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The space of marked $n$ distinct points on the complex projective line $\mathrm{C}\mathrm{P}^{1}$ up to pro-
jective transformations is called a configuration space and we denote it by $Q$ . It admits a
structure of a complex manifold of dimension $n-3$ , and has a long history for attracting
many mathematicians, though we focused in the talk only on ones related with complex
hyperbolic geometry.

Deligne and Mostow construct a family of equivariant maps of the universal cover of 2
to the $(n-3)$-dimensional complex projective space with respect to the action of $\pi_{1}(Q)$ and
the projective transformations in [3]. It is parameterized by the exponents of an integral
representation of a several variable analogue of the hypergeometric function. The main
focus of their paper is to discuss when the holonomy representation, which is shown to lie
in PU $(1, n-3)\subset \mathrm{P}\mathrm{G}\mathrm{L}_{n-2}(\mathrm{C})$ is discrete, and to find many complex hyperbolic lattices.

On the other hand, Thurston provides a different construction of complex hyperbolic
$\mathrm{s}\mathrm{t}\dot{\mathrm{r}}\mathrm{u}\mathrm{c}\mathrm{t}\mathrm{u}\mathrm{r}\mathrm{e}\mathrm{s}$ on $Q$ in [13] based on euclidean cone structures on $\mathrm{C}\mathrm{P}^{1}$ , each of which is
assigned to a configuration via a generalized Schwarz-Christofell correspondence. It is
parameterized by the cone angles. His approach $\mathrm{r}\mathrm{e}$-discovers complex hyperbolic lattices
found by Deligne and Mostow. Strictly speaking, Thurston constructed structures not on
2 but rather on the quotient of 2 by the action of remarking cone points with the same
cone angles, and in fact he found more lattices.

Although the discovery of lattices has been emphasized as a comnon part of their pa-
pers, they both actually constructed the rooted families of incomplete complex hyperbolic
$8\mathrm{t}\mathrm{r}\mathrm{u}\mathrm{C}\mathrm{t}\mathrm{u}\mathrm{r}\mathrm{e}\mathrm{s}$ on $Q$ which provide lattices in particular cases. The first purpose of the talk
was to confirm that their underlying families of complex hyperbolic structures on 2 are
the same.

Deligne and Mostow studied the family from a viewpoint of Mumford’s compactifica-
tion in [10]. On the other hand, Thurston studied their completion from a viewpoint of
cone manifolds. However, neither papers have deformation theoretic viewpoints, though
Kapovich and Millson pointed out such aspect in relation with the study of mechanical
linkages in $[5, 6]$ . The second purpose of the talk was to review their families as the defor-
mations of complex hyperbolic cone structures on $Q$ for small $n$ , in view of the deformation
theory for real hyperbolic cone 3-manifolds developed by [12, 2, 11, 4, 7, 1]. The study
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stays in very primitive stage still, but a few small, and we believe suggestive, observations
in contrast with $[9, 14]$ were presented.

We will discuss the details in [8].
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