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Fourier expansion of holomorphic Siegel modular forms of
genus 3 along the minimal parabolic subgroup

WA D3 B H %k (NARITA Hiroaki)

e-mail: narita@ms318sun.ms.u-tokyo.ac.jp

ABSTRACT. We construct a certain type of Fourier expansion of holomorphlc Siegel
modular forms of genus 3, different from the two expansions already known, i.e.
classical Fourier expansion and Fourier Jacobi expansion(cf. [2],(6],{9]). More pre-
_cisely, it is along the minimal parabolic subgroup of Sp(3;R), while the other two
are along the Siegel parabohc subgroup or Jacobi parabolic subgroup. We already
obtained such Fourier expansion for the case of genus 2(cf. [5]). In these days, we
_have constructed that expansion for the case of genus 3. From this work, we hope to
obtain some hints to get the expansion for the case of arbitrary genus. We are also
interested in relations among our expansion and the other two Fourier expansions.
In the case of genus 2, we got some relations in terms of their Fourier coeflicients.
For the case of genus 3, we also do the same work after the construction of our

Fourier expansion.

1. Notations for Lie group and Lie algebra.

Let G = Sp(3;R) be the real symplectic group of degree 3 and K a maximal
compact subgroup of G. Let g and t be the Lie algebras of G and K respectively. The
Cartan involution 8 (i.e. §(X) = —*X) induces a Cartan decomposition g = £ @ p.
Here p is the eigenspace of g with the eigenvalue -1 and % coincides with that with
the eigenvalue 1.

Let a be a maximal abelian subalgebra of p, specified by

{ (A ““A) ] A = diag(tl,tz,t3), ti S R} .

- Let {éi}lsi@ the standard basis of 3-dimensional Euclidean space. The set A(g,a) =
{£e;tej, +2e, |1 <1< j <3, 1<k <3} gives the restricted root system. Let
E, denote the root vector corresponding to a root «. The set A(g,a)* = {e; +
ej, 2¢5 |1 <i<j <3, 1<k <3} forms a set of positive roots of A(g, a). Then we
have the Iwasawa decomposmon

g=tDadn,

where n = ® RE,.
aeA(g0)t

Let E;; denote the ¢j-th matrix unit and set h = @<3R(Eiﬂ-+3—E,;+3,i),- which is the
<z i :

Lie algebra of a compact Cartan subgroup. We think of the root space decomposition
of gc = g ® C with respect to he = h ® C. The root system A(gc, he) is of the same
type as the restricted root system. The set At = {e; +e;, 2, | 1<i<j <3, 1<
k < 3} give the standard positive root system, A} = {e;+e;, 2, |1 <1< j<3,1<
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k < 3} the set of non-compact positive roots, and Af = {e; —¢; | 1 < i< j < 3}
the set of compact positive roots. Let F, € g¢ be the root vector correspondmg to a

root a, p* = @ CF, and p~ & (CF__O, Then, we have a following well-known
aEA aeA
decomposition

gc=tchptBp.

2. Representation of the maximal compact subgroup K

The maximal compact subgroup K is isomorphic to U(3), so the complexifications
of K and ¢ are isomorphic to GL(3;C) and gl(3; C) respectively. In terms of highest
weight theory, the equivalence classes of irreducible finite dimensional representations
of GL(3;C) can be parametrized by the set of the dominant weights, which is given
by

D(3) = {A = (A1, A, A3) € Z® | Xy > Xy 2> Aa}).

We denote by 7, the irreducible finite dimensional representation of GL(3; C) with
highest weight A € D(3)

Here, for the irreducible representation (75, Vi) of GL(3;C), we explicitly give the
infinitesimal actions of generators of gl(3;C) by the differential dr, of 7,. For that
purpose, we introduce the notion of Gel’fand Tsetlin scheme. The following argument .
and formulas are given in (7], §§18.11. :

It can be shown that there is a basis of V), parametrized by the following dlagrams

A1 A2 A3
Q = ( A1z A ) 3
A
where ()\12,/\22,)\11) € Z@S is such that /\1 2 }\12 Z Ag 2 /\22 Z )\3 and )\12 Z
X1 > Ag2. We call these diagrams the Gel’fand Tsetlin schemes and the basis {vg}
parametrized by the diagrams {@} the Gel’fand Tsetlin basis. Using this basis, we
give the explicit formulas of infinitesimal action of gl(3,C) by dr,. The Lie algebra

is generated by the ij-th matrix units E;; with 1 < ¢,7 < 3. First we write the
formulas for E; ;41 and Ej;:

dra(Ejj31)vq = ZaU(Q 'UQ"' )’ dra(Ej;)vg = (Z Aij — Z)\i,j——l)'UQa

=1 =1 =1

' H t Qg =X =k4i) [Tio] Qgm1 =Xis —ki=1)
7 Ok [ [, g —rig—k+ie1) |’
with A;; — Aij + 1 and Ay — A for (k,1) # (4,7). Furthermore, since any E;; with
¢ < j can be expressed by the bracket product of E; ;1’s, we can compute dry(E;;)
from these formulas.

where a;;(Q) =

and Q?;j) is the diagram



3. Holomorphic discrete series of Sp(3; 3R R).

We give the notations of holomorphic discrete series representation of Sp(3;R).
From the Harish-Chandra’s characterization of discrete series representation(cf. [4],
Chap.IX, §7, Chap.XII, §5), holomorphic discrete series representations of Sp(3;R)
can be parametrlzed by strictly dominant weights A € Z®3 such that A; > 0, A; > 0,
Az > 0 and A; > A; > As. Such A’s are called the Harish-Chandra parameters.
We denote by 7 the holomorphic discrete series with the parameter A. The highest
weight of the minimal K-type of 7, is given by the special weight A = A + p — 2p.,
which we call the Blattner parameter. Here we denote by p (resp. p.) half of the
sum of positive roots (resp. compact positive roots). More precisely, A = (Ay +
1,A; + 2,A3 + 3) if A = (A,A2,A3). On the other hand, we will also treat the
contragredlent 7y of ma. Its Harish-Chandra parameter (resp Blattner parameter)
is given by (—As, —Az, —A1) (resp. (—A3 —3,—-A; —2,—A; —1)).

4. Representation of the maximal unipotent subgroup

Let N = exp(n), which is the standard maximal unipotent subgroup of G. Every
element © € N can be written as .

! 7 !
T = (.’171, Z2,%3, T12,T13, T23, Ti9y T3 $23)

1 |z Ty 73 1z, zi,
1 T2 Tz T3 1 Tha
_ l{z13 93 3 1
= T | | 1 )
1 . —17’12 1
r TyaThs — Tz —Tp 1

where z;;, 23,2, € R for 1 <k<3and1<:i<j<3. Let n* be the dual space of
nand {l,;,1};} with1 <k <3 and 1 <4 < j < 3 the dual basis of n*, where Iy, [;;
and [l; are dual to Ey,, Ee,+e and E,,_.; respectively. We write every hnear form [

as | = Zl<z<3<3(§ulag + fm ) + 21<k<3 €kl with &, fzga & eR
We denote by Ad* the coad301nt actions of N on n*. Using the Kirillov theory on
the unitary representations of nilpotent Lie group (cf. [1], Chap.2), we have

Proposition 4.1. (1) Anyne N is of the form:
m = L2-Indjy x;

with some € n*, where M; = exp(My) with M, a polarization subalgebra for I, and
X1 15 the character on M, defined by

xi(m) = exp(?wx/:fl(log(m))) | m € M.

(2) Two representations m and ny are equivalent if and only if I = Ad*(n) - | with
some n € N. In other word, we have a bijection:

N ~ n*/Ad*(N).

17
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5. Generalized Whittaker function for holomorphic discrete series.

5.1. Definition. In this subsection, we recall the definition of generalized Whittaker
functions for holomorphic discrete series and give their explicit formulas. First,

we recall the definition. For that purpose, we introduce the following two spaces
associated to fixed (7,V;) € K and (9, Hy) € N:

C°(N\G) :={f : smooth H °-valued function on G

| | f(zg) =n(2)f(g) (z.9) € N x G},
Cro(N\G/K) :={F : smooth H* ® V,-valued function on G

| F(zgk) = n(z) @ " (k)F(9)  (z,9,k) € NxGx K},
where H{° denotes the space of C'*°-vectors in Hy.

Definition 5.1. For the holomorphic discrete series 7y, consider the restriction map
of Homyge k) (s, C3°(N\G)) to the minimal K-type s of my:

resy, : Homge k) (7a, C;°(N\G)) 3 F — F -+ € Homg (7, C;°(N\G)),
where + denotes the inclusion of Ty into wp. A generalized Whittaker function with
K -type 7y for w5 is defined to be an element of tmages by res, .
Note that there is a canonical identification:
Homg (7, C;°(N\G)) =~ C,‘;?T;(N\G/K),
where 73 denotes the contragredient of 7). Furthermore, from the Iwasawa decom-
position of G, one obtains a bijection Cors (N\G/K) ~ C*(A; VY ® H°)(the space

of smooth Vy* ® H°-valued functions). The space of generalized Whittaker functions
for w5 is under the bijection with

{F € C2(N\G/K) | dRx - F =0 VX €y},

where dR denotes the differential of the right translation R (cf. [8], Proposition 10.1).
The condition characterizing this space is called the Cauchy Riemann condition.

5.2. Explicit formulas of the Whittaker functions. Let A = (A —1,); —
2,A3 — 3) in m5. Then A = (A, Ay, A3) gives the Blattner parameter. And let
W(a) = Y wg(a) - vg be the restriction of a generalized Whittaker function for 74 to
the radial part A; where {vg} denotes the Gel’fand Tsetlin basis for (73, Vy). Note
that the highest weight of 73 is (—A3, —A2, —A1). By solving the differential equations
arising from the Cauchy Riemann condition, we obtain

Theorem 5.2. (I) For everyn € N, _
| dimg Homyge xy(74, CP(N\G)) < 1.

In particular, the equality holds if and only if n € N is one of the following four:
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(1) unitary character n corresponding to | € {[n,n]}* such that &, = ¢4 = 0,
which has | = {35 as a representative of its coadjoint orbit. Here {*}* means
the annihilator of {*} in n*.

(2) n corresponding to I € n* such that {, > 0, & = &3 = £, = £l = 0, which
has | = 3l + &3l3 with & > 0, as a representative of its coadjoint orbit. This
representation has L*(R) as one of its representation space.

(3) n corresponding to | € n* such that & > 0 and &, = £13 = &gz = &by = 0 which
has | = &l + &l with & > 0, as a representative of its coadjoint orbzt This
representation has L?(R?) as one of its representation space.

(4) n corresponding to | € n* such that & > 0 ‘261 Elzl > 0 and (€3, &12,&23) #

"2 262
(0,0,0), which has | = €1l + &y + &3l with & > 0 and & > 0, as a repre-
sentative of its coadjoint orbit. This representation has L*(R3) as one of its
representation space.
Furthermore, we set A,(N\G) = {f € C°(N\G) | fla is of moderate growth}.
Then, for any n € N as above, -

dim¢ Homge, ) (7a, An(N\G)) = 1 & €3 > 0 in the representatives as above.

(II) For these four cases, the explicit formulas of Whittaker functzons are given as

follows:
(¢) When n is as in (1),

—Az3 = Az — X\
C"11 a5’ a3 temmbd Q= A3 — A ’
. | _)\2
0 N Q :otherwise.

wo(és;a) =

(i2) When 1 is as in (2),

wQ(§27§3§ a, t)
(Can(@alratar¥d
. —Az3 = A =N\
x exp{—2m(a3éz + a3ls + a3éat?’)} Q= Az — A1 ;
“As

A

\

0 ; Q :otherwise,

where t denotes the coordinate of R.

(732) When 7 is as in (3),

wq (611 637 a, Sv) U)
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' C’ag(Q)ai\l"l“mag\s*"malg\z“smu’ X .

, , ’ s =X -

= T exp{—2n(a3{; + a2és + a3éis® + a36u?)} Q= —X3 =M+ ,
: ‘ X +1l+m

0 Q :otherwise,

where (s,u) denotes the coordinate of R?.
(2v) When 7 is as in (4),
w (€1, 62,350, 8,1, 1)
(Ca?(Q)ai\l—l—ma§\3+ma§2+13mul X
exp{—27(al&; + a3(£15% + &)
=Az = A - A
+a2(€éu? + &t + E€3)} Q=| - —M+l 7
-\ +14+m
0 Q:otherwise,

N

where (s,t,u) denotes the coordinate of R>.
Here C denotes an arbitrary constant and, in (33) (iii) and (iv),

(@) = (_1)1\/Ho<e<z(’\;—)\2—i+1)’

m (A1—-)\3)!H ; (}\1-)\2—-i+1)()\1-—)\3—i—-m+1)
a(Q) = (-1) \/ nm!(xloj,\:l-m)zng(,\l-xa—iﬂ) ’

6. Formulation of the Fourier expansion

Put I' = Sp(3;Z), Nz = N NT. Let w4, 7y and (75, Vy) be as in the previous
argument. And let Vj-valued function f be a holomorphic Siegel modular form
of weight 7y with respect to I'. For a fixed g € G, f(zg) (z € N) belongs to
L*(Nz\N) %) Vy. Since Nz\N is compact, we have

LX(NZ\N) = @ m(n)- Hy ~ & Homy(n, L*(Nz\N)) ® Hy,
neEN neN c

where m(n) = dimg Homy (1, L2(Nz\N)) < oo(cf. [3]). Let {@3}1<m<m(n) denote a
basis of Hompy (7, L2(Nz\N)). According to this decomposition, we have

m(n)

o) =X X 2 (@ @ WiV(9))(e) @ va,
oy M= |
where {Q} denotes the set of Gel'fand Tsetlin schemes for 3, {vg} the Gelfand

Tsetlin basis for V¥, and W}"’Q)(g) € H with g € G. Set W(g) = Loy W}"’Q)(g}
vg. Then we observe that W7 € Cp%.(N\G/K) and that this satisfies the Cauchy

T



Riemann condition since f does. Hence we see that W} is a generalized Whittaker
- function with K-type 7, for 74, whose explicit formula is given at §5.

Consider the 7-component of the decomposition as above. Let {%;}ics be a com-
plete orthogonal basis of H,, and W}"’Q)(g) = Y el e (9)h; the expansion of W}”’Q)
by this basis. Then the 7-component of the Fourier expansion is

D {3- %) - O (Ri)(2)} - vg.

{Q} €l

The remaining work for the construction of our Fourier expansion is to compute
7 and ®7,(h;) as above. The coefficient ¢"?(g) can be obtained by computing
(W}"’Q) (9), ki) with (*,*) denoting the scalar product on H,. Our H, is isomorphic
to C or L*(R™) with n = 1,2 or 3. For  as in (2) (3) and (4) of Theorem 5.2, we
take the totality of Hermite functions as the above {h;};c; and the Hermite inner
product as the scalar product on H,. The explicit formula of ¢? will be given in

Theorem 8.1 (see also Remark 8.2). In the next section, we determine a basis of
Homp(n, L*(Nz\N)) by giving the functions ®%,(h;) explicitly.

7. Generalized theta series.

Let h;(t) = e £ e~ (i € Zso) be the i-th Hermite function. The space L*(R") has
{hiy (t1) - - by, (tn) }ido,... in>0 as @ complete orthogonal basis for it. We may consider
the case n = 1,2,3 now. Let € N be one of the four representations as in (1),(2),(3)
and (4) of Theorem 5.2 (I). We find a basis of Homy(n, L?(Nz\N)) for them. It is
settled by determining the images ®(h;) of Hermite functions (resp. 1 € C) by an
intertwining operator ® € Hompy(n, L?(Nz\N)), for n as in (2) (3) and (4) of Theorem
5.2 (I) (resp. the case (1)). Here we introduce the following ideal of the universal
enveloping algebra u(n):

Ann(n) = {X € u(n) | dy(X)h = Cxh Vh € H}
for p € N , where C'x denotes a constant dependent onlfy on X. Except for the case

(1), ®(h;)’s are characterized by

e differential equations coming from the actions dry(X) for X € Ann(p),
e Hermite differential equations rewritten by the coordinate of N, via ®.
¢ Ny-invariance.

As to the case (1), the image of 1 € C is characterized by the differential equations
arising from the infinitesimal actions of the generator of n and the Nz-invariance.
From calculating the above three conditions, we get

Proposition 7.1. (1) When n € N is as in (1) of Theorem 5.2 (I),
Homy (n, L*(Nz\N)) = C - ®,,

21



22

where o : C — Cexp 2ny/—1€323.
(2) When n € N is as in (2) of the theorem, we introduce a set

M(é,&3) = {MEZ] +§ZGZ}/N

where M ~ M' <+ M = M’ mod 2. For a M € M(&,83), we define B €
Homy(n, L*(Nz\N)) by

2 M
Hy e (M32) 1= Dlp(hi())(z) = 3 hileha + 52’”; )
meZ 2 )
k X exp 27TV —'1(52&'2 + (2527?7: + ﬁzy + 46263.’133 +(2€2m + M).’E23)

The set {‘I)?w}Meim(sz,é) gives a basis of Homp(n, L*(Nz\N)).
(3) Whenn € N is as in (3) of the theorem, we introduce a set

M2 M My M-
P g 28 +§3€Z 122é 13
1 1

M(£1,€3) = {M = (Mia, My3) € z* | 4¢4 45

EZ}/ N’
where
M~ M = (Mjy, Mj5) <
1 & Mi,/2 - Mi3/2 1 niy ni,
nyy 1 Miy/2  Mig®[4&  MigMys/46 1 nlg
(n’13 M3 1) (1\/113/2 M2 My3 /4 %fz-l-fs ) ( 1)

3 Mip/2 Mi3/2
= M{2/2 M1'2 /4‘51 Mllz—"z{[{:;/%l
M2 MM /a6 - +&

‘with some (n}y,n)s,nh3) € Z°.
For a M = (Miy, My3) € (&1, &), we define B € Homp(n, L*(Nz\N)) by

:ill?a(M .’E) = &3 (hh(s)h‘iz(u))(x)
= Z h‘il( 12 )h ( 26 ,3"]" £ )

(my2,m13,ma23)EZ>

X exp 271'\/:'1‘(51‘371 + %2—2-302 + ( 4;12 +&3)zs + mi,Tiz + mysZ13 + 2{?13 To3)-
The set {@M}Megm:(gl &) gives a basis of Homy(n, L*(Nz\N)).
(4) When n € N is as in (4) of the theorem, we introduce a set
M(Es, 62, 65) = |
(M = (Mya, Mg, M) € 70 | 2 g, Mis  COMus = MiaMsP ¢ 7,

46 & 16¢61¢>
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where
M~ M' = (Myy, Mz, M3;) <
M
1 & M, 212/2 Mis/2 1 ny, g
ny, 1 Mi2/2 8-+ & Mas/2 1 nb,
Mo s 1) \Mia/2  My/z CuMaMelplitaathe o 1
& Mp/2 Mis/2
M, '
= | M{3/2 S +& Mis/2
M23 1’2Ml’ 2 1
Migf2  Mpfo  CoMaMyfePrioeit’ 4,

with some (nly, nls,nhs) € Z3.
Fora M = (Mlz,Mlg,Mzs) € 931(51,52,53), we deﬁne q)ﬂM € HOI’IIN(?],L2(NZ\N))
by -

Sois (M;z) = 8] (hil(s)hig(t)hia (v))(x)
= Z hi ( 12+ )hze( 13+ 12 z

(m12,m13,m23)€Z3 26
!t
By + 22 ) e 2 T (s +
n ((2§1m23 mi,mis)? + 4616,mfs°
16£3¢,
The set {(I)KJ}MEM(&,{Q,&) gives a basis of HOIDN(’I],L2(Nz\N)).
In the notations for (3) and (4), mi, = 26ymya + Mig, miz = 263mys + Myamgs +
2
Mz, mbs = 26ymyamys + (%%2 + 283)mas + Mia(mys + miamas) + Myzmys + Mas.

25

1 ! 7
+ &3)zs + My, Tz + My3T13 + Mo3Tas).

Remark 7.2. From direct computation, we see that the equivalence relations on

M (€4, €3), M(£1, &) and M(&y,£a, €s) are well-defined and that these sets are ﬁmte

8. Main result.

According to the formulation given at §6, we obtain our Fourier expansion in terms
of the theta series computed at the previous section.

Theorem 8.1. The Fourier expansion of a holomorphic Siegel modular form f of
weight 7, on G is as follows:

flza)= 3 Cfai*ay a3’ exp2nv/=1(és(es + vV=1a})) - vg,
&3€Z> :

+ E Z 2 C€2 53 ( )CLAS )q—l )\2+l -27r(a §2+ag€3)

Q€N €2€Zy0, €320 MeM(ér,63)
m(&? ’§3)¢
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X Za,(l - 27}'§2a§)¢22,£3(M;w))vQ

120

+ E ( Z Z C ; 53(1,2(Q)ai‘1'—l—maéa'i-maéz-%-le—%r(a%&+a§§3)

QEA2 €1€Z50,6320 MeM(£1,63)
M(€1,£3)F0

1 1 . i1 :
X Z o, (m; 3 27ra§§1)a,-2(l;— —27ra§§2)¢£11”é(M;x))vQ
1120, 'i2>0

+ > ( >, Yo O eaa(@)a T M ey ey

QEAZ 61 EZ>0 3 62 >0v 63 ZO Mem(él 1'52 153)
W(&1,82:63)#0

. 1 1
x e~ 2r(afti+aftataits) Z oy (m; 3~ 27ra§§1)a,-2 (L 5~ 2m§§1)
0120, 220, 320
1 L
X @iy (05 = — 2ma3és) e E e (M z))vg

2

Notatzons or thzs
¢! CES,C’& 3> C&l ¢ and C& io,6s Are Fourier coefficients,

(2) ai(k; p) = {(=1)F++B] 4 (—1)laljorlslee-1(22k )HI‘ (E2=2) x

oy (%—1-, k2 htl=d (4] p), where § = 0 or 1 when i is even or odd respectively.

=z — A — A
3) Qu = ( —As — A2 );
_)\3

(4) @ € Ay means that Q@ run through Gel'fand Tsetlin schemes of the form

B W

—-'Ag —/\1+l wzthOSlS)\l—}\g,

: -3

(5) Q € A, means that Q run through Gel’fand Tsetlin schemes of the form

Az — X =X
—A3 =X\ +1 with0 <I< A=A and0<m< A —As— 1.

Remark 8.2. The coefficient ¢"? mentioned in §6 is explicitly given as the coeflicients
of qﬁgz £ qﬁg,’é and ¢2‘1 ”é"ga When 7 is not a character.

By g1v1ng a certain change of the summation to the expansion, we obtain another
expansion in terms of generalized Whittaker functions:

Theorem 8.3.
f(za) = Z Cést (£3,a) exp2mv/ —1(&323) - v,
§3€Z>o

' 26,m + M
+ Z ( Z E 02,53 ZwQ(é27€3:a $23+T)
Q€A1 £2€750, 320 MEM(£2,63) 1
M(&2,83)#0



(2&m + M)

X exp 27r\/—(§2:c + ( + &3)es + (26m + M)z23))vg

1 ‘
!
+ Z ( Z E 051,53 Z wQ(€17§3; a, xiz + 2€
Q€A £1€Z>0,£3>0 MEM(E1,€3) (ma2,m13)E€Z2 1
M(€1,€3)#D
My, m{ mis’
l
z
13 + — %, 46 2+ ( +&3)z3
- mb.m/
+ mlyz1s + M1z + —2—2793)vg
46
I
M _
+ E ( Z Z Cghfz,&s (617627§3aa :1:12 + 2€ $’13
QEA; £1€L>o, £2>0, €320 MEM(¢r k2 és)

W(é1,62,63)#0 -

m) 2 miy”
B oy e e i
26ymb. — mlomiL)? + 4 mi,”
n (( §1mys 1;66123&)2 &a6ama + €3)z3 + my, 12 + m'13,:'313 + masTas))vg

9. Relation with the classical Fourier expansion.

Here, let f be a C-valued form on Siegel upper half space and of weight | = A, =

(21 Z12 13 '

Az = A3. Andlet z = | z12 22 23| be an element of the Siegel upper half space

213 *23 23
( tl t12/2 t13/2 -

of degree 3, and T' = | t13/2 1,  t33/2| a semi-integral matrix of degree 3. The
t13/2 t23/2 t3

classical Fourier expansion of the form f can be written as

z) =Y. Chexp2rv/~1(tr(T2)),

T>0

where T > 0 means that. T is positive semi-definite and CJ denotes the Fourier
coefficient for T'. By lifting f to a function on (7, we can rewrite this expansion using
the coordinate of G, and compare 1t w1th our expansmn Then we will obtain the
relation of the Fourier coefficients C., C§3 , C'& £a> C’& &, and C&; .65+ As a preparation
for it, we give a following lemma: ,

Lemma 9.1. Let T be as above. Using the notations of Proposition 7.1, we have the
following:
(1) Ift;1 =0, T can be written as

0 0 0\ 000
0 tg t23/2 (tg # O) or 0 0 0 (tz ‘= 0)
0 t23/2 t3 0 0 t3
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If T is of the former one, it can be expressed as .

0 0 0
Tg’éa(m)x 0 &2 m12/2
0 mi,/2 7 pra 2 t+&

with 62 € Z>0, 53 Z 0 S’llCh that 9ﬁ(§2,£3) 75 @

0 0 O

T, =0 0 0

. 0 0 &
'with€3€Z>o.

(2) If t1 # 0, T' has the following two expressions:
t1a/2 :
I =0,
®) flt12/2 t ’

If T is of the latter one,

&1 m,122/ 2 m’l3/ 2
Tgfm Mm(mu, m13,m23) = m'12/2 m’12 /451 mileglm/z&
| mis/2 miamis/2& %‘g‘ + &
with 51 € Z>0, 53 Z 0 such that 9)1(51,53) # w
(12) Otherwise,

3 mi,/2 mis/2
Mo, Mis, M. / mis '
T Mo (15 mag, mas) = | M12/2 - & m2§/2 2
25 ; o 1 ! +4£ 6 1
mya/2  mig/2 (617 mliZ}?}l' 22 6

with &1 € Ziso, & > 0 and €5 > 0 such that M(é1,&2,&3) # 0.
From this, we obtain

Theorem 9.2. (1) IfT Tgs, = Oﬁa

(2) IfT %453(]\7;7:), CT 5253 fOTvaZ

@) T =T " (m12, M13,Ma3), CT gl £ f07‘ V(ma2, M3, mas) € Z°.

(4) IfT = g‘g‘;’é‘f‘s’M”(mm, mMya, Ma3), CT = 051 £a.bs for ¥(mas, Mya, Mag) € 7.

In (3) or (4), M denotes (M3, My3) or (Mlz,MB,M%).
10. Relation with the Fourier Jacobi expansion.

The form f has two types of Fourier-Jacobi expansions as follows:

1) f) = 3 ¢ulz@s), wes)exp2rV—1(t1z1),

11 EZZO
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(2)  flx)= > BTiaay (23, W(3)) €xp 27V =1(tr(Ta2)2012)))-
o=, 11 12/2) |
(12)~ t12/2 t2 Fat

In (1), we use the notations zps) = (Zz 223)’ W(a23) = (212, 213) and
3 23 _

22

Bt (2(23), Weas)) = > Ct exp 2my/=1(tr(T(a5)2(25)) + 2R(as) ‘w(as))
t R
T= >0
(tRma) Tas) )~
_ | bty tas)2
with Rz3) = (t12/2,t13/2) and T(23) = (t232/2 2?3/ ’

In (2), we have the notations wg) = ( 22 )) 212 = ( ZZ112 22122) and

¢T(12)(z3, w(3)) = Z : C’_{‘ exp 27V —1(tzz3 + 2t"(R(a) 1tw(3)))
_(Tan E@e)),
R(3) i3
. | t13/2 .
with Ry = ( t25/2 )

10.1. Relation with the Fourier Jacobi expansion of type (1). In the first
expansion, the contribution @4 of ¢y to our Fourier expansion is

Do(aes),z) = Y. Cf(azas) exp2rv~1(&za)+ > Y. ol
&3€Z>0 £2€Z50, €320 MEM(£2,63)
P(E2,¢3)#D

2
Y (azas)' exp(—2m(a3é, + a3és + ajéa(zhs + fzm + M) )

2{1771 + M)2

x exp 2mv/—1(€yzq + (( + &3)zs + (2&m + M)z,3)),

and the contrlbutlon D, of P, (51 € Zso) to our expansion is

B¢ (ape),2) = 3. o Y (agas) exp(—2n(adés

£3>0 Mefm(ﬁ:,{s) (ma2,m13)EZ?
M(E1 £ )#0
/ I
+ a3 (el + 5 % ) 4 o3 (ol + 25“ T+ 3 2, ) )%
m mi,’ miym)
exp 2mv/—1( 41 2+( +§3):c3+m12w12+m13w13+ b 223)
1



28

-+ Z Z C&l £2,¢3 Z (a2a3)l

£>0, £320 MeM(€1.£2.63) (m12,m13,m23)€Z3
9"n(gl )62 ){3 )#

l

exp(—2n(azés + a3és + a3t (2], + ) + a3t (zy, + My Ths +

=)

24 26 26,
261 Mys — Mg M
+ a3t (ohs + mas + 22 RO e 20T e | e +
162
(26;mb . —m!h,m/! 2+4 m/2 N
(( o 112661236) fabaag +§3)$3+m’12w12+m’13x13+m23x23).
162

Using these, the Fourier Jacobi expansion of f of type (1) can be written as follows:

Theorem 10.1.
flza) = Y ®¢(a@s), zw))we (a1) exp 2rv —1(6121),

&1€Z30
where we, (a1) = @) exp(—2n1a}) and x() means that z; =0 inz € N.

10.2. Relation with the Fourier Jacobi expansion of type (2). Next, we treat
the second Fourier Jacobi expansion of f. The matrix T(15) which gives the index of
the Jacobi form, is one of the following 4:

(O 0) (0 O) ( & m12/2) & m12/2
0 0/°\0 &) \mly2 mi?/ae) \miy/2 ";& +é

(1) If Tiag) is of the first form, the contribution &7, of éz,,, to our expansion is

O, (a3,502) = 3 aCY exp(—2n(alts)) exp 2mv/~1(€sz3).

€3€Z>0

(2) If T(12) is of the second form, the contribution @7, is

@T(lz)(a37 x(lZ)) = Z Z 052 & Z Gté exp(——?r(a%& -+

£&>0 MeM(&,é3)
M(E2.€3)#0

aita(en + 22N ) 0y TR )0y + am + M2,

(3) If T(yy) is of the third form, the contribution is

(DT(H) = E v Z Cfx &3 Z ag exp(——27r(a§§3

£&>0 MeM(é1,és) (mi2,m13)€Z?
M(€1,€3)#0
/ 2
mi, ! 9 m13 -
+asfl(~”13+ 2%, 23+ 2, ) )eXP ™= (( 451 +§3)x3+m13m13+ 451 $23)
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(4) If Tj19) is of the fourth form, the contribution is

> > e X diexp(—2n(al

53 20 Mem(&l 1{21{3) (m121m]3 1m23)€Z3
M (é1,€2,€3)#0

m) 2, Mys — My, M
12 g4 T3y | 2e oo 1Ms3 12M13 .,
| + azéi(zy, + 522 %, Toz+ o7 %, + a3éa(@h3 + mas + G )
2 . ') 44 t 2
X exp 27\/——1((( Gims = mipMas)” + 4abamig + €3)T3 + mya213 + Myz203).

16£¢,

With these functions, we can write the Fourier Jacobi expansion of type (2), in terms
of ours:

Theorem 10.2.
f(za) = Z <I)<0 o)(‘13:w(12)(0))w0,£2(a1va27$12 mu)exp27rv (523’2)

§2€Z»0 &2

+ 2 > X q’( 6 /2 )(as,f”(m)(o))'

&1 €Z>0,822 >0 M12€MM(¢1,62)m12€Z

m(£17€2) m;2/2 16, +€2
. 2
X Wey £, (01, G2, Thg 1 My, ) €XP 2TV =1(&121 + mp21s + ( 5 + £2)72),
where (12)(0) means that &y = z1; = x3 = 0 in = and wg, g, (ay,az,25;m),) =
(a102)' exp(—2m(afy + a3 + a3éa (2, + 52)%)).
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