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Some results on commutative semigroups
" and semigroup rings

- PAHMERE (Rylki Matsuda)
Faculty of Science, Ibaraki University -

Let G be a torsion-free abelian (additive) group, and let S be a sub-
semigroup. of G which contains 0. Then S is called a grading monoid
([No]). We will call a grading monoid simply a g-monoid.

For example, the direct sum Zo @ - -+ @ Zo of n-copies of the non-
negative integers Zg is a g-monoid.

Many terms in commutative ring theory may be defined é,nalogously
for S.

For example, a non-empty subset I of S is called an ideal of S if
S+IcClI. |

Let I be an ideal of S with I G S. If s; + s2 € I (for 81,82 € 5)
implies 57 € I or s € I, then [ is called a prime ideal of S.

Let T be a totally ordered abelian (additive) group. A mapping v of a
torsion-free abelian group G onto I' is called a valuation on G if v(z+y) =
v(z) + v(y) for all z,y € G. The subsemigroup {z € G | v(z) > 0} of G
is called the valuation semigroup of G associated to v.

The maximum number n so that there existsachain A G R & --- &
P, of prime ideals of S is called the dimension of S.

If every ideal I of S is finitely generated, that is, I = U;(S + s;) for
a finite number of elements s1,---,s, of S, then S is called a Noetherian
semigroup.

- Many propositions for commutative rings are known to hold for S.

For example, if S is a Noetherian semigroup, then every finitely gen-
erated extension g-monoid S[zy,- - -, 2a] = S+ X; Zoz; is also Noetherin
[M3, Proposition 3|, and the integral closure of S is a Krull semigroup
[M4].

Ideal theory of S is interesting itself and important for semigroup
rings. ’ . '
~ Let R be a commutative ring, and let S be a g-monoid. There arises



the semigroup ring R[S] of S over R: R[S] = R[X; 8] = {Z jinite s X* |
as € R,s € S}.

If S is the direct sum Zo @ - - - @ Zy of n-copies of Zg, then R[S] is
isomorphic to the polynomial ring R[X;,- -+, X,] of n-variables over R.

Assume that the semigroup ring D|S] over a domain D is a Krull do-
main. Then D.F. Anderson [A] and Chouinard [C] showed that C(D[S]) &
C(D) @ C(S), where C denotes ideal class group. Thus they were able to
construct Krull domains that have various ideal class groups.

~ For another example, assume that D is integrally closed and S is in-

tegrally closed. Then we have (I1N---N1,)" = Iy N--- N I? for every
finite number of finitely generated ideals I, - - -, I, of D[S] if and only if
(hN---NI,)" = IyN---NI} for every finite number of finitely generated
ideals I1,--+,Ip of D and (3 N---N1,)" = IYN--- N IP for every finite
number of finitely generated ideals I, - -, I, of S ([M1]), where v is the
v-operation.

Let D be a Noetherian integral domain with the integral closure D,
and K the quotient field of D.

The Krull-Akizuki theorem states that, if dim(D) = 1, then any ring
between D and K is Noetherian and its dimension is at most 1.

The Mori-Nagata theorem states that D is a Krull ring for any Noethe-
rian domain D. :

Moreover, Nagata proved that, if D is of dimension 2, then D is
Noetherian (cf. [Na)).

In [M2] we proved the Krull-Akizuki theorem for semigroups.

In [M4] we proved the Mori-Nagata theorem for semigroups.

Let T be an extension g-monoid of S. An element t of T is called
integral over .S if nt € S for some positive integer n. The set of integral
elements of T is called the integral closure of S in T. The integral closure
S in the quotient group ¢(S) = {s — &' | 5,8’ € S} is called the integral
closure of S, and is denoted by S. If § = S, then § is called integrally
- closed.

In 1, we proved the following Theorem and answered to the following
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question in the negative.

Theorem. Let S be a 2-dimensional Noetherian semigroup. Then
the integral closure S of S is a Noetherian semigroup.

Let P be a prime ideal of S. Then the maﬁmum number n so that
there exists a chain P & P G- G P, = P of prime ideals of S is called
the height of P, and is denoted by ht(P).

Question. If P is a prime ideal of height r in a Noetherian semigroup

S, then is P a prime ideal minimal among containing an r -generated ideal
of 57

This is ”yes” for rings.

Now, to answer to the Question, let z; + 3 = 3 + 74 be a unique
relation of letters z1, T2, z3 and z4. Set S = Zoz1 + ZoTs + ZoTs + ZoZs.
Then S is a g-monoid. M = (z1,Z2,3,24) = Ui(S + z;) is a unique
maximal ideal of S. Then S is a Noetherian semigroup of dimension 3.
M is not a prime ideal minimal among containng a 3-generated ideal of S.

2

Larsen-McCarthy’s Multiplicative Theory of Ideals [LM] is one of the
basic references of multiplicative ideal theory for commutative rings. In
2, we proved or disproved all the Theorems in [LM] for semigroups. We

.will state two Theorems.

Let M be a non-empty set. Assume that, for every s cSandae M ,

there is defined s + a € M such that, for every s;,8; € S and a € M, we

have (s; + s2) + a = s1 + (s2 +a) and 0+ a = a. Then M is called an
S-module.

Theorem. Let S be a Noetherian semigroup, M a finitely generated
S-module, L and N submodules of M, and I an ideal of S. Then there
exists a positive integer r such that for every n > r, we have
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(nI+L)NN=(n-r)I+ ((rI + L)NN).

This is a semigroup version of the Artin-Rees Lemma for rings.

Let M be an S-module. If s; + a = s + a (for 51,8, € S and a € M)
implies s; = s9, then M is called cancellative.

Theorem implies that if M is a finitely generated cancellative module
over a Noetherian semigroup S, then N, (nl + M) = @ for every proper
ideal I of S.

An element s of a g-monoid S is called unit if —s € S. Let s be
a non-unit of S. If s = s; + sp implies that s; or s; is a unit, then
s is called irreducible. If every element of S is expressed as a sum of
irreducible elements uniquely (up to units and permutation), then S is
called factorial (or a UFS).

If there exists a family {V):| A} of Z-valued valuation semigroups on
q(S) so that S = N,V), and each element of S is a unit for almost all X,
then S is called a Krull semigroup.

An S-submodule I of ¢(S) is called a fractional 1deal of §,ifs+1ICS
for some s € S. Let F(S) be the set of fractional ideals of S. For every
fractional ideal I of S, we set div(I) = {J € F(S) | J* = I}, and set
D(S) = {div(I) | I € F(S)}, and C(S) = D(R)/{div(z) | = € q(S)},
where I” is the intersection of principal fractional ideals of S containing
1. If IV = I, then [ is called divisorial.

Theorem. If S is a g-monoid, then the following conditions are equiv-
alent:

(1) S is a factorial semigroup.

(2) S is a Krull semigroup and C(S) = 0.

(3) S is a Krull semigroup and every prime divisorial ideal of S is
principal.

3

Kaplansky’s Commutative Rings [Kap] is one of the basic rerences of
commutative ring theory. We know that all the Theorems in Chapters 1
and 2 of [Kap] hold for S [TM].
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In 3, we showed that all the Theorems in Chapter 3 of [Kap] hold for
g-monoids. We will state some Theorems.

Let A be an S-module and s € S. If s+ a; = s+ ag (for aj,as € A)
implies a@; = ag, then s is called a non-zerodivisor on A. If s is not a non-
zerodivisor, then s is called a zerodivisor on A. The set of zerodivisors
“on A is denoted by Z(A). Let B be a submodule of an S-module 4,
and s € R. If s+ a € B (for a € A) implies a € B, then s is called a
non-zerodivisor on A modulo B (or a non-zerodivisor on A/B). If s is
not a non-zerodivisor on A/B, then s is called a zerodivisor. The set of
zerodivisors on A/B is denoted by Z(A/B).

The ordered sequence of elements zj,---,z, of S is called a regular
sequence on A, if (21, -+, Ta)+A G Aandif z; & Z(A), z2 & Z(A/((z1)+
A))’ *ry In ¢ Z(A/((:Ula U 7'7311—1) + A))

Let A be an S-module. If Z(A) = @, then A is called torsion-free.

Let A be an S-module, and I an ideal of S. Let z1,- - -, Z, be a regular

~ sequence in I on A. If z1,--+, %4, is not a regular sequence on A for
each = € I, then z1,- -+, z, is called a maximal regular sequence in I on
A.

Let A be an S-module, and I an ideal of S. Then the maximum of
lengths of all regular sequences in I on A is called the grade of I on A,
and is denoted by G(I, A). '

Let A be an S-module. If any two maximal regular sequences in / on
A have the same length for every ideal I with I + A G A, then A is said
to satisfy property (*). If A satisfies property (*), we say also that (S, A)
satisfies property (*).

Theorem. Let S be a Noetherian semigroup, and A a finitely gen-
erated torsion-free cancellative S-module with property (*). Let I =
(z1,---,z,) be a proper ideal of S. Then G(I,A) = n if and only if
T1,-++, Ty is a regular sequence on A.

Let S be a Noetherian semigroup with maximal ideal M. If G(M, S) =
dim(S), then R is called a Macaulay semigroup.

Theorem. Let S be a Macaulay semigroup such that (S, S) satisfies
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property (*). Then we have G(1,8) = ht(I) for every ideal I of S.

Let S be a Noetherian semigroup with maximal ideal M. The cardi-
nality of a minimal generators of M is called the V-dimension of S, and
is denoted by V(S).

A Noetherian semigroup S is called a regular semigroup if V(S)
dim(S).

- Theorem. Let S be a Noetherian semigroup with maximal ideal M.
Assume that M is generated by a regular sequence ay,---,a; on S. Then
k= dzm(b) V(S), and S is a regular semigroup.

Theorem. Any regular semigroup is a Macaulay semigroup.

Theorem. The polynomial semigroup S|X] is a Macaulay semigroup
if and only if S is a Macaulay semigroup.

4
Let D be an integral domain with quotient field K. Let F(D) be
the set of non-zero fractional ideals of D. A mapping I — I* of F(D)

to F(D) is called a star-operation on D if for all a € K — {0} and
1,J € F(D);

(1) (a)* = (a) and (al)* = al*;
(2) I Cry

(3) If I C J, then I* C J*; and
4) (") =1I".

Let ¥(D) be the set of star-operations on D.

Let F'(D) be the set of non-zero D-submodules of K. A mapping
I—— I* of F'(D) to F'(D) is called a semistar-operation on D if for all
aec K—{0} and I1,J € F'(D);

(1) (al)* = al*; |

(2 Icr

(3) If I C J, then I* C J*; and

4) (1) =1
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Let /(D) be the set of semistar-operations on D.

A valuation ring (or a valuation semigroup) V is said to be discrete if
its value group is discrete.

In 4, we proved the following Theorems.

Theorem. Let D be a domain with dimension n. Then D is a dis-
crete valuation ring if and only if | ¥/(D) |=n + 1.

Let S be a g-monoid with quotient group G. A mapping I +— I*
of F(S) to F(S) is called a star-operation on S if for all a € G, and
1,J € F(S); (1) (a)* =(a); (2) (a+D*=a+I, ) ICIH 4TI C,
then I* C J*; (5) (I*)* =1TI".

For example, let I” be the intersection of principal fractional ide-
als containing I, then v is a star-operation on S which is called the v-
operation on S. Let ¥(.S) be the set of star-operations on S.

Let F'(S) be the set of submodules of G. A mapping I > I* of
F'(S) to F'(S) is called a semistar-operation on S if, for all a € G and
I,JeF'(S); (1) (a+D*=a+1I%(2) I CI* (3)If I C J, then I* C J*;
(4) (') =I".

Let Y'(S) be the set of semistar-operations on S.

Theorem. Let S be a g-monoid with dimension n. Then S is a dis-
crete valuation semigroup if and only if | ¥/(S) |=n + L.

Theorem. Let V be a valuation semigroup of dimension n, v its
valuation and T its value group. Let M = P, 2 P,y 2 --- 2 P; be the
prime ideals of V, and let {0} G Hn1 G --- G Hi G T be the convex
subgroups of I'. Let m be a positive integer such that n+1 <m < 2n+1.
Then the followings are equivalent:

(1) | (V) |=m. |

(2) The maximal ideal of the g-monoid Vp, = {s—t | s € V,t e V=-P}
is principal for exactly 2n + 1 — m of 4. '

(3) The ordered abelian group I'/ H; has a minimal positive element
for exactly 2n + 1 —m of 1. '
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Theorem. Let V be a valuation ring of dimension n, v its valuation
and I' its value group. Let M = P, 2 P, 2 - 2 P, 2 (0) be the
prime ideals of V, and let {0} G- Hn, 1 & --- & Hy & T be the convex
subgroups of I'. Let m be a positive integer such that n+1 <m < 2n+1.
Then the followings are equivalent: '

1) [X'(V) [=m.

(2) The maximal ideal of Vp, is principal for exactly 2n + 1 —m of 3.

(3) T'/ H; has a minimal positive element for exactly 2n + 1 — m of 7.

5

Let R be a commutative ring, and let K be its total quotient ring;
K = {a/b| a € R,bis a non-zerodivisor of R}. Let S be a g-monoid, and
let G be the quotient group of S.

An element a € G is called almost integral over S if there exists an
element s of S such that s + na € S for every positive integer n. The
set of almost integral elements of G over S is called the complete integral
closure (or the CIC) of S. If the complete integral closure of S coincides
with S, then S is called completely integrally closed (or CIC).

R is said to be root closed if whenever z® € R for some z € K and
positive integer n, then z € R.

The maximal number n so that there exists a set of n-elements in G
which is independent over Z is called the torsion-free rank of G, and is
denoted by t.f.r.(G).

In 5, we proved the following Theorems.

Theorem. R[X;S] is integrally closed if and only if S is integrally
closed, R is integrally closed, K[X;] is integrally closed and q(K[X,- - -
Xn-1]) [Xa] is integrally closed for every n with n < t.f.r.(G).

?

Theorem. R[X;S]is CIC if and only if S is CIC, R is CIC and
R[Xy,- -, Xy] is CIC for every positive integer n < t.f.1.(G).

Theorem. R[X;S] is root closed if and only if S is integrally closed, R
is root closed, K'|X;] is root closed and (K [X,---, X, 1])[X,] is root
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closed for every n with n < t.fx.(G).

If, for each element a of R, there exists an element b of R such that
a = a’b, then R is called a von Neumann regular ring.

Theorem. Assume that K is a von Neumann regular ring. Then
R[X; S] is integrally closed if and only if S is integrally closed and R is
integrally closed.

Theorem. Assume that K is a von Neumann regular ring. Then
R[X; 8] is CIC if and only if S is CIC and R is CIC.

Let R be a Noetherian reduced ring. Then R[X ; §] is CIC if and only
if S is CIC and R is CIC.

Theorem. Assume that K is a von Neumann regular ring. Then
R[X; S] is root closed if and only if S is integrally closed and R is root
closed. :

6

We .denote the unit group of S by H. Let R be a ring. Let U(R) be
the unit group of R. The group of units f = Y a,X* of R[X;S] with
Y a, = 1 is denoted by V(R[X; S]).

The following is a semigroup version of Karpilovsky’s Problem [Kar,
chapter 7, problem 9|:

Problem. Find necessary and sufficient conditions for R[X; S] under
which, .

(1) H has a torsion-free complement in V(R[X; S]).

(V(R[X;S]) ={X" | he€ H} ® W, where W is torsion-free.)

(2) H has a free complement in V(R[X; S]).

(V(R[X;S]) ={X" | he H} ® W, where W is free.)

(3) U(R[X;.S]) is free modulo torsion.

( U(R[X; S])/{torsion elements} is free.)
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In 6, we proved the following;

Theorem (An answer to Problem for reduced rings). Let R be re-
duced. Then, '

(1) H has a torsion-free complement in V(R[X; S]).

(2) H has a free complement in V(R[X;S]) if and only if H is free.

(3) U(R[X; S)) is free modulo torsion if and only if U(R) is free mod-
ulo torsion and H is free.

REFERENCES

[A] D.F. Anderson, The divisor class group of a semigroup ring, Comm.
Alg. 8(1980),467-476. ‘

[C] L. Chouinard, Krull semigroups and divisor class groups, Can. J.
Math. 33(1981),1459-1468.

[Kap] 1. Kaplansky, Commutative Rings, The Univ. Chicago Press,
1974.

[Kar] G. Karpilovsky, Commutative Group Algebras, Marcel Dekker,
New York,1983.

[LM] M. Larsen and P. McCarthy, Multiplicative Theory of Ideals,
Academic Press, 1971.

[M1] R. Matsuda, Torsion-free abelian semigroup rings IX, Bull. Fac.
Sci., Tbaraki Univ. 26(1994),1-12.

[M2] R. Matsuda, The Krull-Akizuki theorem for semigroups, Math.
J. Tbaraki Univ. 29(1997),55-56.

[M3] R. Matsuda, Some theorems for semigroups, Math. J. Ibaraki
Univ. 30(1998),1-7.

[M4] R. Matsuda, The Mori-Nagata theorem for semigroups, Math.
Japon. 49(1999),17-19.

[Na] M. Nagata, Local Rings, Interscience, 1962.

[No] D. Northcott, Lessons on Rings,Modules and Multiplicities, Cam-
bridge Univ. Press,1968.

[TM] T. Tanabe and R. Matsuda, Note on Kaplansky’s Commutative
Rings, Nihonkai Math. J. 10(1999),to appear.



