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1. INTRODUCTION

G. $\mathrm{M}\mathrm{c}\mathrm{S}\mathrm{h}\mathrm{a}\mathrm{n}\mathrm{e}[8]$ described a remarkable identity concerning the lengths
of simple closed geodesics on a hyperbolic once punctured torus. This
identity was extended by B. Bowditch [5] to the following identity for
quasifuchsian punctured torus groups.

Theorem 1.1. Let $T$ be $a$ once-punctured torus and $S$ the set of the
homotopy classes of the essential simple closed curves on T. Then for
any quasifuchsian representation $\rho:\pi_{1}(T)arrow \mathrm{P}\mathrm{S}\mathrm{L}(2, C)_{J}$ the following
identity holdsi

$\sum\frac{\mathrm{I}}{1+e^{l(\beta(}\gamma))}=\frac{1}{2}$ ,
$\gamma\in S$

where $l(\rho(\gamma))\in C/2\pi.iZ$ denotes the complex translation length $of\rho(\gamma)$ .

Further, B. Bowditch [4] proved the following variation of the identity
for the punctured torus bundles over the circle:

Theoren 1.2. Let $M$ be an orientable complete finite-volume hyper-
bolic manifold which fibres over the $circ\iota^{7}e$ with fibre $a$ once-punctured
torus. Let $C$ be the set of the homotopy classes of the essential simple
closed cumes on the fiber. Then the following identity holds:

$\sum\frac{1}{1+e^{l(\beta}(\gamma))}=0$ .
$\gamma\in C$

Further, there is a natural partition of $C$ into two subsets $C_{L}$ and $C_{R}$ ,
such that the following identity holds;

$\sum\frac{1}{1+e^{l(\rho(}\gamma))}=\pm\lambda(\partial M)=-\sum\frac{1}{1+e^{l(())}\beta\gamma}$ ,
$\gamma\in C_{L}$ $\gamma\in C_{R}$

where $\lambda(\partial M)$ denotes the mudulus of the cusp with respect to a suitably
chosen basis.
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In this preliminary report, we will point out that there is a variation
of $\mathrm{M}\mathrm{c}\mathrm{S}\mathrm{h}\mathrm{a}\mathrm{n}\mathrm{e}’ \mathrm{s}$ identity which applies to the groups in the Riley slice
(Theorem 3.1). We will also show that there is a variation of $\mathrm{M}\mathrm{c}\mathrm{S}\mathrm{h}\mathrm{a}\mathrm{n}\mathrm{e}’ \mathrm{S}$

identity for some 2-bridge links, and propose a conjectural variation for
every hyperbolic 2-bridge link (Conjecture 4.1). We will also discuss
the relation with the conjecture and a certain problem for 2-bridge link
groups.

This study arose as a byproduct of the author’s joint work on punc-
tured torus groups and 2-bridge knot groups with Hirotaka Akiyoshi,
Masaaki Wada, and Yasushi Yamashita ([2], [3]). The author would
like to express his deepest thanks to B. H. Bowditch, G. Burde and K.
Oshika for their stimulating suggestions and T. Ohtsuki for his expla-
nation of his unpublished result with R. Riley [9].

2. RATIONAL TANGLES AND 2-BRIDGE LINKS

Let $S$ be a 4-times punctured sphere. We identify $S$ with the quotient
space $(R^{2}-Z^{2})/\Gamma$ , where $\Gamma$ is the group of transformations on $R^{2}-Z^{2}$

generated by $\pi$-rotations about points in $Z^{2}$ . For each $r\in\hat{Q}$ $:=$

$Q\cup \mathrm{t}\infty\}$ , let $\alpha_{r}$ be the simple loop in $S$ obtained as the projection of
the line in $R^{2}-Z^{2}$ of slope $r$ . Then $\alpha_{r}$ is essential, i.e., it does not
bound a disk in $S$ and is not homotopic to a loop around a puncture.
Conversely, any essential simple loop $\alpha$ in $S$ is isotopic to $\alpha_{r}$ for a
unique $r\in\hat{Q}$ . Then $r$ is called the slope of $\alpha$ , and is denoted $s(\alpha)$ .

A trivial tangle is a pair $(B^{3}, t)$ , where $B^{3}$ is a 3-ball and $t$ is a union
of two arcs properly embedded in $B^{3}$ which is parallel to a union of two
mutually disjoint arcs in $\partial B^{3}$ . A meridian $m$ of $(B^{3}, t)$ is an essential
simple loop on $\partial B^{3}-t$ which bounds a disk in $B^{3}$ separating the
components of $t$ . A rational tangle is a trivial tangle $(B^{3}, t)$ endowed
with a homeomorphism from $\partial B^{3}-t$ to $S$ . The slope of a rational
tangle is defined to be the slope of the meridian. We denote a rational
tangle of slope $r$ by $(B^{3}, t(r))$ .

The fundamental group $\pi_{1}(B^{3}-t(r))$ is identified with the quotient
$\pi_{1}(S)/<\alpha_{r}>$ , where $<>$ denotes the normal closure, and is a free
group of rank two freely generated by meridians $m_{1}$ and $m_{2}$ of the com-
ponents of $t(r)$ . Here, a meridian of a component of $t(r)$ is an element
of $\pi_{1}(B^{3}-t(r))$ which is represented by a based simple loop bounding
a disk intersecting $t(r)$ transvesely in one point in the component.

Let $D$ be the modular diagram, that is the tesselation of the upper
half space $H^{2}$ by ideal triangles which is obtained from the ideal sim-
plex with the ideal vertex set {0/1, 1/1, 1/0} by repeated reflection in
the edges. We identify $\hat{Q}$ with the ideal vertices of $D$ . For each $r\in Q^{\mathrm{A}}$ ,
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let $\Lambda(r)$ be the group of automorphisms of $D$ generated by reflections
in the edges of $D$ with an endpoint $r$ . Then Theorem 1.2 of Komori
and Series [7] can be paraphrased as follows:

Proposition 2.1. (1) For each $s\in\hat{Q},$
$\alpha_{\mathit{8}}$ is null-homotopic in $B^{3}-$

$t(r)$ if and only if $s=r$ .
(2) Let $s$ and $s’$ be elements of $\hat{Q}-\{r\}$ . Then $\alpha_{s}$ and $\alpha_{\mathit{8}’}$ are homo-

topic in $B^{3}-t(r)$ if and only if $s$ and $s’$ lies the same orbit of $\Lambda(r)$ .
If we choose $r=\infty$ , then the above proposition implies a bijective

correspondence between $Q\cap[0,1]$ and the set of the homotopy classes
in $B^{3}-t(\infty)$ of essential simple loops in $\partial B^{3}-t(\infty)$ which are not
null-homotopic in $B^{3}-t(\infty)$ .

For each $r\in\hat{Q}$ , let $L(r)$ be the 2-bridge link of slope $r$ , i.e., $(S^{3}, L(r))=$

$(B^{3}, t(\infty))\cup(B^{3}, t(r))$ is obtained from the rational tangles of slopes
$\infty$ and $r$ by identifying their boundaries through the identity map. [lt
should be noted that since the boundaries of the rational tangle comple-
ments are identified with $S$ , the term “identity map” has a well-defined
meaning.] $L(r)$ has one or two components according as the denomina-
tor of $r$ is odd or even. Then the link group $G(L(r)):=\pi_{1}(S3-L(r))$

is identified with $\pi_{1}(S)/<\alpha_{\infty},$ $\alpha_{r}>$ . Let $\Lambda(\infty, r)$ be the group of au-
tomorphisms of $D$ generated by the reflections in the edges of $D$ which
has $\infty$ or $r$ as an endpoint. Then there are two rational numbers $r_{1}$ and
$r_{2}$ with $0<r_{1}<r<r_{2}<1$ such that the region bounded by the four
edges $<\infty,$ $0>,$ $<\infty,$ $1>,$ $<r,$ $r_{1}>$ , and $<r,$ $r_{2}>$ is the canonical
fundamental domain of $\Lambda(\infty, r)$ . We can obtain the following result:

Proposition 2.2. Let $s$ and $s’$ be elements of $\hat{Q}$ which lies in the same
orbit under $\Lambda(\infty, r)$ . Then $\alpha_{s}$ and $\alpha_{s’}$ are homotopic in $S^{3}-L(r)$ .
Corollary 2.3. Suppose $s$ belongs to the orbit of $\infty orr$ under $\Lambda(\infty, r)$ .
Then $\alpha_{s}$ represent the $trivia_{-}l$ element of $G(L(r))$ . In particular, there
is an epimorphism from $G(L(s))$ to $G(L(r))$ sending the meridian gen-
erators of $G(L(s))$ to that of $G(L(r))$ .

The above corollary is essentially equivalent to an unpublished result
of Ohtsuki and Riley [9]. By studying the “Markoff maps” associated
with 2-bridge knots (see [5] and [2]), we can prove that the converse
to the first assertion of the above corollary holds when $r$ is 2/5, 2/7,
or $1/p$ for some integer $p$ . Therefore, we would like to propose the
following conjecture:

Conjecture 2.4. (1) (Strong version) $\alpha_{s}$ and $\alpha_{s’}$ are homotopic in
$S^{3}-L(r)$ if and only if they belong to the same orbit under $\Lambda(\infty, r)$ .
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(2) (Weak version) $\alpha_{s}$ represents the trivial element of $G(L(r))$ if
and only if $s$ belongs to the orbit of $\infty$ or $r$ under $\Lambda(\infty, r)$ .

3. VARIATION OF $\mathrm{M}\mathrm{c}\mathrm{s}_{\mathrm{H}}\mathrm{A}\mathrm{N}\mathrm{E}’ \mathrm{s}$ IDENTITY FOR THE RILEY SLICE

For each $\omega\in C$ , let $\rho_{\omega}$ be the representation of $\pi_{1}(B^{3}-t(\infty))$ defined
by

$\rho_{\omega}(m_{1})=$ , $\rho_{\omega}(m_{2})=$

We denote the image of $\rho_{\omega}$ by $G_{\omega}$ . Let $\mathcal{R}$ be the space defined by:
$\mathcal{R}=$ { $\omega\in C|\Omega(G\omega)/G_{\omega}$ is homeomorphic to a four times punctured sphere}.
This has been called the Riley slice of Schottky groups $[\mathrm{K}\mathrm{e}\mathrm{S}, \mathrm{K}\mathrm{o}\mathrm{S}]$ .

Theorem 3.1. Let $\rho=\rho_{\omega}$ be the representation corresponding to a
group $G_{\omega}$ in the Riley slice. Then the following identity holds:

2 $\sum_{0<r<1}\frac{1}{1+e^{l(_{\beta}}(\alpha r))}+\frac{\mathrm{I}}{1+e^{l(}\rho(\alpha 0))}+\frac{1}{1+e^{l(_{\beta}}(\alpha 1))}=0$ .

Further, the parameter $\omega$ is determined by the following identity
$f$

$1/ \omega=2\sum_{/0<r<12}\frac{1}{1+e^{l(\rho(}\alpha r))}+\frac{1}{1+e^{l(\rho(}\alpha 0))}+\frac{1}{1+e^{l(\rho()}\alpha 1/2)}$ .

Proof. This theorem can be easily proved by using (a refinement of)
Proposition 3.13 of Bowditch [5] and the fact that each representation
$\rho_{\omega}$ corresponds to a Markoff map sending $\infty$ to $0$ (see Section 6 of
[2] $)$ . $\square$

4. $_{\mathrm{A}\mathrm{R}\mathrm{I}\mathrm{A}\mathrm{T}}\mathrm{I}\mathrm{o}\mathrm{N}$ OF $\mathrm{M}\mathrm{c}\mathrm{S}\mathrm{H}\mathrm{A}\mathrm{N}\mathrm{E}’ \mathrm{S}$ IDENTITY FOR 2-BRIDGE LINKS

Hyperbolic 2-bridge links have the following nice characterization
modulo the Poincare Conjecture (see [1]): A discete subgroup $G$ of
$\mathrm{P}\mathrm{S}\mathrm{L}(2, c)$ generated by two parabolic transformations is of cofinite
valume if and only if it is isomorphic to the fundamental group of the
complement of a hyperbolic 2-bridge link.

In this section, we propose a conjectural variation of $\mathrm{M}\mathrm{c}\mathrm{S}\mathrm{h}\mathrm{a}\mathrm{n}\mathrm{e}’ \mathrm{S}$ iden-
tity for 2-bridge links. To do this, note that even if $L(r)$ has two compo-
nents, the Euclidean structures of the boundary of the cusp neighbour-
hoods of the hyperbolic manifold $S^{3}-L(r)$ are unique up to similarity.
This follows from the fact that $L(r)$ has a $Z_{2}\oplus Z_{2}$-symmetry, some
element of which interchanges the components of $L(r)$ when $L(r)$ has
two components. Let $\ell$ be a longitude of $L(r)$ constructed from a stan-
dard alternating diagram of $L(r)$ as illustrated in Figure 4.1. We may
assume that the boundary of a cusp neighbourhood of $S^{3}-L(r)$ is
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represented by the quotient of $C$ by the lattice $Z\oplus\lambda Z$ , generated
by the translations $[zarrow z+1]$ and $[zarrow z+\lambda]$ corresponding to
the meridian and the longitude $\ell$ . We define $\lambda(L(r))$ to be $\lambda/2$ or
$\lambda/4$ according as the denominator of $r$ is odd or even, and call it the
modulus of $L(r)$ . [Explicitely, $\lambda(L(r))$ represents the “modulus” of the
boundary of a cusp neighbourhood of the quotient hyperbolic orbifold
$(S^{\mathrm{s}_{-}}L(r))/(Z_{2}\oplus z_{2}).]$

Conjecture 4.1. Let $\rho$ be a faithful disctere $\mathrm{P}\mathrm{S}\mathrm{L}(2, c)$ representation
of a hyperbolic 2-bridge link group $G(L(r))$ . Then the following identity
holds:

2
$\sum_{0<r<r_{1}}\frac{1}{1+e^{l(\rho(\alpha_{r}}))}+2\sum_{rr_{2}<<1}\frac{1}{1+e^{l(\rho(\alpha_{r}}))}+r\in\{0,1,rr_{2}\}\sum_{1},\frac{1}{1+e^{l(\rho(\alpha}r))}=-1$ .

Here $r_{1}$ and $r_{2}$ are the rational numbers such that $0<r_{1}<r<r_{2}<1$
and that the region bounded by the four edges $<\infty,$ $0>,$ $<\infty,$ $1>,$ $<$

$r,$ $r_{1}>$ , $and<r,$ $r_{2}>$ . is the canonical fundamental domain of $\Lambda(\infty, r)$ .
Further the modulus $\lambda(L(r))$ of the cusp of the hyperbolic manifold
$S^{\mathrm{s}_{-}}L(r)$ is given by the following formula:

$\lambda(L(r))=2\sum_{r0<r<1}\frac{1}{1+e^{l(}\rho(\alpha_{r}))}+\sum_{r\in\{0_{r1}\}},\frac{\mathrm{I}}{1+e^{l(}\rho(\alpha r))}$.

By using the results and methods of Bowditch [4], [5], together with
the recent affirmative solution [3] of the conjecture that the topologi-
cal ideal triangulation of the hyperbolic 2-bridge link complemets con-
structed by [10] are the canonical geometric decompositions, we can see
that the above conjecture holds for 2-bridge knots of slopes 2/5 and
2/7. Further, we can see that Conjecture 4.1 is valid if and only if the
following two assertions hold:

(1) Conjecture 2.4 (2) holds.
(2) There are only finitely many rational numbers $r\in[0, r_{1}]\cup[r_{2},1]$

such that $\alpha_{r}$ is peripheral.
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