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$0$ . Introduction

In this short note, we shall give a brief survey on geometric aspects of Meyer’s

function following the paper [5].

Let $\mathcal{M}_{g}$ be the mapping class group of a smooth oriented closed surface $\Sigma_{g}$ of

genus $g$ . Namely it is the group of all isotopy classes of orientation preserving

diffeomorphisms of $\Sigma_{g}$ . Further let

$\rho:\mathcal{M}_{g}arrow \mathrm{S}\mathrm{p}(2g;\mathbb{Z})$

denote the classical $\mathrm{r}\mathrm{e}\mathrm{p}\mathrm{r}\mathrm{e}\mathrm{S}\mathrm{e}\mathrm{n}\mathrm{t}\dot{\mathrm{a}}\mathrm{t}\mathrm{i}_{\mathrm{o}\mathrm{n}}$ defined by actions of $\mathcal{M}_{g}$ on the first integral

homology group $H=H_{1}(\Sigma_{g}; \mathbb{Z})$ .

Our main object here is Meyer’s signature cocycle $\tau$ (see [4]), which is a group

2-cocycle of the Siegel modular group $\mathrm{S}\mathrm{p}(2g;\mathbb{Z})$ . Topologically, this presents the

signature of total spaces of surface bundles over surfaces. Of course, if we pull

back the cocycle by the representation $\rho$ , then we can regard $\tau$ as a 2-cocycle of

the mapping class group $\mathcal{M}_{g}$ . But here, let us consider mainly the restriction of

$\tau$ to a subgroup of $\mathcal{M}_{g)}$ that is, the hyperelliptic mapping class group $\triangle_{\mathit{9}}$ which

consists of classes commuting with a fixed hyperelliptic involution. As is known,

$\triangle_{g}=\mathcal{M}_{g}$ if $g=1,2$ and $\triangle_{g}\neq \mathcal{M}_{g}$ for $g\geq 3$ . Then by the fact that the group

$\triangle_{g}$ is acyclic over $\mathbb{Q}$ , the restricted signature cocycle must be the coboundary of a

unique rational 1-cochain $\phi_{g}$ : $\triangle_{g}arrow \mathbb{Q}$ ( $i.e$ . $\delta\phi_{g}=\rho^{*}\tau|_{\triangle_{\mathit{9}}}$ holds). In the following,

we call it Meyer’s function of genus $g$ .
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In the case of genus one, geometric meanings of Meyer’s function have been

studied by Atiyah in [1]. In fact, he related it to many invariants defined for

each element of $\triangle_{1}=\mathcal{M}_{1}\cong SL(2;\mathbb{Z})$ including Hirzebruch’s signature defect, the

logarithmic monodromy of Quillen’s determinant line bundle, the Atiyah-Patodi-

Singer $\eta$-invariant and its adiabatic limit. This framework suggests the existence of

the higher geometry of the Riemann moduli space and of various universal families

over it.

In the case where the genus is greater than one, we can also interpret Meyer’s

function by virtue of other invariants under certain conditions.

1. Eta-invariant

To be brief, the $\eta$-invariant of the signature operator on a Riemannian 3-manifold

measures the extent to which the Hirzebruch signature formula fails for a nonclosed

Riemannian 4-manifold whose metric is a product near its boundary.

Let $f\in \mathcal{M}_{g}$ be of finite order and $M_{f}$ the mapping torus constructed from $f$ .
Namely, it is the identification space $\Sigma_{g}\cross[0,1]/(p, 0)\sim(f(p), 1)$ . We endow $M_{f}$

with the metric which is induced from the product of the standard metric on $S^{1}$

and a metric so that $f$ acts on $\Sigma_{g}$ as an isometry.

If we restrict ourselves to the hyperelliptic mapping class group $\triangle_{g)}$ we obtain

the following theorem.

Theorem A. Let $\triangle_{g}$ be the hyperellip$\mathrm{t}ic$ mapping class $g\mathrm{r}o$up of genus $g$ . Then

$\eta(M_{f})=\phi_{g}(f)$

holds for any element $f\in\triangle_{g}$ of fini$\mathrm{t}e$ order. In particular, $\eta(M_{f})$ is a topological

invariant of $M_{f}$ .

As an application, using the precise definition of Meyer’s function (see [5]), we

can give a necessary condition that an automorphism of $\Sigma_{g}$ to be hyperelliptic.

Corollary. Let $f\in \mathcal{M}_{g}$ be of finite order. If $f\in\triangle_{g}$ , namely $f$ commutes with a

hyperelliptic involution, then

$\eta(M_{f})\in\frac{1}{2g+1}\mathbb{Z}$

holds, where $\frac{1}{2g+1}\mathbb{Z}d$enotes th$e$ additive $g\mathrm{r}o$up $\{\frac{n}{2g+1}\in \mathbb{Q}|n\in \mathbb{Z}\}$ .
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Example. Let $f\in \mathcal{M}_{3}$ be of order 3 so that the quotient orbifold of $\Sigma_{3}$ by its

cyclic action is homeomorphic to $S^{2}(3,3,3,3,3)$ . Then direct computations show

that the $\eta$-invariant of corresponding mapping torus is given by

$\eta(M_{f})=-\frac{2}{3}\not\in\frac{1}{7}\mathbb{Z}$ .

Hence the above corollary implies that $f$ cannot be realized as an automorphism

of a hyperelliptic Riemann surface.

2. Casson invariant

The $Cas\mathit{8}on$ invariant is an integer valued invariant for oriented homology 3-

spheres. Roughly speaking, it counts the number (with signs) of conjugacy classes

of irreducible representations of the fundamental group of an oriented homology

3-sphere into the Lie group $SU(2)$ .

From the theory of characteristic classes of surface bundles, due to Morita [6], the

Casson invariant can be regarded as the secondary characteristic class associated

to the first Morita-Mumford class $e_{1}\in H^{2}(\mathcal{M}_{g}; \mathbb{Q})$ through the correspondence

between elements of $\mathcal{M}_{g}$ and 3-manifolds via the Heegaard splittings. In this point

of view, the very core of the Casson invariant is essentially represented by the

homomorphism

$d_{0}$ : $\mathcal{K}_{g}arrow \mathbb{Q}$ ,

which we call Morita’s homomorphism. Here $\mathcal{K}_{g}$ is the subgroup of $\mathcal{M}_{g}$ generated

by all the Dehn twists along separating simple closed curves on $\Sigma_{g}$ .

If we consider Meyer’s function $\phi_{g}$ on the subgroup $\mathcal{K}_{g}$ , then we have

Theorem B. Meyer’s $f\mathrm{u}$nction essentially coincides with Morita’s homomorphism

on $\triangle_{g}\cap \mathcal{K}_{g}$ . To be more precise, $3\phi_{g}=d_{0}$ holds on $\triangle_{g}\cap \mathcal{K}_{g}$ .

Remark. The group $\triangle_{g}\cap \mathcal{K}_{g}$ coincides with $\triangle_{g}\cap \mathcal{I}_{g}$ , where $\mathcal{I}_{g}=\mathrm{K}\mathrm{e}\mathrm{r}\rho$ is the Torelli

group. This fact is shown by the existence of a crossed homomorphism $\tilde{k}$ : $\mathcal{M}_{g}arrow$

$\frac{1}{2}\Lambda^{3}H/H$ satisfing $\tilde{k}|_{\triangle_{g}}=0$ and the exact sequence $1arrow \mathcal{K}_{g}arrow \mathcal{I}_{g}arrow\Lambda^{3}H/Harrow 1$ ,

due to Johnson (see [2], [3]). We call this group the hyperelliptic Torelli group and

denote it by $J_{g}$ .
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Therefore, in principle, we can say that the Casson invariant of homology 3-
spheres corresponding to elements of the hyperelliptic Torelli group $J_{g}$ is determined

by Meyer’s function.

By virtue of Theorem $\mathrm{B}$ and a formula of Meyer’s function (see [5] for details),

we can compute explicit values of Morita’s homomorphism on interesting elements

of $J_{g}$ . Here, by a BSCC-map of genus $h$ , we mean the Dehn twist along a bounding

simple closed curve on $\Sigma_{\mathit{9}}$ which separate it into two subsurfaces of genera $h$ and

$g-h$ .

Corollary. Let $\psi_{h}\in J_{g}(1\leq h\leq g)$ be a BSCC-map of genus $h$ . Then the value

of Morita’s homomorphism on $\psi_{h}$ is given by

$d_{0}( \psi h)=-\frac{12}{2g+1}h(g-h)$ .

Remark. It has been shown by Morita that the above formula actually holds for

the whole gr$o\mathrm{u}\mathrm{p}\mathcal{K}_{g}$ (cf. [7]).
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