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Scattering Theory for
Nonlinear Klein-Gordon Equation
with Sobolev Critical Power

HRAERERMERENAH  BEEX  ( Kenji Nakanishi )

1. INTRODUCTION

In this note I would like to report my result on the scattering of large
‘energy solutions to the nonlinear Klein-Gordon equation (NLKG) of the

following form:

i — Au +m2u + [ufflu =0, | (NLKG)
where (t,z) € R'*™ with n > 3 and m > 0. We will consider the case
| .. n+2
Pp=p = n—9

Then p* + 1 = 2n/(n + 2) is the Sobolev critical exponent This equation

has the conserved energy:

E(u;t) := /1;1" -;- (42 + [Vul* + (mu)?) +

Denote by X the energy space:
Xi={(e0) | [0+ VP + ot ds < oo .

We consider the asymptotic behavior of solutions to (NLKG) with finite

[u IHdm— E(u;0).

energy, as t tends to oo, compared with solutions to the linear Klein-Gordon:
& — Av 4+ m?v = 0. (KG)

We find v from u or u from v, where u is a solution of (NLKG) and v is a
solution of (KG), such that

), a(t)) — (v(t),z}(t))‘||;,( 50 ast— oo



140

Then, the aim of this study is to show that
(v(0),9(0)) — (u(0),%(0)) : X — X homeo. - (9)

This means the asymptotic completeness of the wave operators.

Now I mention the known results on the scattering for (NLKG). First, for
the subcritical case, if 14+4/n < p < p* and m > 0, then (S) was obtained by -
Brenner [3] and Ginibre and Velo [5]. In the critical case p = p*, there were
2 results available. If the solutions are radially symmetric, the scattering
(S) can be obtained easily from the a priori estimate derived by Ginibre,
Soffer and Velo [4]. If m = 0, namely for the nonlinear wave, (S) easily
follows from the decay property of the solutions obtained by Bahouri and
Shatah [1].

But, in the case where p is the critical power, the data is nonsymmetric
and m > 0, none of the arguments in the above results can be applied, so
the scattering (S) in this case was left open. I have proved the scattering

in that case, which is the main result in this note:
Theorem. Let p=p* and m > 0. Then we have (S).

In the rest of this note, I describe the outline of the proof of this theorem.

For a more detailed, rigorous and general proof, see [7].

2. OUTLINE OF THE PROOF

For simplicity, assume that n — 3 and m = 1. Then we have p=>5. Itis
known that if we have global a priori estimates for certain space-time norms

depending only on the energy:

lullsr®) < C(E), (G)
then we obtain the desired result (S). Hereafter, ‘ST’ denotes a certain
appropriate space-time norm, which is, in our context, L}(L8) norm, and
‘E’ denotes the energy of the solution u. So, our aim ié to derive the global

a priori estimate (G). It is known that there is a unique global solution of
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(NLKG) for any initial data with finite energy such that the ST-norm of
the solution on any bounded time interval is finite (see, e.g., [6, 8]). But, it
was not known that there are estimates for the ST-norm depending only on
the energy. It was unknown even on a finite time interval. This is a typiéal
difficulty in the critical case.

In order to prove the a priori estimate (G), first T use Bourgain’s idea,
which he used to solve the nonlinear Schrédinger equation with the critical
exponent in the radial case [2]. Roughly speaking, his idea is to relate the
distribution of the ST-norm in time with the distribution of the energy in
space-time. Remark that the ST-norm is a Lebesgue norm for £. At first, we
do not know how large it is. But we can divide the time interval into small
subintervals such that each subinterval contains the same small ST-norm,
say, €. Then Bourgain’s lemma below tells us that in each subinterval,
somewhere in the space, there is a certain amount of localized energy. See

Figure 1.

z

FIGURE 1. Distribution of energy lumps

Lemma 1 (Bourgain). Let ||u||gr() = € < C(E) is sufficiently small. Then
we have some subinterval J C I and some ball D C R" such that diam D <
C(E,e)|J| and for any t € J, |

/ |Vul® + u? de > €%, / u®dz > €°,
D D

where o > 1 18 a certain constant.
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So, we obtain such an energy lump in J x D for each subintervals. If
the ST-norm is large, then the number of the subintervals is also large,
and we obtain a lot of energy lumps correspondingly . Thus, to estimate
the ST-norm, it suffices to estimate the number of such energy lumps. If
the ST-norm in a finite interval is very large, then many energy lumps are
crowding there, and so gathéri-ng at some point in space-time, which means
concen!;ration of the energy. I have obtained a new estimate to bound the

number of such gathering energy lumps.

Lemma 2. For any finite energy solution u of (NLKG) and any A > 0, we

have

sup / ubdr < C(E, ). (N)
|| <t

keN 2kt 2 k1

From this, the energy lumps in a fat cone {|z| < M} can not be contained

in so many of dyadic intervals (27%,27%*1) (see Figure 2). Combinig this

t

A

1

B N

0

F1GURE 2. Counting the energy concentration

estimate with the finite propagation property and the well-known Morawetz

estimate

/ Y Judt < C(E), (M)
Rﬂ

+1 |£I}i
we can bound the number of the energy lumps in the time interval (0, 1)

so that we obtain the time-local a priori estimate for the ST-norm by the
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energy:

lullsro1) < C(E). (L)

In the massless case m = 0, we obtain the global estimate (G) from this
~ local estimate (L) by a simple scaling argument. However, in the massive
case m > 0, there is no scaling which preserves the equation or the energy
space. Moreover, we do not know whether the global version of (N) holds
" in the massive case. So, for the global estimate in the massive case, we can
use only the Morawetz estimate (M), the finite propagation property and
the local estimate (L). Again consider the distributed energy lumps given

by Bourgain’s lemma.
0=To <N <, ILj=(T5T), lulsrg =e,
J; I, Dj: ball CR",

/ ubde > €%, (t € J;).
D;

Let c; and R; be the center and the radius of D, and let t; := inf Jj.
Consider the truncated cone Kj := {(t,z) | t > t;, |z —¢;| < t—t; + R;} for
each j. Now, in order to employ the Morawetz estimate most effectively for
the ST-norm estimate, we choose some of the truncated cones, such that
the bottom of any chosen K; does not intersect with the other chosen cones,
and at the same time, every energy lump intersects with some chosen cones

(see Figure 3). Then, by the finite propagation property, we can bound the

FIGURE 3. Chosen cones
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number N of the chosen cones by the total energy. Applying the Morawetz
estimate (M) in each chosen cone, we obtain N inequalities. Then, summing

them up, we obtain an estimate as follows.

C(E,e) > > C(FE)

/ / dxdt

chosen j l.’L‘ —G l

> / / dzdt
Ji |$ - C]I

chosenj kaDkﬂK #2

IJkl Rk
> > C(E,e) Y .
chosen j JipxDpNK;#@ |tk — l + Rk + R all k ty + Rk

If the ST-norm is very large, then there are plenty of energy lumps. So,
to make the above quantity >, Ri/(tx + Rx) bounded, either Rj becomes
very small or [ r becomes very long. Thus, there are two possibilities. The
first case is that very highly concentrated energy lumps apper (lim R — 0).
Otherwise, very long intervals with small ST-norm appear (lim |I;| — o00).
In the latter case, we consider the interval I, just after such a long interval
I1.. Let vy be the solution to (KG) with the same initial data as u. Since we
have global ST-estimate for vy by the Strichartz estimate, if there are many
such long intervals Iy, we may choose appropriate Iy such that ||vo| sr(r,.,) <K
€. Then we use the property of the Klein-Gordon that the lower frequency

part decays faster, to obtain the following lemma.

Lemma 3. Let 0 < T < U <V and ||ul|srav) < ullstwyy =€ < C(E)
sufficiently small. Let vy be the solution to (KG) with the same initial data
as u, and assume ||v||srwyv) < €/9. Then for any N > 1, there exists L > 0
depending on E, € and N, such that if |T — U| > L, then we have

5
1w * ullsry) < 3
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where YN is a cut-off function in the frequency, defined as follows. Let
¥ € S(R™) be a function such that its Fourier transform ¥ satisfies

7 _ 17 'El < 17
3(€) = {O, AR

Then we define Py (€) - P(¢/N).

Thus, we may deduce that the ST-norm in I;,; comes mainly from the
higher frequency part. Since high frequency means high concentration, we
get a highly concentrated energy lump in this interval I ;. So we arrive at
the same situation as in the former case.

Now again we use an idea due to Bourgain. We have obtained a very
highly concentrated energy lump. Consider the wave component v corre-
sponding to the concentrated energy. Since v is also very highly concen-
trated, it decays very soon. Then its interaction with the remaining part is
small, so that we can separate the concentrated wave v from the solution u,
and estimate u by the remaining part. More precisely, we have the following

perturbation lemma.

Lemma 4 (Bourgain). Let u, W be solutions of (NLKG), and let v be a
solution of (KG) with the same initial data as w — W. Let E(u) < E,
E(v) < E and ||W||sr@,e) = M < 0o. Then, there exists k > 0 depending
E and M, such that if ||v||sr(0,00) < k we have the estimate

lullsT,00) < C(E, M),

depending on EE and M.

Since the energy of the remaining part E(W) is reduced by the separated
energy, repeating this argument, the problem comes down to the estimate
for small energy data. Since the global ST-estimate (G) is well-known for
small energy data, so we obtain the desired estimate by the induction on

the energy size.
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Finally, I explain how we can extract the concentrated wave v in the above
argument. The idea of the separation of the energy is due to Bourgain, but
the realization of the idea below is quite different from that in [2]. Bour-
gain’s argument uses essentially the properties of the nonlinear Schrédinger,
whereas my argument uses those of (NLKG). Here we use again an estimate

similar to (N):

Lemma 5. For any finite energy solution u of (NLKG) and any A > 0, we
have
sup (uw)dz < C(E, A), (NQ)
keN 27h<t<27k+1 Jiz|<At

where we denote
2

2 2
T 2 T. 2 r ¢
Qu) = (u + Eur + Zu) + ('t"ul + ur) + (1 + %5) (luel2 + U2) + r2’

T |
r=|z|, 0=-, u,=0-Vu, ug=Vu-—_0u,.
r .

In fact, the estimate (N) can be derived from (NQ) and the following
Hardy-Sobolev type ihequality:
/ uSdr < C(N)||Vul|i: Q(u) dz. (H)
|z| <At jz| <At
Now we set the space-time origin such that we have the concentrated
energy in {(R,z) | |z|-< R}. We may assume that the radius of the energy
lump R > 0 is very small. By (NQ), for any x > 0 we have some time

T € (R,C(k, E)R) when Q(u) in the fat cone {|z| < 5t} becomes small:

/ Q(u; T) dz < k,
lz|<5T

provided C(k, E)R < 1. On the other hand, the energy in the light cone
does not decrease. So, at this time T', we cut off the data by a smooth
cut-off function y(z) which satisfies x = 1 in the light cone and x = 0 out
of the fat cone. And we define v as the solution of (KG) with the data
x(z)(u(T),u(T)). Then the concentrated energy at t = R is inherited by
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- v. Meanwhile, using the fact that suppv is contained in the fat cone and

supp v(T') is very small, we can deduce that Q(v) remains small forever:

Lemma 6. Let v be a solution to (KG) satisfying
supp(v(T), #(T)) C {z | |z| < T}

for some T > T > 0. Then we have for anyt > T,

/Q(v; t)dz < /Q(v; T) dz + CT?Ey(v),

where Ey(v) denotes the linear energy of v.

By this lemma and the inequality (H), |lv(t)||zs remains small for ¢ > T.
Then, by the interpolation with the Strichartz estimate, it follows that
|v|| s7(7,00) is also small. Thus, we have succeeded in extracting the concen-

trated wave v as desired.
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