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Perturbations of maximal monotone operators
applied to the nonlinear Schrédinger and
complex Ginzburg-Landau equations

Noboru Okazawa* and Tomomi Yokota**
(MR &, #H EE)
Science University of Tokyo

1. Introduction

Let Q be a bounded or unbounded domain in R¥ with compact C2-boundary 9. In
L*(Q) we consider the nonlinear Schrodinger equation

%‘t‘- —iAut ufu=0, (z,0)€RxR,,

(1.1) u=0 on ONxR,,
u(z,0) = uo(z), T €,

where i = /—1, the exponent p > 1 is a constant and u is a complex-valued unknown
function (cf. Lions [11]). The global existence of unique strong solutions to (1.1) was first
proved by Pecher and von Wahl [16] under the following condition: 1 < p < co (N = 1,2)

and

(1.2) C1<p< A (BSN<3).

They also conjecture that if N > 3 then (N +2)/(N —2) is the largest possible exponent
for the global existence of strong solutions (see [16, Remark 1.3]). Applying her char-
acterization theorem for maximal monotonicity, Shigeta [17] removed the restriction of
N < 8 in condition (1.2).

The first purpose of this paper is to prove the global existence for all exponents
p > 1 contrary to the conjecture. The previous arguments ([16, 17]) depending on
the Gagliardo-Nirenberg inequality do not work in the case where p > (N +2)/(N —2).
So we have established a new inequality (see (1.3) below) similar to the sectorial estimate

*e-mail : okazawa@ma.kagu.sut.ac.jp
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of —A in L? (cf. [15]). Our approach here is much simpler than theirs and described as
follows. We use a new type perturbation theorem for maximal monotone operators in a

“complex” Hilbert space. In L2(2) we introduce two operators as follows:

Su = —Au for ue€ D(S) := H*(Q) N Hy (),
Bu = [uff'u for uwe€ D(B) := L*() N L?(Q),

where H?(Q2) and H}(f2) are the usual Sobolev spaces of L2-type. Let & > 0. Denoting
by B, the Yosida approximation of B, we can show that for every u € D(S) and p > 1,

p—1
1.3 Im(Su, B.u < =——Re(Su, B.u) 2.
(13) (1w Bayua] < B Re(Su, B

This inequality enables us to assert that iS + B is maximal monotone in L2(().

The second purpose is to discuss another applicability of the inequality (1.3). Actually,
we can improve the result of Unai and Okazawa [21] concerning the global existence for
the complex Ginzburg-Landau equation

X (A+ia)Aut s+ B —yu=0 in xR,
(1.4) vu=0 on N xR,,

’U.(.’D, 0) = "-‘0(3), z €1},

where A > 0, £ >0, p > 1 and a, 3, v € R are constants. This equation has been
widely studied by many authors using different methods (cf. Bu [3], Doering, Gibbon
and Levermore [5], Ginibre and Velo [6, 7], Temam [19] and Yang [22]). Recently blow-
up results for (1.4) with @ = v = 0 and k < 0 was given by Zaag [23]. Equation (1.4) is
obviously reduced to a usual nonlinear Schrédinger equation when A = k = v = 0 and to
a nonlinear heat equation when a = 8= = 0.

The third purpose is to consider a parabolic regularization to (1.1). Namely, we turn
our attention to the following equation \

allﬁ ]' l- p_l — > b
_&__(nﬂ)mnﬂuﬂl U =0 in QxR
(1.5) 4, =0 on AN xR,

un(z,0) = w(z), z€Q,

where n € N. This is a special case of (1.4) and regarded as an approximate problem to

(1.1).
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Before stating our results we give some notations and definitions used in this paper.
We shall use those spaces of complex-valued functions over Q (or its closure ) such as
L") (r > 1), Co(), C (), CHQ), C*=(Q), C=() (0 < a < 1), etc. The norms
of L7(Q) and H'(Q) are denoted by || - ||z~ and || - ||z1, respectively. Next we define two
kinds of strong solution. One is bounded globally and the other may grow exponentially.

Definition 1. The global strong solution to (1.1) (or (1.5)) is defined as an L?(Q)-valued
function u(t) := u(z,t) with the following properties:
 (a) ult) € HA(Q) N HX(Q) N L?(Q) for all ¢ > 0.
(b) u(-) is Lipschitz continuous on [0, 00): u(-) € C%1([0, 00); L2(Q)).
(c) The strong derivative «'(t) exists for almost all ¢ > 0 and is bounded in L3(f2):
u(-) € WH(0, 00; L2(1)). | |
(d) u(-) satisfies (1.1) (or (1.5)) almost everywhere on [0, co).

Definition 2. The global strong solution to (1.4) is defined as an L?(f2)-valued function
u(t) := u(z, 1) with the following properties: |

(a) u(t) € H*(Q) N H}(Q) N L2P(Q) for all t > 0.

(b) u(-) € C% ([0, T); L*(R)) V T > 0.

(¢) u(-) € Wh(0,T; L*()) VT > 0.

(d) u(-) satisfies (1.4) a.e. on [0, 00).

We now state our main results in this paper.

Theorem 1.1. Let p. > 1. Then for any vy € H2(Q) N HL(Q) N L??(Q) there exists a
unique global strong solution u(t) == u(zx,t) to (1.1) in L2(N) such that

(1.6) u(-) € L=(0, 00; H2() N L??(2)),

(1.7 u(") € C¥V3([0, c0); HA(Q) N COV@+D([0, 00); LPH (1)),
Ly lu@)llan < lluollan,

(1.9) llut) — v(®) 122 < lluo — vollz2,

(1.10) IVu(t) — Vo@)lZ < exlluo — vollza,

(L.11) lu(t) — v BEL < 2 Yerlfug — volla,

where v(t) is a solution to (1.1) with initial value vo € H2(Q) N HY(Q) N L??(Q) and

&1 = y/B (|0l + ol + [ Avollza + [[uollZar)-
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The next theorem improves the main result in [21] In fact, we e have eliminated the
condltlon Ak 4+ aff > 0 assumed there.

1
H*(Q) nH3 ()N L*P(Q) there exists a unique global strong solution u(t) := u(z,t) to (1 4)

in L2(Q) such that

2
Theorem 1.2. Let A > 0, k > 0 and p > 1. If |ﬁ|<;—‘/—2n, then for any uy €

(1.12) u(-) € L*(0,T; H*(R) N L*(Q)),

(1.13) u(") € C*'2([0, T}, Hy (@) n GOV ([0, T]; LP+(Q)),
(1.14) @l < €|ugl| g,

(1.15) Ilu(t) — V()22 < €"]|ug — ol 2,

(1.16) IVe(t) — Vo7 < c26”™||uo — w12,

(1.17) llu() — v T < 2P cse®lug — vl

where v(t) is a solution to (1.4) with initial value v, € H2(Q) N H}(Q) N L*>(0). Setting
Y+ = max{0,7}, c; and c; are given by
ez =AM |\ + d0) Mg — (k+ iB) o [P tg + ao|| 2 + 1. [jo] 2]
+ATHIA + i) Avg — (% + i) [uolP v + yuo|z2 + Yallvollz2],
e =K (A+ VA2 + ).

Theorem 1.3. Let u(t) := u(z,t) and u,(t) := un(z,t) be unique global strong solutions
to (1.1) and (1.5), respectively. Then for all t > 0,

(L18) o u(®) —ua(®)llze < (¢/20)F || Vuollp2, neN,
(1.19) IVa(t) - Vua()I32 < (t/20)Zca(ug), n €N,
(1.20) ) — w2 < 27 /2m) Reu(ug), neN,

where cy(uo) = /P || Vuol| 12 (3]| Aug|| 2 + 2||uolZ,)-

Remark 1. 1) Our method can be applied also to (1.1) (or (1.4)) with generalized non- .
linear term f(|uf?)u. Here we assume that f € C([0, co); R) N CY((0,00); R) with f' >0
and sf'(s) < cf(s) for some constant ¢ > 0. The details will be published elsewhere.

2) In the case where N' < 3 the solution to (1.1) (or (1.4)) is of class C; this can be
shown by regarding (1.1) (or (1.4)) as a semilinear evolution equation (cf. [16, 20, 22]).
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This paper is organized as follows. In Section 2 we prove a new type perturbation
theorem for maximal monotone operators in a Hilbert space, assuming that an abstract
version of the key inequality is satisfied. Section 3 is devoted to the key inequality. Once
the key inequality is established, Theorems 1.1 — 1.3 are immediate consequences of the

abstract results in Section 2.

2. Perturbation theorems

First we give definitions of nonlinear maximal monotone operators and semigroups of
type w in a complex Hilbert space X with inner product (-,-) and norm [} - ||.

An operator A with domain D(A) and range R(A) in X is said to be monotone if
Re(Aul — Aug,uy — up) > 0 for every uy, up € D(A). If, in addition, R(A 4 () = X for
some (and hence for every) ¢ € C with Re{ > 0, we say that A is mazimal monotone in
X.

A semigroﬁp of type w on D(A) (the closure of D(A) in X) is defined as a one-parameter
family {U(t);t > 0} with the following properties:

@U@ =1, Ut+s)=U@®)U(s), t,s>0.

(ii) U(®)v — v (¢ | 0), v € D(A).
(i) [U@)v1 —U@wall < e*flvr —wll, vi,v2 € D(A), ¢ 2 0.
In particular, a semigroup of type O is a contraction semigroup.
The next lemma may be already known (at least when w = 0), but we can give it a

simple proof.

Lemma 2.1. Let A be a nonlinear operator in X and w € R. Assume that A + w is
mazimal monotone in X. Let {U(t);t > 0} be the semigroup of type w on D(A) generated
by —A. Then for every u € D(A) andt > 0,

AU @)ull < ]| Au]|.

Proof. Let 0 < & < |w|™! and u € D(A). Then we see from the maximal monotonicity of
A+ w that (1+eA)~! is Lipschitz continuous on X with Lipschitz constant (1 — ew)™1.
Hence we obtain - ‘ ' '

AL+ eA) | = e Y|(1 + cA) (1 + eA)u — (1 + eA) ]
< (1 — ew) || Aul|.
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This ﬁnpﬁes that for every ¢ > 0 and n € N with n > wt,
(2.1) AL+ /) AT ul| < [1— (wt/n)] | Au].

Let {U(t);t > 0} be the semigroup of type w on D(A) generated by —A. Then it is
well-known that for every v € D(A),

(2.2) [1 +(@E/MA™ > Uy in X (n— o)

where the convergence is uniform with respect to ¢ on every finite subinterval of [0, co)
(see Crandall and Liggett [4] or Miyadera [13]). In view of (2.1) and (2.2) we see from
the demi-closedness of A (see Kato [9, Lemma 2.5]) that U(t)u € D(A) and

All+ (t/n)A]™™u — AU(t)u weakly in X.
So we obtain
AU (®)ul < liminf | AL+ (¢/n) AT u] < e Au].
This completes the proof of the desired inequality. | O

For the next lemma see e.g. [13, pp. 145-148].

Lemma 2.2. Let A, w and {U(t);t > 0} be the same as in Lemma 2.1. If uy € D(A),
then u(t) := U(t)ug is a unique strong solution to the initial value problem

(IW) w(t) + Au(t) =0, u(0) =y,

in the folloﬁ)ing sense:
(a) w(t) € D(A) for allt > 0.
(b) Jlu®) — w(s)|| < &+¢+)|| Aug||-[t — 5|, 2,5> 0, w, = max{0,w}.
(c) ¥/() egists a.e. on [0,00), with ||Ju/(¥)|| < e“t|| Aug|| (a.e.).
(d) u(-) satisfies (IVP) a.e. on [0,c0).

Here we note that the Lipschitz constant in (b) is determined by the estimate of ¥/(t) in
(c). | |

Now we state our first perturbation theorem for maximal monotone operators which
will be applied to (1.1).
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Theorem 2.3. Let S be a nonnegative selfadjoint operator in X and B a nonlinear maxi-
mal monotone operator in X, with D(S) N D(B) # ¢. Assume that there exists a constant
0, with 0 < 0; < 7/2 such that for every u € D(S) and e > 0,

(2'3) lIm(S u, Beu)l < (ta'n el)RB(S u, BE“))

where B, is the Yosida approzimation of B: B, := & [1 — (1 +&B)™Y]. Then
(a) iS + B is mazimal monotone in X.
(b) For every v € D(5'?) and ¢ € C with Re{ > 0,
(2.4) | 18"2GS + B + )7 || < (Re)~H1SY2v],
where S'/2 is the square root of S.
(c) For every uo € D(S)ND(B) andt > 0,

1+ sin6f;

2. 2 2L
(25) 15U @uoll* + | BUEuoll® < 7=

1S + Byuoll®,
where {U(t)} is the contraction semigroup on D(S) N D(B) generated by —(iS+ B).

Proof. Let u € D(S) and € > 0. First we shall show that

1 +Si1101

2. 2 2«
(2.6) | |Sul]* + || Beull* < 1m0,

@S + B)ull®.
In fact, we see from (2.3) that

1Sul|? + || Beu|® = ||(3S + Be)u||* — 2Re(iSu, B.u)
< |8 + B.)ull? + 2/Im(Su, B.u)|
< I(ES + B:)u||* + 2(tan 6;)Re(Su, B.u)
= ||(iS + B.)ul|* + 2(tan 6;)Re(Swu, (iS + B.)u)
< (S + Be)ull® + 2(tan 6y) || Sull- | (iS + Be)u].

This implies that
. . 0
1Sul| < (tan6; + /1 + tan? 0)|| (iS + Be)ul| = -1-59‘-;-{1-1‘-5—"@3 + Bl
- 1
Therefore we obtain (2.6).
Now we shall prove that 1S + B is maximal monotone in X based on the argument in

Kato [10, Section 10]. Since B, is monotone and Lipschitz continuous on X, it follows
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that ¢S + B; is also maximal monotone in X. For f € X and >01et u. € D(S) be a
unique solution of the equation

@2.7) (S + B)ue +u. = f.

Since we have assumed that D(S) N D(B) # ¢, it is easy to show that {llue||} is bounded
as € | 0. Hence we see from (2.6) and (2.7) that {||B.u.||} is bounded. Therefore it
follows from Brezis, Crandall and Pazy [2, Theorem 2.1] (see [18, Propos1t10n IvV.2.1])
that 4S + B is maximal monotone in X.

Next we prove (2.4). Since B,u — Bu (¢ | 0) in X for every u € D(B), we see from
(2.3) that for every u € D(S) N D(B),

(2.8) Tm(S%, Bu)| < (tan 6;)Re(Su, Bu).

Let v € D(S'?) and ¢ € C with Re{ > 0. According to the maximality of S + B there
exists a unique solution u; € D(S) N D(B) of the equation (55 + B)u¢ + Cu¢ = v. It then
follows that

Re(Su¢, Bue) + (Re Q)15 uc|* = Re(S?uc, §/?).

In view of (2.8) we see that [[S"/?uc|| < (Re()~||S'/2v||. This is nothing but (2.4).
Finally we prove (2.5). Letting & | 0 in (2.6) with u = U (t)uo (wo € D(S) N D(B),
-t >0), we have

1+sm 1

ISU@)uoll* + | BU (t)uo||* < p, 1G5 + B)U (Wuol*

Applying Lemma 2.1 to the right-hand side, we obtain (2.5). O

Remark 2. For the maximal monotonicity of S + B in term of Re(Su, B.u) see e.g. [14,
Lemma. 6.2].

Corollary 2.4. In Theorem 2.3 assume further that D(S) nD(B) 18 dense in X. Then
U(t) leaves D(S'?) invariant and for every v € D(S'/2) and t > 0,

(2.9) 182U eywl| < 1S™2v]).
In particular, if 0 € D(B) and BO = 0, then for everyv € X andt > 0,

(2.10) U@l < ol
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Proof. We see from (2.4) that for every v € D(8%2),t >0 and n €N,
| ISY2[1 + (¢/n)(iS + B)] ™l < [|S*2v].

Since D(SY2) ¢ D(S) N D(B), (2.9) follows from (2.2) with A = S + B and the weak-
closedness of /2, | A O

The next is our second perturbation theorem for maximal monotone operators which
will be applied to (1.4).

Theorem 2.5. In Theorem 2.3 assume further that there exists a constant 0, with 0 <
02 < w/2 such that for every ui,us € D(B),

(2.11) . [tm(Bu; — Bug, u; — up)| < (tan 6;)Re(Bu; — Bug,u; — u).
ForA>0, k>0 anda, B, vyER let

- A=(0+ia)S+ (k+iB)B —7, D(A) .= D(S) N D(B).
Then

(a) A+ is mazimal monotone in X, provided that || < (tan8p) 'k, where Oy :=
max{01,02}. .
(b) For every v € D(SY2) and { € C with Re{ > v,

(212) IS4+ Ol < ReC =) TS
(c) For every ug € D(A) andt >0,

(2.13) ISUE)uoll < A7 (™[ Auoll + 74 U (2)uoll),

where {U(t)} is the semigroup of type v on D(A) generated by —A.
Proof. Let A >0, k> 0 and a, 8 € R. Suppose that

|8|.< (tanfy) 'k < (tanb;) 'k (§ = 1,2).

Then it follows from (2.3) that
(2.14) Re(Su, (k +iB)Beu) > [(tan6;) 'k — |B|] [Im(Su, B.u)| > 0.
This implies that for every u € D(S), |

(2.15) A|Sul| < |\ + ) Su + (& + i8) Bul|.
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In fact, we see from (2.14) that '
(2.16) AllSul? < Re(Su, (A + ia)Su + (x + if) B.u).
On the other hand, it follows from (2.11) that (k+ i8)B is also monotone in X:
Re((x + iB)(Bu1 — Bua), u1 — uz)
> [(tan 0,) 7'k — |8|] [Im(Bu; — Bug, u; — w)| > 0.
This implies further that (k -+ i8) B, is monotone in X:
Re((k + iB)(Bevy — Bew), v1 — v2) > €kl Bovy — Bawal[? > 0.

Hence we see that (A +ia)S + (k + if) B, is also maximal monotone in X. Therefore for
every f € X and £ > 0 there exists a unique solution u, € D(S) of the equation

(A+ia)Su. + (k+if)B.u, +u, = f.
Since (2.15) plays the role of (2.6) in Theorem 2.3, we can conclude that
A+y=(A+ia)S+ (x+if)B

is ma.xima.l monotone in X.

To prove (2.12) let v € D(S"/2) and ¢ € C with Re¢ > 4. According to the maximality
of A+ 1y there exists a unique solution u¢ € D(A) of the equation Aug + Cup = v, i.e.,

(A +10)Su¢ + (k + i8) Bug — yue + ue = v.
Making the inner product of this equation with Su¢, we have
Re(Su, -+ i) Bug) + (Re¢ — 7)SY2u|P < Re(S"2u, 52).

Letting € tend to zero in (2.14) with u € D(S) ND(B), we see that Re(Su, (x+38) Bu) > 0.
Therefore we obtain (2.12).

Finally we prove (2.13). Letting ¢ | 0 in (2.16) with u € D(A), we have
AlSul* < Re(Su, (A + 7)u)
< lISull (Il Aul| + v ).
This implies that for every ug € D(A) and ¢t > 0,
AISU @uoll < AU E)uoll + 741U (B)uall.

Applying Lemma 2.1 to the first term on the right-hand side, we obtain (2.13). d
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As a consequence of (2.12), we have

Corollary 2.6. In Theorem 2.5 assume further that D(A) is dense in X. Then U(t)
leaves D(SV/?) invariant and for every v € D(SY2) and t >0,

(2.17) | IS*2U (8)v]| < €™||S2u].

In particular, if 0 € D(B) and B0 = 0, then for everyv € X andi >0,
(2.18) U@l < e™[vll.

Concerning approximation to the resolvent and semigroup we have

Theorem 2.7. Let A and S be the same as in Theorem 2.3. Then for everyn €N, v €
D(SY?) and ¢ € C with Re{ > 0,

(2.19) G5+ B +¢) " = [(n! +9)8 + B +¢] || < eallS¥20l],

where ¢, = (Re¢)™32(2/n)"!. Let {U.(t);t = 0} be the contraction semigroup on
D(S) N D(B) generated by —[(n~" +)S + B]. Then for everyn € N, ug € D(S) N.D(B)
andt >0, |

220) ISVl + 1BU@ual? < TESR [ +)5 + Bluo]f

Assmﬁe further that D(S) N D(B) is dense in D(S'/2) [i.e., D(S) N D(B) is a core for
SY2). Then for every n €N, v € D(SY?) andt > 0,

(2:21) U@ = Ua(@)oll < (t/20)2)18Y 2],

where {U(t)} is the contraction semigroup on X generaled by —(iS + B).

Proof. First Theorem 2.5 applies to conclude that (n~! + 7)S + B is maximal monotone

in X. Now let v € D(§2) and ¢ € C with Re¢ > 0. Then there exist unique solutions
Uy, u € D(S) N D(B) of the respective equations

[(n'+49)S+ Blup+ (un=v, (iS+ Blu+(u=wv.
Hence (2.19) follows from the monotonicity of 1S + B and (2.4):
' (Re Q) llu — uall? < Re(n"Stin, u — uy)
< S 2| [SV2u] — =S P
< (1/4n)||S*ul?
< (1/4n)-(Re ()21 S V20|
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Next let u € D(S). Noting that
168 + Beyull < || [0~ + S + B]u],

we see from (2.6) that for every u € D(S) N D(B),

1 + sin 01

I1Sull? + || B.ulf? < || [(n™* +9)S + B.Jul".

Thus the proof of (2.20) is parallel to that of (2 5).
Finally we shall prove (2.21). Since D(S)ND(B) is dense in D(Sl/ 2), it suffices to prove
(2.21) for the elements in D(S) N D(B). Let ug € D(S) N D(B). Then u,(t) := Uy (t)uo

and u(t) := U(t)ug are unique strong solutions to the respective initial value problems:
Uy®) + (07 +)S+ Blua(t) =0, aa t>0, un(0)=
W)+ (ES+B)u(t) =0, aat>0, u(0)=1u
So we see from the monotonicity of S + B that for a.a. s >0,
(4/ds) [u(s) ~ un(s)][? = 2Re (u(s) — w(5), u(s) — wn(s)
< 2Re(n ™" Sun(s), u(s) — un(s))
< (1/2n)[|15Y2u(t)|>.
Therefore, (2.21) follows from (2.9). ' O

2. Proofs of Theorems 1.1-1.3

For the abstract setting of initial value problems (1.1), (1.4) and (1.5) we introduce two
operators in the complex Hilbert space X := L?(Q2) with inner product () =(,")r2 and
norm || - || = || - || 2. Namely, we define the operators S, B as stated in Section 1:

Su = —Au for ue€ D(S) = H}Q)NH (),
" Bu:= [uff'u for uec D(B) := L*(Q) N L (D).

Then (1.1), (1.4) and (1.5) are regarded as the respective initial value problems for abstract
evolution equations:

(3.1) w'(f) + (iS + B)u(t) = 0, u(0) = up,
(3.2) () +[(A +ia)S+ (k+iB)B —4lu(®) =0, u(0) = up,
(33 wy(t) + (7 + S+ Blua(t) =0, ua(0) = g
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To apply the results in Section 2, we shall show that the operators S and B satisfy the

inequalities (2.3) and (2.11) with the same constant and that D(S) N D(B) is a core for
S/,

It is well-known that S is a nonnegative selfadjoint operator in X. On the other hand,

we have

Lemma 3.1. B i3 a sectorial operator in X, i.e. Jor every uy,uz € D(B),
(3.4) {Im(Buy — Bug,u; — Re(Bul Bug, u; — up).
Hence, if |0] < tan~'[2,/p/(p — 1)], then €¥B is marimal monotone in X.

Proof. The constant factor in (3.4) has been determined by Liskevich and Perelmuter
[12]. Apart from the constant factor it is not so difficult to prove (3.4).

It remains to show that B is maximal in X. Let f € X and & > 0. Then for almost all
z € () the equation

(3.5) | z+elzfPlz = f(z)
in C has a unique solution z = u.(z) such that |u.(z)| < |f(z)| and
(3.6) lue(2) — @e(2)| < |f(2) — fl2)],

where () is a unique solution of (3.5) with f replaced with f. Using approximation
by simple functions, we see from (3.6) that u, is measurable on 2. (The measurability of
u.(z) was not mentioned in [21].) Therefore u, € D(B) and we obtain R(1+eB) = X. 0O

Lemma 3.2. H}(Q) N C‘l(ﬂ) is invariant under (1 + £B)™! for every ¢ > 0. More
precisely, put u.(z) := (1+ eB)~1f(z) for f € H}(Q) NCY Q) and € > 0. Then u, €
H}(Q) NCY () and

Vu, = J*f—.c {1+ eplucP~) Vf — e(p — 1) |ue " ucRe(@: V) }
3.7) = (1+ elu Y1V — -%—mE@ — 1)}ue[P-*u.Re(m: V),
where Jac = (1 + &lu|P71) (1 + epluP2).
Proof. For £ = ¥(£1,£&) € R? we set

(3.8) | b(E) = (P 6r, 1€ ).
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Then we see that b is monotone in R2: ’

(b(€) —b(m)) - (€ — ) = Re(|2]"~"2 — jwlP'w)(z—w) >0,
where 2z := §; + i€ and w := 1 + i75. This leads us to define

(3.9) B(£) = {(@1(6), B2(8)) = £+ eb(€), €>0.

It then follows from the monotonicity of b that & : R? — R? is a bijection. Moreover we
can show that & is a C'-bijection. In fact, it is easy to see that @ is of class C! and for
every £ € R?,

o0P,/0&, 0D,/ 0
Jac(e) = 1/06: 1/ 062

(Jacobian determinant)

= (L+el¢P (A + eplefr™) > 1.

- Therefore we can conclude by the inverse function theorem that & is also of class O

Now let ue(z) = ve(z) + twe(z) := (1 +eB)~1f(z) for f = g+ ih € H}(Q) N CY({DY).
Then we have '

(3.10) 0(e) + elun)Pue(e) = ().
To show that u, € H}(?) N C'(Q) put
| Un(a) = (ele), wel@)),  F(o) = H(g(2), h(z)).
Then we see from (3.8) and (3.9) that (3.10) is equivalent to
HU.(2)) = F(2).

Since F' : @ — R2? is of class C1, it follows from the chain rule that U= 1oF:Q - R2

is also of class C'. In fact, we have
Voe = 5= [{1+ eluc + e(p - DluP-u2} Vg — e(p - Dluel v,V |
= —{(1+ epluf )V — e(p — Dl PP Re(mV 1)},
Vi, = 5 {(1+ eplu P ) VA — elp — Dl Re@V )},

where Jac = Jac(Ue(z)) = (1 + €luel”~")(1 + epluc[P—?). Therefore u. € C*() and
Vu, = Vv, +iVuw, is given by (3.7). On the other hand, we see from (3.7) and (3.10)
that |u.(z)| < |f(z)| and |Vu,(z)| < 2|Vf(z)|. This proves that u, € HL(f). O
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The above-mentioned expressions for Vv, and Vw, are well-ordered comparing with
those given in [21]. The consequent simplicity of Vu, in (3.7) leads us to the key inequality
the proof of which is now given by

Lemma 3.3. Let B, be the Yosida appm:vimation of B. Then for every u € D(S),

(3.11) (Im(Su, B.u)| < =L Re(Su, Beu)

f
Consequently, for every u € D(S) N D(B),

p—1.
[Im(Swu, Bu)| < W Re(Su, Bu).

Proof. Put Dy == H%(Q) N H}(Q2) N CY(R). Then it follows from the regula.nty theorem
and Morrey’s theorem that

Co() C 1+ S)(HX(Q) nHI () NC*™([)) (0<a<l)
C (14 S)Dy
(see e.g. Brezis [1, p.198]). This implies that (1 + S)Dp is dense in X and hence Dy is
a core for S (see Kato [8, Problem I11.5.19]). Therefore it suffices to prove (3.11) for the
elements in Dy. Let f € Dy. Setting u. := (1 + eB)~'f, we see from Lemma 3.2 that
u, € H}(Q) N CY() and

| [P 1
1+ eluell’-“lvf + Jac

Since B, f = e71(f — u,), we have
- (Sf,Bef) = e VS, Vf — V)
= L(f)+ (p—DL(),

Lo - V) = (p — 1)luel?~*ucRe(@: V).

where

u P!
a0 = | el o

Q 1 + EIUEIP—
and

L(f) = / L P2 VF) - Re(gz VF) d.
Hence we obtain
(312) Re(Sf, B.f) = (f) + (o — 1)Rely(f),
(3.13) In(Sf, Bef) = (p — \Imb(f).
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Noting that
1
> p—-—l 2
()2 [ gtV s,

Rely(f) = [ Jo-ludP-SIRe(@ V) dz,

we see by the Cauchy-Schwarz inequality that

BN < [ b 197P s [ L fu=lRetm V)P do
(314) < B(f)Reba(f).

Now we can estimate Im(Sf, B, f) in the same way as in [15]. If p =1, then by (3.13)

Im(Sf, B:f) = 0. Therefore we may assume that p > 1. It follows from (3.12)—(3.14)
that

(p— 1)*Im(SF, B.A)P = |L(H)P — [Relz(f)P
< L(f)Reby(f) — [Rely(f)P
= Re(Sf, B.f)ReLa(f) — p|Rely(f)
< Re(SS B

Noting that Re(Sf, B.f) > 0, we obtain (3.11). v a

We see from Lemmas 3.1 and 3.3 that the inequalities (2.3) and (2.11) hold with

p—1
t =t = —.
an 6, an 6, N
Noting that Cg°(Q2) ¢ D(S) N D(B) is a core for S¥2, we can conclude that S and B
- satisfy all the assumptions stated in Section 2.

We are now in a position to prove Theorems 1.1 — 1.3.

Proof of Theorem 1.1. As stated at the beginning of this section, (1.1) is written in the
form of (3.1). We see from Theorem 2.3 and Lemma 3.3 that iS + B in (3.1) is a
maximal monotone operator with domain D(S)ND(B) dense in X. Now let {U(#)} be the
contraction semigroup on X generated by —(iS+ B). Then for every 4y € D(S) N D(B),
u(t) := U(t)up is a unique solution to (3.1) in the sense of Lemma 2.2 (with A=iS+ B
and w = 0). This implies that (1.1) admits a unique global strong solution u(z, ) in the
sense of Definition 1.
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It remains to prove (1.6)—(1.11). Since BO = 0, we obtain (1.8) as a combination of
(2.9) and (2.10). Noting that (1 +sin6;)/(1 —sin6;) = p, we see from (2.5) that for all
>0,

(3.15) lAu(@) 32 + lu@) I < 2 (I Au|lz2 + lluollEa)*

(1.6) is a consequence of this inequality and (1.8). (1.9) is a property of the contraction
semigroup {U(t)}. Now it follows from the Cauchy-Schwarz inequality that for every
u,v € H2(Q) N H} () N L?*(Q),

(3.16) IV — VoliZ: < llu— vllza(|Auliz2 + || Av]|z2),
(3.17) | e — vl < e = vllza(llullze + llvlie)?-

Conseqﬁently, (1.10) and (1.11) follow from (1.9) and (3.15). To prove (1.7) let t,s €
[0, 00). Then we see from Lemma 2.2 (b) with w = 0 that
llu(t) — u(s)llz2 < ([} Auollzz + l|uoliZap) It — sl

Therefore (1.7) follows from (3.15), (3.16) and (3.17) (with u and v replaced with u(f)
and u(s)): '

IVa(t) — Vu(s)liZ2 < 2v/p (1Auolz2 + lluolifz)?lE — s,

llu(®) — u(8)f+s < 2P/ (| Aollza + [luollFae) It — s]-

This completes the proof of Theorem 1.1. ' O

Proof of Theorem 1.2. First we note that (1.4) is written in the form of (3.2). We see
from Theorem 2.5, Lemmas 3.1 and 3.3 that

A+v=(A+1ia)S+ (k+if)B

is a maximal monotone operator with domain D(A) dense in X. Now let {U(t)} be the
semigroup of type v on X generated by —A. Then for every uy € D(A), u(t) = U(t)up
is a unique solution to (3.2) in the sense of Lemma 2.2 (with w = ). This implies that
(1.4) admits a unique global strong solution u(z, ) in the sense of Definition 2.

It remains to prove (1.12)—(1.17). Combining (2.17) with (2.18), we obtain (1.14).
(1.15) is a property of the semigroup {U(t)} of type . Next we prove that Au(-) and
- Bu(-) are bounded on [0, 7). First, (2.13) together with (2.18) yields that for all £ > 0, -

(3.18) [ Au(@®)llzs < X7 (|Auollz2 + v lluollz2)e™.
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Second, noting that

K[| Bu()||z2 = Re((4 — (A + i) S + 7)u(t), Bu(t))1s, |

we see that for all £ > 0,

Kl Bu(®)llzz < [|Au(®)llzz + (A + @) Su(@) |2 + va llu(t) ]| za-

Applymg Lemma 2.1, (3. 18) and (2.18) to the right-hand side, we obtain

(3.19) @z < &7 1+ V/1+ (@/2)?) (|| Avolz2 + 74 lluollza)e™.

Now (1.12) is a consequence of these estimates and (1.14). Furthermore, (3.18) and (3.19)
guarantee that (1.16) and (1.17) follow from (3.16) and (3.17), respectively. Finally, let
t,5 € [0,T]. Then we see from Lemma. 2.2(b) that

llu(®) — u(s)llze < €7 Auo]| aft — 5.

Therefore we can prove (1.13) in the same way as in the proof of Theorem 1.1 (combine
(3-16), (3.17) with (3.18), (3.19), respectively). O

Proof of Theorem 1.3. Let {U(t)} be the same as in the proof of Theorem 1.1. Let {U,(t)}
be the contraction semigroup on X generated by —[(n~'+4)S+B]. Then (1.18) is nothing
but (2.21). Setting u,(t) = U, (t)uo, we see from (2.20) that

[Aun (©)l[Za + llun ()75 < p (21| Atigll 2 + J[uoZ2p)?,

This is the estimate corresponding to (3.15). By virtue of these estimates we can derive
(1.19), (1.20) from (3.16), (3.17) and (1.18). O
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