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1. INTRODUCTION

Langlands correspondence is one of the most fundamental leading principle in the mod-
ern theory of automorphic forms. It predicts, for a global field k, the existence of a fine
correspondence between the set of automorphic representations of $GL(n)_{k}$ and the set of
isomorphism classes of $n$-dimensional representations of the hypothetical Langlands group
$\mathcal{L}_{k}$ of k. Its generalizations to the automorphic representations of the general reductive
groups is of particular importance, since they are also inevitable to establish the original
(i.e. $GL(n)$ ) Langlands correspondence.

The multiplicity one theorem for $GL(n)_{k}$ reduced us to describe the correspondence
only for the set of automorphic representations. But for the general reductive groups, we
have to propose a recipe to deduce the multiplicity in the automorphic spectrum of each
isomorphism classes of automorphic representations from its corresponding representa-

tion of $\mathcal{L}_{k}$ (or rather its Langlands parameter). By constructing the theory of endoscopy,
Langlands obtained this type of conjectural recipe for the tempered automorphic repre-

sentations [K,$\S 12]$ . Then Arthur extended it to the case of non-tempered automorphic
representations [A].

I feel that there is also a realistic program to establish these conjectures at least for

some classical groups, by means of compaeisons of Arthur-Selberg trace formulae in the
setting of twisted endoscopy. In the course of this program, one needs to establish certain
relationship between the representation theory of reductive groups over a local field and
certain automorphic L and $\epsilon$-factors. Let F be a local field and G a connected reductive
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quasisplit group over $F$ . If an irreducible smooth representation $\pi$ of $G(F)$ is generic,
i.e. if it admits a Whittaker model, then Shahidi defined some of its corresponding
automorphic $L$ and $\epsilon$-factors, and obtained the desired relationships [Sh]. Thus we might
ask if we can extend his results to the representations which are not generic. The generic
packet conjecture is a key part of this question.

Conjecturally the set $\Pi_{\mathrm{t}\mathrm{e}\mathrm{m}\mathrm{p}}(G(F))$ of isomorphism classes of irreducible tempered rep-
resentations of $G(F)$ should be partitioned into a disjoint union of finite subsets $\Pi_{\varphi}$ , called
$L$ -packets parametrized by the so-called Langlands parameters $\varphi$ for $G_{F}$ . The elements
of $\Pi_{\varphi}$ should share the same $L$ and $\epsilon$-factors which can be directly defined from $\varphi$ . Thus
to extend Shahidi’s definition of Euler factors, it is sufficient to find a generic element in
each $\Pi_{\varphi}$ . This is exactly the assertion of the generic packet conjecture.

Not so many is known about this conjecture. Rom now on, we assume that $F$ is
non-archimedean since the archimedean case was established by Vogan [V]. Then before
discussing the generic packet conjecture, we must assume that the tempered L-packets
are defined and satisfy some reasonable properties. At present, this is the case only when
$G$ is $SL(n)$ and $U(3)$ . If a tempered $L$-packet $\Pi_{\varphi}$ of $G$ is a lift of an $L$-packet $\Pi_{\varphi^{H}}$

of an endoscopic group $H$ of $G,$ $i.e$ . $\Pi_{\varphi}$ is and endoscopic $L$ -packet, Shahidi reduced
the generic packet conjecture for $\Pi_{\varphi}$ to that for $\Pi_{\varphi^{H}}$ [Sh, \S 9]. Gelbaxt-Rogawski-Soudry
obtained a beautiful description of the endoscopic $L$-packets of $U(3)$ in terms of theta
liftings, and deduced the conjecture for them [GRS]. More recently, Riedberg-Gelbart-
Jacquet-Rogawski established the generic packet conjecture for any $L$-packets of $U(3)$ by
means of the relative trace formulae [FGJR]. Their result also includes the global counter
part of the conjecture. In fact, the relative trace formula proposed by Jacquet is a very
promising tool which might be used to obtain some deep informations (e.g. properties of
$\epsilon$-functions) necessary in the Arthur-Langlands program.

In this report we shall examine an extended version of the Shahidi’s approach. His
method relies on the relationship between the genericity of a representation $\pi$ and the
asymptotic behavior of the distribution character $\Theta_{\pi}$ around the unit [Rd2], [MW]. Our
result is a twisted analogue of this relationship (under some restriction on the residual
characteristic). Then we look at the situation where many classical groups are $\mathrm{r}\mathrm{e}\mathrm{a}\mathrm{l}\mathrm{i}r_{\lrcorner}\mathrm{e}\mathrm{d}$ as
twisted endoscopic groups of $GL(n)$ [A2, \S 9]. Suppose that $G$ is such a classical group.
Then, assuming the existence of suitable twisted endoscopic lifting from $G$ to $GL(n)$ , a
twisted version of Shahidi’s argument allows us to deduce the generic packet conjecture.

Although our method works only in the case $G=U(3)$ at the moment, where the result
is already known, it should apply more wider class of groups once the twisted endoscopic
lift is established. On the other hand, since our approach uses the Lie algebra and the
exponential map, the restriction on the residual characteristic is inevitable.

2. DEGENERATE WHITTAKER MODELS AND THEIR TWISTED ANALOGUE
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2.1. Degenerate Whittaker models. Let $F$ be a non-archimedean local field of char-

acteristic zero. We write $\mathcal{O}_{/},\mathfrak{p}$ , and $||$ for the ring of integers of $F$ , its unique maximal
ideal and the normalized absolute value on $F$ . Fix a non-trivial additive character $\psi$ of
$F$ . Throughout, $\mathbb{C}^{1}$ denotes the group of complex numbers of absolute value 1.

We consider a connected reductive $F$-group $G$ . Write $\mathfrak{g}$ for its Lie algebra and fix

a non-degenerate $\mathrm{A}\mathrm{d}(G)$-invariant symmetric bilinear form $B(, )$ on $\mathfrak{g}(F)\otimes_{F}\mathfrak{g}(F)$ . To

define the space of degenerate Whittaker vectors, we need the data $(N, \phi)$ where $N$ is a
nilpotent element in $\mathfrak{g}(F)$ and $\phi$ is a cocharacter of $G$ defined over $F$ such that

$\mathrm{A}\mathrm{d}(\phi(t))N=t^{-2}N$ , $\forall t\in \mathrm{G}_{m}$ .

We write $\mathfrak{g}^{N}$ for the centralizer of $N$ in $\mathfrak{g}$ and let

$\mathfrak{g}=\mathfrak{g}^{N}\oplus \mathfrak{m}$

be a decomposition which is $\mathrm{A}\mathrm{d}(\phi(\mathrm{G}_{m}))$-stable. We have the graduation

$\mathfrak{g}=\bigoplus_{i\in \mathbb{Z}}\mathfrak{g}_{i}$

, $\mathfrak{g}_{i}=\{X\in \mathfrak{g}|\mathrm{A}\mathrm{d}(\phi(t))X=t^{i}X, \forall t\in \mathrm{G}_{m}\}$ .

We write $\mathfrak{g}_{i}^{N}:=\mathfrak{g}_{i}\cap \mathfrak{g}^{N},$ $\mathfrak{m}_{i}:=\mathfrak{m}\cap \mathfrak{g}_{i}$ , etc. We have the unipotent subgroup $V$ whose Lie

algebra is given by $\mathfrak{g}_{1}^{N}\oplus\sum_{i\geq 2}\mathfrak{g}_{i}$ and a character $\chi_{N}$ of $V(F)$ defined by

$\chi_{N}$ : $V(F)\ni\exp X\mapsto\psi(B(N_{\mathrm{c}}.X))\in \mathbb{C}^{\cross}$ .

The restriction to $\mathfrak{m}(F)$ of the alternating form $B_{N}(X, Y):=B(N, [X, Y])$ is non-degenerate.

If $\mathfrak{m}_{1}\neq\{0\})$ then we define $\mathcal{H}_{N}$ to be the Heisenberg group $\mathfrak{m}_{1}(F)\cross \mathbb{C}^{1}$ attached to the

symplectic space $(\mathfrak{m}_{1}(F), B_{N})$ . If this is not the case, set $\mathcal{H}_{N}=\mathbb{C}^{1}$ . We write $\rho_{N}$ for

the unique irreducible representation of $\mathcal{H}_{N}$ on which the subgroup $\mathbb{C}^{1}$ acts by $\mathrm{i}\mathrm{d}_{\mathbb{C}^{1}}$ . Let
$U$ be the unipotent subgroup of $G$ with the Lie algebra $\sum_{i\geq 1}\mathfrak{g}_{i}$ . Then we have the

homomorphism

$p_{N}$ : $U(F) \ni\exp(\sum_{i\geq 1}X_{i})\mapsto(X_{1}^{\iota \mathfrak{n}}, \psi(B(N, X_{2})))\in \mathcal{H}_{N}$
.

Here $X_{1}^{\tau \mathfrak{n}}$ is the $\mathfrak{m}$-component of $X_{1}$ under the decomposition $\mathfrak{g}=\mathfrak{g}^{N}\oplus \mathfrak{m}$ .

Now let $(\pi, E)$ be an irreducible admissible representation of $G(F)$ . We put

$E(V, \chi_{N}):=\mathrm{S}\mathrm{p}\mathrm{a}\mathrm{n}\{\pi(v)\xi-\chi_{N}(v)\xi|v\in V(F), \xi\in E\}$ , $E_{V,\chi_{N}}:=E/E(V, \chi_{N})$ .

Obviously, $U(F)$ acts on $E_{V,\chi_{N}}$ by some copy of $\rho_{N^{\mathrm{O}}}p_{N}$ . The space of degenerate Whittaker

vectors $\mathcal{W}_{N,\phi}(\pi)$ for $\pi$ is defined to be

$\mathcal{W}_{N,\phi}(\pi):=\mathrm{H}\mathrm{o}\mathrm{m}_{U(F)}(\rho_{N}\circ p_{N}, E_{V,\chi_{N}})$ .

If $N$ is regular, this is the space of ordinary $\chi_{N}$-Whittaker vectors.
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2.2. A twisted analogue of [MW]. We begin with a review of the result of [MW].
Let $(\pi, E)$ be an irreducible admissible representation of $G(F)$ . The distribution $\Theta_{\pi}$ :

$C_{c}^{\infty}(G(F))\ni f\vdasharrow \mathrm{t}\mathrm{r}\pi(f)\in \mathbb{C}$ , where

$\pi(f)\xi:=\int_{G(F)}f(x)\pi(x)\xi dx$ , $\xi\in E$

is a well-defined distribution called the character of $\pi$ . On a suitable neighborhood of
$0$ in $\mathfrak{g}(F)$ , the exponential map $\exp$ is well-defined and is an injection into $G(F)$ . Then
a theorem of Harish-Chandra asserts that, on some neighborhood $U_{\pi}$ of $0$ in $\mathfrak{g}(F)$ , the
distribution $\Theta_{\pi}\circ\exp$ is well-defined and admits an expansion:

$\Theta_{\pi}(f)=\sum_{1\supset\in N(\mathrm{g}(F))}c_{D}(\pi)\mu \mathrm{o}(\overline{f\mathrm{o}\mathrm{e}\mathrm{x}}\mathrm{p})$
, $\forall f\in C_{c}^{\infty}(\exp(U_{\pi}))$ .

Here $N(\mathfrak{g}(F))$ denotes the set of $\mathrm{n}\underline{\mathrm{i}\mathrm{l}\mathrm{p}\mathrm{o}\mathrm{t}\mathrm{e}}\mathrm{n}\mathrm{t}\mathrm{A}\mathrm{d}(G(F))$-orbits in $\mathfrak{g}(F)$ , and $\mu_{D}$ is an invariant
measure on $\mathfrak{Q}\in N(\mathfrak{g}(F))$ . Also $f\circ\exp$ is the Fourier transform

$\overline{f\circ \mathrm{e}\mathrm{x}}\mathrm{p}(X):=\int_{\mathfrak{g}(F)}f(\exp \mathrm{Y})\psi(B(X, Y))dY$ .

Of course the coefficients $c\mathrm{o}(\pi)$ depends on the choice of measures. We shall adopt
the following convention on this choice. The measure $dX$ on $\mathfrak{g}(F)$ is chosen to be self-
dual with respect to $\psi\circ B$ . By means of $B_{N}$ , we identify the tangent space $T_{N}D$ of
$\mathrm{J}\supset\in N(\mathfrak{g}(F))$ at $N\in \mathrm{J}\supset$ with $\mathfrak{g}(F)/\mathfrak{g}^{N}(F)\simeq \mathfrak{m}(F)$ . We fix the measure self-dual with
respect to $\psi\circ B_{N}$ on this. Then it determines the invariant measure $\mu_{D}$ on $\mathrm{J}\supset$ . Also fix
an invariant measure $dx$ on $G(F)$ such that the Jacobian of $\exp$ around $0$ with respect to
$dX$ and $dx$ has absolute value 1.

Finally we write $5\supset\geq \mathrm{J}0’(\mathrm{O}, \mathrm{D}’\in N(\mathfrak{g}(F)))$ if $D’$ is contained in the closure (with
respect to the p–adic topology) of $5\supset$ . This is a partial order on $N(\mathfrak{g}(F))$ . Set

$N_{B}(\pi):=\{\mathrm{J}\supset\in N(\mathfrak{g}(F))|c_{\mathrm{D}}(\pi)\neq 0\}$ ,
$N_{\mathrm{W}\mathrm{h}}(\pi):=\{\mathrm{D}\in N(\mathfrak{g}(F))|\mathcal{W}_{N,\phi}(\pi)\neq 0, \exists\phi\}$ .

We write $N.(\pi)^{\max}$ for the set of maximal elements in $N.(\pi)$ with respect to the partial
order defined above ( $\bullet$ assigns $B$ or Wh).

Theorem 2.1 ([MW] I.16, 17). Suppose that the residual characteristic ofF is odd. Then
(i) $N_{B}(\pi)^{\max}=N_{\mathrm{W}\mathrm{h}}(\pi)^{\max}$ . :
(ii) For $5\supset\in N_{\mathrm{W}\mathrm{h}}(\pi)^{\max}$ and $\phi$ as in the definition of $\mathcal{W}_{N,\phi}(\pi)_{f}$ we have $\dim \mathcal{W}_{N,\phi}(\pi)=$

$c_{5\supset}(\pi)$ .

If $G$ is split and $N_{B}(\pi)$ contains an regular nilpotent orbit, this is due to Rodier [Rd2].
The contribution of Moeglin-Waldspurger is the construction of $\mathcal{W}_{N,\phi}(\pi)$ when $N$ is not
even unipotent. The same construction in the case of finite $F$ was found independently
by Kawanaka [Ka].
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Now we turn to the twisted analogue of this result. Let $\theta$ be an $F$-automorphism of
finite order $\ell$ of $G$ . We suppose that $(\pi, E)$ is $\theta$-stable, that is, $\theta(\pi):=\pi\circ\theta^{-1}$ is isomorphic

to $\pi$ . By choosing an intertwiner $\pi(\theta)$ : $\theta(\pi)arrow\sim\pi$ satisying $\pi(\theta)^{\ell}=\mathrm{i}\mathrm{d}_{E}$ , we extend $\pi$

to an irreducible representation of $G(F)\rangle\triangleleft\langle\theta\rangle$ . If we take $B(, )$ , $N$ and $\phi$ above to be
$\theta$-invariant, then the resulting space $\mathcal{W}_{N,\phi}(\pi)$ is $\pi(\theta)$-stable.

We need Clozel’s result on the asymptotic behavior of twisted character [C]. Recall
Harish-Chandra’s descent for twisted invariant distributions, $i.e$ . distributions invariant
under the $\theta$-conjugacy:

$\mathrm{A}\mathrm{d}_{\theta}(g)x:=gx\theta(g)^{-1}$ , $g,$ $x\in G(F)$ .

Writing $\mathfrak{g}(\theta):=(1-\theta)\mathfrak{g}\subseteq \mathfrak{g}$ , set $\Omega_{\theta}:=\mathrm{A}\mathrm{d}_{\theta}(G(F))G^{\theta’}(F)$ where

$G^{\theta’}(F):=\{g\in G^{\theta}(F)|\det(\mathrm{A}\mathrm{d}(g)\circ\theta-1|\mathfrak{g}(\theta))\neq 0\}$ .

There exists a surjective linear map

$C_{c}^{\infty}(G(F)\cross G^{\theta’}(F))\ni\alpha(g, m)\mapsto\varphi(x)\in C_{c}^{\infty}(\Omega_{\theta})$

such that

$\int_{G(F)}\int_{G^{\theta}(F)}\alpha(g, m)\Phi(\mathrm{A}\mathrm{d}_{\theta}(g)m)dmdg=\int_{G(F)}\varphi(x)\Phi(x)dx$, $\forall\Phi\in C_{c}^{\infty}(G(F))$ .

Dual to this is a map of distributions
$D(\Omega_{\theta})\ni T\mapsto\tau\in D(G(F)\cross G^{\theta’}(F))$

given by $\langle\tau, \alpha\rangle:=\langle T, \varphi\rangle$ . Though the map $\alpha\vdasharrow\varphi$ is not injective,

$\varphi^{\theta}(m):=\int_{G(F)}\alpha(g, m)dg\in C_{c}^{\infty}(G^{\theta’}(F))$

is well-defined.

Lemma 2.2. For any $\mathrm{A}\mathrm{d}_{\theta}(G(F))$ -invariant $T\in D(\Omega_{\theta})_{f}$ there exists an $\mathrm{A}\mathrm{d}(G^{\theta}(F))-$

invariant distribution $\sigma_{T}\in D(G^{\theta’}(F))$ such that

$\langle T, \varphi\rangle=\langle\sigma_{T}, \varphi^{\theta}\rangle$ , $\forall\alpha\in C_{c}^{\infty}(G(F)\cross G^{\theta’}(F))$ .

The twisted character of $\pi$ , a twisted invariant distribution, is defined by

$\Theta_{\pi,\theta}(f):=\mathrm{t}\mathrm{r}(\pi(f)\circ\pi(\theta))$, $f\in C_{c}^{\infty}(G(F))$ .

We apply Lem.2.2 to have an invariant distribution $\theta_{\pi}$ on $G^{\theta’}(F)$ such that

$\Theta_{\pi,\theta}(\varphi)=\theta_{\pi}(\varphi^{\theta})$ , $\forall\varphi\in C_{c}^{\infty}(\Omega_{\theta})$ .

Theorem 2.3 ([C] Th.3). Write $N(\mathfrak{g}^{\theta}(F))$ for the set of nilpotent $\mathrm{A}\mathrm{d}(G^{\theta}(F))$ -orbits in
$\mathfrak{g}^{\theta}(F)$ . Then there exist a neighborhood $U_{\pi,\theta}$ of $0$ in $\mathfrak{g}^{\theta}(F)$ and complex numbers $c_{D,\theta}(\pi)$ ,
$(\mathrm{O}\in N(\mathfrak{g}^{\theta}(F)))$ such that

$_{\pi,\theta}( \varphi)=\sum_{4\supset\in N(\mathfrak{g}^{\theta}(F))}c_{D,\theta}(\pi)\mu_{\mathrm{J}\supset}(\wedge\varphi^{\theta}\circ\exp)$
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holds for any $\varphi\in C_{c}^{\infty}(\Omega_{\theta})$ with $\mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}(\varphi^{\theta}\mathrm{o}\exp)\subset U_{\pi,\theta}$ .
Similarly as in the ordinary case, we put

$N_{B,\theta}(\pi):=\{\mathrm{J}\supset\in N(\mathfrak{g}^{\theta}(F))|c_{D,\theta}(\pi)\neq 0\}$ ,
$N_{\mathrm{W}\mathrm{h},\theta}(\pi):=\{\mathrm{J}0\in N(\mathfrak{g}^{\theta}(F))|\mathrm{t}\mathrm{r}(\pi(\theta)|\mathcal{W}_{N,\phi}(\pi))\neq 0, \exists\phi\}$ .

Now we can state:

Theorem 2.4. Suppose that $\ell$ is prime to the residual characteristic of $F_{f}$ which we as-
sumed to be odd.
(1) $N_{B,\theta}(\pi)^{\max}$ coincides with $N_{\mathrm{W}\mathrm{h},\theta}(\pi)^{\max}$ .
(2) Let $\mathrm{D}\in N_{B,\theta}(\pi)^{\max}$ . Then for any choice $ofN\in \mathrm{D}$ and $\phi_{f}$ we have $\mathrm{t}\mathrm{r}(\pi(\theta)|\mathcal{W}_{N,\phi}(\pi))=$

$c_{\mathrm{J}\supset,\theta}(\pi)$ .

3. TWISTED ENDOSCOPY IMPLIES THE GENERIC PACKET CONJECTURE

3.1. Twisted endoscopy problems to be considered. We first review some basic
facts on twisted endoscopy [KS].

Let $k$ be a number field. We write $LG=\hat{G}\rangle\triangleleft W_{k}$ for the L–group of a connected
reductive $k$-group $G$ . Langlands conjecture says that the automorphic representations of
$G(\mathrm{A}_{k})$ should be parametrized by the $\hat{G}$-conjugacy classes of suitable homomorphisms
$\varphi$ : $\mathcal{L}_{k}arrow LG$ , called the Langlands parameters. Endoscopy is aimed at the study of those
automorphic representations whose Langlands parameters have the image contained in the
fixed part $LG^{L}\theta$ of $LG$ under certain semisimple automorphism $L\theta$ . Ordinary endoscopy
deals with the case $L\theta\in \mathrm{I}\mathrm{n}\mathrm{t}(\hat{G})$ and twisted endoscopy handles the general case.

Since the Langlands parameters are considered up to $\hat{G}$-conjugation, we may assume
that $L\theta$ is of the form

$L\theta(g\rangle\triangleleft w)=\theta(g)a(w)\wedge\cross w$ , $g\in\hat{G},$ $w\in W_{k}$ ,

where $\theta\wedge$ is a semisimple automorphism of $\hat{G}$ and $a(w)$ is a $Z(\hat{G})$-valued 1-cocycle on
$W_{k}$ . In this case, we say that the twisted endoscopy problem is associated to $(G, \theta, \mathrm{a})$ ,
where $\theta$ is an $k$-automorphism of $G$ whose outer class is dual to $\theta\wedge$ and a is the class of
$a$ in $\mathrm{H}^{1}(W_{k}, Z(\hat{G}))$ . The class of a in $\mathrm{H}^{1}(W_{k}, Z(\hat{G}))/\mathrm{k}\mathrm{e}\mathrm{r}^{1}(W_{k}, Z(\hat{G}))$ corresponds to an
automorphic character $\omega$ of $G(k)\backslash G(\mathrm{A}_{k})$ by Langlands’ correspondence for tori. Here

$\mathrm{k}\mathrm{e}\mathrm{r}^{1}(W_{k}, Z(\hat{G})):=\mathrm{k}\mathrm{e}\mathrm{r}[\mathrm{H}^{1}(W_{k}, Z(\hat{G}))arrow\prod_{v}\mathrm{H}^{1}(W_{k_{v}}, Z(\hat{G}))]$.

Then according to the Langlands conjecture, the twisted endoscopy for $(G, \theta, \mathrm{a})$ should
describe the automorphic representations or an L- or Arthur packets $\Pi$ of $G(\mathrm{A}_{k})$ which
satisfies $\omega\otimes\theta(\Pi)=\Pi$ . There is also an evident local counter part to this.

Now we return to the case of local $F$ and let $E$ be either a quadratic extension of $F$

or $F$ itself. We consider the twisted endoscopy problem aesociated to $(L, \theta, 1)$ , where

91



$L:={\rm Res}_{E/F}GL(n),$
$\theta$ is the automorphism of $L$ defined by

$\theta(g)$ $:=\mathrm{A}\mathrm{d}(/$ $)(\overline{\sigma}(^{t}g^{-1}))$ .

Here $\overline{\sigma}$ is the $F$-automorphism of $L$ attached to the generator $\sigma$ of $\mathrm{G}\mathrm{a}1(E/F)$ . The group
$G$ defined by

$G:=$ $\mathrm{i}\mathrm{f}E\neq F\mathrm{i}\mathrm{f}E=F\mathrm{a}\mathrm{n}\mathrm{d}n=2m\mathrm{i}\mathrm{f}E=F’ \mathrm{a}\mathrm{n}\mathrm{d}n=2m+1$ ,

is the “principal” endoscopic group of $(L, \theta, 1)$ .
For any $\delta\in L$ , we write $L_{\delta,\theta}$ for the group of fixed points in $L$ under $\mathrm{A}\mathrm{d}(\delta)\circ\theta$ . $\delta\in L$

is said to be $\theta$ -semisimple if $\mathrm{A}\mathrm{d}(\delta)\circ\theta$ induces a semisimple automorphism of $L_{\mathrm{d}\mathrm{e}\mathrm{r}}$ . A $\theta-$

semisimple $\delta\in L$ is $\theta$ -regular if the identity component $L_{\delta,\theta}^{0}$ of $L_{\delta,\theta}$ is a torus, and strongly
$\theta$ -regular if $L_{\delta,\theta}$ is abelian. We write $L_{\theta,\mathrm{s}\mathrm{r}}(F)$ for the set of strongly $\theta$-regular elements in
$L(F)$ . At each $\delta\in L_{\theta,\mathrm{s}\mathrm{r}}(F)$ we define the $\theta$ -orbital integral by

$O_{\delta,\theta}(f):= \int_{L_{\delta,\theta}(F)\backslash L(F)}f(g^{-1}\delta\theta(g))\frac{dg}{dt}$ .

Two strongly $\theta$-regular $\delta,$ $\delta’\in L(F)$ is stably $\theta$ -conjugate if they are $\theta$-conjugate in $L(\overline{F})$ .
We define the stable $\theta$ -orbital integral at $\delta\in L_{\theta,\mathrm{s}\mathrm{r}}(F)$ by

$SO_{\delta,\theta}(f):=$ $\sum$ $O_{\delta,\theta}(f)$ .
$\delta’$ stably $\theta$-conj. to $\delta$

$\mathrm{m}\mathrm{o}\mathrm{d}$. $\theta-\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{j}$ .

In [KS] I, Kottwitz and Shelstad constructed the norm map, which we denote by $\mathrm{N}_{L/G_{}}$.
from the set of stable $\theta$-conjugacy classes in $L_{\theta,\mathrm{s}\mathrm{r}}(F)$ to that of strongly regular stable
conjugacy classes in $G(F)$ . Also they defined a function $\triangle_{L/c}(\gamma, \delta)$ on $G_{\mathrm{s}\mathrm{r}}(F)\cross L_{\theta,\mathrm{s}\mathrm{r}}(F)$

called the transfer factor. Of course their construction applies to the most general setting.

In our case, we know that

$\triangle_{L/G}(\gamma, \delta)=\{$

1 if $\gamma\in \mathrm{N}_{L/G}(\delta)$ ,
$0$ otherwise.

To define the endoscopic lifting, we need the following conjecture.

Conjecture 3.1 ( $\mathrm{b}\mathrm{a}\mathrm{n}\mathrm{s}\mathrm{f}\mathrm{e}\mathrm{r}$ conjecture). For $f\in C_{c}^{\infty}(L(F))$ , there exisis $f^{G}\in C_{c}^{\infty}(G(F))$

such that

$SO_{\gamma}(f^{G})= \sum_{\delta}\triangle_{L/G}(\gamma, \delta)O_{\delta,\theta}(f)$
.

Here $\delta$ runs over the $\theta$ -conjugacy classes whose norm contains $\gamma$ .
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As opposed to the ordinary (i.e. $\theta=\mathrm{i}\mathrm{d}$) case, we do not have the precise notion of
stable distributions in the twisted case. But we assume this in the following. We also have
to postulate the existence of discrete L-packets. An irreducible admissible representation
$\pi$ of $G(F)$ is square integrable if it appears discretely in Harish-Chandra’s Plancherel
formula for $G(F)$ . The set of isomorphism classes of such representations is denoted by
$\Pi_{\mathrm{d}\mathrm{i}\mathrm{s}\mathrm{c}}(G(F))$ .
Conjecture 3.2. (1) $\Pi_{\mathrm{d}\mathrm{i}\mathrm{s}\mathrm{c}}(G(F))$ is partitioned into a disjoint union of finite sets of
representations $\Pi_{\varphi}$ called (discrete) L-packets:

$\Pi_{\mathrm{d}\mathrm{i}\mathrm{s}\mathrm{c}}(G(F))=\prod_{\varphi\in\Phi_{\mathrm{d}\mathrm{i}\mathrm{s}\mathrm{c}}(G(F))}\Pi_{\varphi}$
.

(2) There exisis a function $\delta(1$ , $\bullet$ $)$ : $\Pi_{\varphi}arrow \mathbb{C}^{\mathrm{x}}$ such that

$\Theta_{\varphi}:=\sum_{\pi\in \mathrm{I}\mathrm{I}_{\varphi}}\delta(1,\pi)\Theta_{\pi}$

is a stable distribution.

An irreducible admissible representation of $G$ is tempered if it contributes non-trivially
to the Plancherel formula. Let $P=MU$ be a $F$-parabolic subgroup of $G$ and $\tau\in$

$\Pi_{\mathrm{d}\mathrm{i}\mathrm{s}\mathrm{c}}(M(F))$ . Then the induced representation $\mathrm{i}\mathrm{n}\mathrm{d}_{P(F)}^{G(F)}[\tau\otimes 1_{U(F)}]$ is a direct sum of irre-
ducible tempered representations of $G(F)$ :

$\mathrm{i}\mathrm{n}\mathrm{d}_{P(F)}^{G(F)}[\tau\otimes 1_{U(F)}]\simeq\bigoplus_{i=1}^{p_{\tau}}\pi_{i}(\tau)$ .

Moreover, any irreducible tempered representation of $G(F)$ is obtained in this way for
some $(M, \tau)$ unique up to $G(F)$-conjugation. Regarding this, we define a tempered L-
packet by

$\Pi_{\varphi}:=\prod_{\tau\in\Pi_{\varphi}^{M}}\{\pi_{i}(\tau)|1\leq i\leq l_{\tau}\}$
,

where $\Pi_{\varphi}^{M}$ is a discrete $L$-packet of $M$ . By putting $\delta(1, \pi_{i}(\tau)):=\delta(1, \tau)$ , Conj.3.2 with
$\Pi_{\mathrm{d}\mathrm{i}\mathrm{s}\mathrm{c}}(G(F))$ replaced by the set $\Pi_{\mathrm{t}\mathrm{e}\mathrm{m}\mathrm{p}}(G(F))$ of the isomorphism classes of irreducible
tempered representations of $G(F)$ follows.

Finally we say that an irreducible admissible $\theta$-stable representation $\pi$ of $L(F)$ is $\theta-$

discrete if it is tempered and is not induced from a $\theta$-stable tempered representation of a
proper Levi subgroup. Note that each $\theta$-discrete representation of $L(F)$ is generic.

Now we can define the twisted endoscopic lifting which we need.

Conjecture 3.3. There should be a bijection $\xi$ from the set $\Phi_{\mathrm{d}\mathrm{i}\mathrm{s}\mathrm{c}}(G(F))$ of tempered L-
packets of $G(F)$ to the set $\Pi_{\theta,\mathrm{d}\mathrm{i}\mathrm{s}\mathrm{c}}(L(F))$ of isomorphism classes of $\theta$ -stable irreducible
$\theta$-discrete representations of $L(F)_{f}$ which should be characterized by

$\Theta_{\xi(\Pi),\theta}(f)=\Theta_{\Pi}(f^{G})$ ,

for any $f\in C_{c}^{\infty}(L(F))$ and $f^{G}\in C_{c}^{\infty}(G(F))$ as in Conj.3.1.
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3.2. TE implies GPC. Now we prove the following.

Theorem 3.4. Suppose the Conj.3.3. Then the generic packet conjecture is valid for $G$ .

Write $l:=\mathrm{L}\mathrm{i}\mathrm{e}L$. For $h\in C_{c}^{\infty}(l(F))$ and $t\in F^{\cross}$ , we put $h_{t}(X):=h(t^{-1}X),$ $(X\in \mathfrak{l}(F))$ .
We assume that the support of $f\in C_{c}^{\infty}(L(F))$ is sufficiently small so that there exists
a neighborhood $\mathcal{V}$ of $0$ in $1(F)$ , on which the exponential map is defined and injective,
satisfying $\mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}f\subset\exp(\mathcal{V})$ . Then we can consider $f\circ\exp\in C_{c}^{\infty}(\mathfrak{l}(F))$ . Taking $t$ sufficiently
small, we may define $f_{t}\in C_{c}^{\infty}(L(F))$ by $f_{t}\circ \mathrm{e}\mathrm{x}\mathrm{p}:=(f\circ\exp)_{t}$ . Further we might take $f$

and $\mathcal{V}$ so that the transferred function $f^{G}$ satisfies the same condition. We define $f_{t}^{G}$ in
the same fashion. As in [Sh, Lem.9.7], one can prove:

Lemma 3.5. Let $f\in C_{c}^{\infty}(L(F))$ and $f^{G}\in C_{c}^{\infty}(G(F))$ be as in Conj.3.1. Suppose that
$\mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}f$ is so small that we can define $f_{t}$ and $f_{t}^{G}$ for sufficiently small $t$ . Then we have

$SO_{\gamma}(f_{t^{2}}^{G})= \sum_{\delta}\Delta_{L/G}(\gamma, \delta)O_{\delta,\theta}(f_{t^{2}})$
,

for $t\in F^{\cross}$ small enough.

Prove the theorem. Since $\mathrm{i}\mathrm{n}\mathrm{d}_{P(F)}^{G(F)}[\tau\otimes 1_{U(F)}]$ is generic if $\tau$ is so, we are reduced to the
case of a discrete $L$-packet $\Pi$ . Then by Conj.3.3, we have

$_{\xi(\Pi),\theta(f)=\sum_{\pi\in\Pi}\delta(1,\pi)\Theta_{\pi}(f^{G})}$ .

Suppose that $\mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}f$ is sufficiently small. Then applying the asymptotic expansion (Th.2.3)
to the both side, we have

$\sum_{\circ\in N(1^{\theta}(F))}c\mathrm{o},\theta(\xi(\Pi))\mu \mathrm{o}(\wedge f^{\theta}\mathrm{o}\exp)=\sum_{\mathit{0}\in N(\mathrm{g}(F))}\sum_{\pi\in\Pi}c_{\mathit{0}}(\pi)^{\wedge}\mu_{0}(f^{G}\circ\exp)$
.

Here $f^{\theta}\in C_{c}^{\infty}(G^{\theta}(F))$ is the descent of $f$ .
Let $\mathit{0}\in N(\mathfrak{g}(F))$ and $N\in \mathit{0}$ . We say that $0$ is $r$ -regular if the variety $\mathfrak{B}_{N}$ of Borel

subalgebras of $\mathfrak{g}$ containing $N$ is $r$-dimensional. It is a result of Harish-Chandra that

$\mu_{0}(\wedge f_{t^{2}}^{G}\circ\exp)=|t|_{F}^{2r\wedge}\mu_{0}(f^{G}\circ\exp)$

for an $r$-regular $\mathit{0}$ . The same is true for $\mathrm{t}^{\theta}$ .
Now recall that $\xi(\Pi)$ is generic. That is, for any $0$-regular nilpotent $N$ and $\phi$ as in \S 2,

we have $\mathcal{W}_{N,\phi}(\xi(\square ))\neq 0$ . Noting the uniqueness of the Whittaker model, we deduce that
$\mathrm{t}\mathrm{r}(\xi(\Pi)(\theta)|\mathcal{W}_{N,\phi}(\xi(\Pi)))=1$ and hence $c_{D,\theta}(\xi(\Pi))=1$ for any regular O. Thus in the
equality

$\sum_{\mathrm{D}\in N(\mathfrak{l}^{\theta}(F))}c_{\mathrm{J}\supset,\theta}(\xi(\Pi))\mu \mathrm{o}(\wedge f_{t^{2}}^{\theta}\mathrm{o}\exp)=\sum_{\mathit{0}\in N(\mathrm{g}(F))}\sum_{\pi\in\Pi}c_{\mathit{0}}(\pi)^{\wedge}\mu_{\mathit{0}}(f_{t^{2}}^{G}\circ\exp)$
,

the terms of order $0$ in $|t|_{F}$ on the left hand side is not zero. Thus $c_{\mathit{0}}(\pi)$ is not zero at
least one regular $\mathit{0}$ . This combined with Th.2.1 implies the genericity of $\Pi$ .
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