $J_{j}$ .
Consider the truncated cone $K_{j}:=\{(t, x)|t>t_{j}, |x-C_{j}|<t-t_{j}+R_{j}\}$ for
each $j$ . Now, in order to employ the Morawetz estimate most effectively for
the $\mathrm{S}\mathrm{T}$-norm estimate, we choose some of the truncated cones, such that
the bottom of any chosen $K_{j}$ does not intersect with the other chosen cones,
and at the same time, every energy lump intersects with some chosen cones
(see Figure 3). Then, by the finite propagation property, we can bound the

FIGURE 3. $\mathrm{C}\grave{\mathrm{h}}.\mathrm{O}\mathrm{S}\backslash \mathrm{e}\mathrm{n}$ cones

143



number $N$ of the chosen cones by the total energy. Applying the Morawetz

estimate (M) in each chosen cone, we obtain $N$ inequalities. Then, summing

them up, we obtain an estimate as follows.

$C(E, \epsilon)\geq c(E)N$

$\geq$ $\sum$

.
$\int\int\frac{u^{6}}{|x-c_{j}|}dxdt$

chosen $J$

$\geq\sum_{\mathrm{c}\mathrm{h}_{\mathrm{o}\mathrm{s}}\mathrm{e}\mathrm{n}j}j_{k}\mathrm{x}D_{k}\cap K_{j}\sum_{\emptyset\neq}\int_{J}k\int\frac{u^{6}}{|x-c_{j}|}dxdt$

$\geq\sum_{\mathrm{c}\mathrm{h}\mathrm{o}\mathrm{s}\mathrm{e}\mathrm{n}jJk\cross D_{k}}\sum_{\otimes\cap K_{j}\neq}\frac{\epsilon^{\alpha}|J_{k}|}{|t_{k}-t_{j}|+R_{k}+Rj}\geq^{c}(E, \epsilon)\sum_{1\mathrm{a}1k}\frac{R_{k}}{t_{k}+R_{k}}$.

If the $\mathrm{S}\mathrm{T}$-norm is very large, then there are plenty of energy lumps. So,

to make the above quantity $\sum_{k}R_{k}/(t_{k}+R_{k})$ bounded, either $R_{k}$ becomes

very small or $I_{k}$ becomes very long. Thus, there are two possibilities. The

first case is that very highly concentrated energy lumps apper $(\varliminf R_{k}arrow 0)$ .
Otherwise, very long intervals with small $\mathrm{S}\mathrm{T}$-norm appear $(\varlimsup|I_{k}|arrow\infty)$ .
In the latter case, we consider the interval $I_{k+1}$ just after such a long interval
$I_{k}$ . Let $v_{0}$ be the solution to $(\mathrm{K}\mathrm{G})$ with the same initial data as $u$ . Since we
have global $\mathrm{S}\mathrm{T}$-estimate for $v_{0}$ by the Strichartz estimate, if there are many

such long intervals $I_{k}$ , we may choose appropriate $I_{k}$ such that $||v\mathrm{o}||S\tau(I_{k+1})\ll$

$\epsilon$ . Then we use the property of the Klein-Gordon that the lower frequency

part decays faster, to obtain the following lemma.

Lemma 3. Let $0<T<U<V$ and $||u||ST(T,U)\leq||u||_{S}T(U,V)=\epsilon<C(E)$

sufficiently small. Let $v_{0}$ be the solution to $(\mathrm{K}\mathrm{G})$ with the same initial data

as $u$ , and assume $||v||_{s}T(U,V)<\epsilon/9$ . Then for any $N>1$ , there exists $L>0$

depending on $E_{f}\epsilon$ and $N$ , such that $if|T-U|>L$ , then we have

$|| \psi_{N}*u||_{S}\tau(U,V)<\frac{\epsilon}{3}$ ,
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where $\psi_{N}$ is a cut-off function in the frequency, defined as follows. Let
$\psi\in S(\mathbb{R}^{n})$ be a function such that its Fourier transform $\tilde{\psi}$ satisfies

$\overline{\psi}(\xi)=$

Then we define $\overline{\psi}_{N}(\dot{\xi}):=\tilde{\psi}(\xi/N)$ .

Thus, we may deduce that the $\mathrm{S}\mathrm{T}$-norm in $I_{k+1}$ comes mainly from the
higher frequency part. Since high frequency means high concentration, we
get a highly concentrated energy lump in this interval $I_{k+1}$ . So we arrive at
the same situation as in the forrner case.

Now again we use an idea due to Bourgain. We have obtained a very
highly concentrated energy lump. Consider the wave component $v$ corre-
sponding to the concentrated energy. Since $v$ is also very highly concen-
trated, it decays very soon. Then its interaction with the remaining part is
small, so that we can separate the concentrated wave $v$ from the solution $u$ ,
and estimate $u$ by the remaining part. More precisely, we have the following
perturbation lemma.

Lemma 4 (Bourgain). Let $u_{f}W$ be solutions of (NLKG), and let $v$ be a
solution of $(\mathrm{K}\mathrm{G})$ with the same initial data as $u-W$ . Let $E(u)\leq E_{f}$

$E(v)\leq E$ and $||W||sT(0,\infty)=M<\infty$ . Then, there exists $\kappa>0$ depending
$E$ and $M_{f}$ such that $if||v||sT(0,\infty)<\kappa$ we have the estimate

$||u||_{S}T(0,\infty)<c(E, M)$ ,

depending on $E$ and $M$ .

Since the energy of the remaining part $E(W)$ is reduced by the separated

energy, repeating this argument, the problem comes down to the estimate
for small energy data. Since the global $\mathrm{S}\mathrm{T}$-estimate (G) is well-known for
small energy data, so we obtain the desired estimate by the induction on
the energy size.
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Finally, I explain how we can extract the concentrated wave $v$ in the above

argument. The idea of the separation of the energy is due to Bourgain, but

the realization of the idea below is quite different from that in [2]. Bour-

gain’s argument uses essentially the properties of the nonlinear Schr\"odinger,

whereas my argument uses those of (NLKG). Here we use again an estimate

similar to (N):

Lemma 5. For any finite energy solution $u$ of (NLKG) and any $\lambda>0_{f}$ we
have

$\sum_{k\in \mathrm{N}}<t<2\sup_{2^{-k}}-k+1\int_{|x|<\lambda}tdQ(u)X<c(E, \lambda)$ , $(\mathrm{N}\mathrm{Q})$

where we denote

$Q(u):=( \dot{u}+\frac{r}{t}ur+\frac{2}{t}u)^{2}+(\frac{r}{t}\dot{u}+ur)^{2}+(1+\frac{r^{2}}{t^{2}})(|u_{\theta}|^{22}+u)+\frac{u^{2}}{r^{2}}$ ,

$r=|x|$ , $\theta=\frac{x}{r}$ , $u_{r}=\theta\cdot\nabla u$ , $u_{\theta}=\nabla u-\theta u_{r}$ .

In fact, the estimate (N) can be derived from $(\mathrm{N}\mathrm{Q})$ and the following

Hardy-Sobolev type inequality:

$\int_{|x|<\lambda}tdu^{6}X<C(\lambda)||\nabla u||4L^{2}\int_{1}x|<\lambda tuQ()dX$. (H)

Now we set the space-time origin such that we have the concentrated
energy in $\{(R, x)||x|<R\}$ . We may assume that the radius of the energy
lump $R>0$ is very small. By $(\mathrm{N}\mathrm{Q})$ , for any $\kappa>0$ we have some time
$T\in(R, c(\kappa, E)R)$ when $Q(u)$ in the fat cone $\{|x|<5t\}$ becomes small:

$\int_{|x|<5}TQ(u;\tau)dx<\kappa$,

provided $C(\kappa, E)R<1$ . On the other hand, the energy in the light cone
does not decrease. So, at this time $T$ , we cut off the data by a smooth

cut-off function $\chi(x)$ which satisfies $\chi=1$ in the light cone and $\chi=0$ out

of the fat cone. And we define $v$ as the solution of $(\mathrm{K}\mathrm{G})$ with the data
$\chi(x)(u(\tau),\dot{u}(T))$ . Then the concentrated energy at $t=R$ is inherited by
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$v$ . Meanwhile, using the fact that $\mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}v$ is contained in the fat cone and
$\mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}v(T)$ is very small, we can deduce that $Q(v)$ remains small forever:

Lemma 6. Let $v$ be a solution to $(\mathrm{K}\mathrm{G})$ satisfying

$\mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}(v(\tau),\dot{v}(\tau))\subset\{X||x|<\tilde{T}\}$

for some $\tilde{T}\geq T>0$ . Then we have for any $t>T_{f}$

$\int Q(v;t)dX\leq\int Q(v;\tau)dX+C\tilde{T}^{2}E_{0}(v)$ ,

where $E_{0}(v)$ denotes the linear energy of $v$ .

By this lemma and the inequality (H), $||v(t)||L_{x}6$ remains small for $t>T$ .
Then, by the interpolation with the Strichartz estimate, it follows that
$||v||sT(T,\infty)$ is also small. Thus, we have succeeded in extracting the concen-
trated wave $v$ as desired.
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