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Let $G$ be a torsion-free abelian (additive) group, and let $S$ be a sub-
semigroup of $G$ which contains $0$ . Then $S$ is called a grading monoid
([No]). We will call a grading monoid simply a g-monoid.

For example, the direct sum $\mathrm{Z}_{0}\oplus\cdots\oplus \mathrm{Z}_{0}$ of $n$-copieae of the non-
negative integers $\mathrm{Z}_{0}$ is a g-monoid.

Many terms in commutative ring theory may be defined analogously
for S.

For example, a non-empty subset $I$ of $S$ is called an ideal of $S$ if
$S+I\subset I$ .

Let $I$ be an ideal of $S$ with $I\subset\neq S$ . If $s_{1}+s_{2}\in I$ (for $s_{1},s_{2}\in S$)

implies $s_{1}\in I$ or $s_{2}\in I$ , then $I$ is calleA a prime ideal of $S$ .
Let $\Gamma$ be a totally ordered abelian (additive) group. A mapping $v$ of a

torsion-frae abelian group $G$ onto $\Gamma$ is called a valuation on $G$ if $v(x+y)=$

$v(x)+v(y)$ for all $x,y\in C_{\tau}$ . The subsemigroup $\{x\in G|v(x)\geq 0\}$ of $G$

is called the valuation semigroup of $G$ associated to $v$ .
The maximum number $n$ so that there exists a chain $p_{1}\subset_{P_{2}}\neq\neq.\neq\subset..\subset$

$P_{n}$ of prime ideals of $S$ is called the dimension of $S$ .
If every ideal $I$ of $S$ is finitely generated, that is, $I= \bigcup_{i}(S+s_{i})$ for

a fimite number of elements $s_{1},$ $\cdots,s_{n}$ of $S$ , then $S$ is called a Noetherian
semigroup.

Many propositions for commutative rings are known to hold for $S$ .
For example, if $S$ is a Noetherian semigroup, then every finitely gen-

erated extension $\mathrm{g}$-monoid $.S[x_{1}, \cdots , x_{n}]=S+\Sigma_{i}\mathrm{Z}_{0^{x_{i}}}$ is also Noetherin
[M3, Proposition $3|$ , and the integral closure of $S$ is a Krull semigroup
[M4].

Ideal theory of $S$ is interesting itself and important for semigroup
rings.

Let $R$ be a commutative ring, and let $S$ be a $\mathrm{g}$-monoid. There arises
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the semigroup ring $R[S]$ of $S$ over $R:R[S]=R[X;S]=\{\Sigma_{finite}a_{s}X^{s}|$

$a_{s}\in R_{S\in},s\}$ .
If $S$ is the direct sum $\mathrm{Z}_{0}\oplus\cdots\oplus \mathrm{Z}_{0}$ of $n$-copies of $\mathrm{Z}_{0}$ , then $R[S]$ is

isomorphic to the polynomial ring $R[X_{1}, \cdots, X_{n}]$ of $n$-variables over $R$ .
Assume that the semigroup ring $D[S]$ over a domain $D$ is a Krull $\mathrm{d}\infty$

main. Then $\mathrm{D}.\mathrm{F}$ . Anderson [A] and Chouinard [C] showed that $C(D[S])\cong$

$C(D)\oplus C(S)$ , where $C$ denotes ideal class group. Thus they were able to
$\mathrm{c}\mathrm{o}$.nstruct Krull $\mathrm{d}_{0}\mathrm{m}\mathrm{a}\mathrm{i}\mathrm{I}\mathrm{l}\mathrm{S}$ that have various ideal class groups.

For another example, assume that $D$ is integrally $\mathrm{c}1_{\mathrm{o}\mathrm{S}},\mathrm{e}\mathrm{d}$ and $S$ is in-
$\mathrm{t}\mathrm{e}_{\mathrm{C})}\sigma \mathrm{r}\mathrm{a}\mathrm{l}\mathrm{l}\mathrm{y}$ closed. Then we have $(I_{1}\cap\cdots\cap I_{n})^{v}=I_{1}^{v}\cap\cdots\cap I_{n}^{v}$ for every
finite number of finitely generated ideals $I_{1},$

$\cdots,$
$I_{n}$ of $D[S]$ if and only if

$(I_{1}\cap\cdots\cap I_{n})^{v}=I_{1}^{v}\cap\cdots\cap I_{n}^{v}$ for every finite number of finitely generated
ideals $I_{1},$ $\cdots$ , $I_{n}$ of $D$ and $(I_{1}\cap\cdots\cap I_{n})^{v}=I_{1}^{v}\cap\cdots\cap I_{n}^{v}$ for every finite
number of finitely generated ideals $I_{1},$

$\cdots,$
$I_{n}$ of $S([\mathrm{M}1])$ , where $v$ is the

v-operation.

1

Let $D$ be a Noetherian integral domain with the integral closure $\overline{D}$ ,
and $K$ the quotient field of $D$ .

The Krull-Akizuki theorem states that, if $\dim(D)=1$ , then any ring
between $D$ and $K$ is Noetherian and its dimension is at most 1.

The Mori-Nagata theorem states that $\overline{D}$ is a Krull ring for any Noethe-
rian domain $D$ .

Moreover, Nagata proved that, if $D$ is of dimension 2, then $\overline{D}$ is
$\mathrm{N}\mathrm{o}\mathrm{e}\mathrm{t}\mathrm{h}e,\mathrm{r}\mathrm{i}\mathrm{a}\mathrm{I}\mathrm{l}$ (cf. [Na]).

In [M2] we proved the Krull-Akizuki theorem for semigroups.
In [M4] we proved the Mori-Nagata theorem for semigroups.
Let $T$ be an extension $\mathrm{g}$-monoid of $S$ . An element $t$ of $T$ is called

integral over $S$ if $nt\in S$ for some positive integer $n$ . The set of integral
elements of $T$ is called the integral closure of $S$ in $T$ . The integral closure
$\overline{S}$ in the quotient group $q(S)=\{s-s’|s, s’\in S\}$ is called the integral
closure of $S$ , and is denoted by $\overline{S}$ . If $\overline{S}=S$ , then $S$ is called integrally
closed.

In 1, we proved the following Theorem and answered to the following
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question in the negative.

Theorem. Let $S$ be a -dimensional Noetherian semigroup. Then

the integral closure $\overline{S}$ of $S$ is a Noetherian semigroup.

Let $P$ be a prime ideal of $S$ . Then the maximum number $n$ so that

there exists a chain $P_{1}\subset P_{2}\neq\neq\subset\cdots\subset\neq^{P_{n}}=P$ of prime ideals of $S$ is called

the height of $P$ , and is denoted by $ht(P)$ .

Question. If $P$ is a prime ideal of height $r$ in a Noetherian semigroup
$S$ , then is $P$ a prime ideal minimal among containing an $r$ -generated ideal

of $S$?

This is ”yes” for rings.

Now, to answer to the Question, let $x_{1}+x_{2}=x_{3}+x_{4}$ be a unique

relation of letters $x_{1,2,\mathrm{s}}xx$ and $x_{4}$ . Set $S=\mathrm{Z}_{0^{X}1}+\mathrm{Z}_{0}x_{2}+\mathrm{Z}_{0}x_{3}+\mathrm{Z}_{0}x_{4}$.
Then $S$ is a $\mathrm{g}$-monoid. $M=(x_{1},x_{2},X_{3,4}x)= \bigcup_{i}(S+x_{i})$ is a unique

maximal ideal of $S$ . Then $S$ is a Noetherian semigroup of dimension 3.
$M$ is not a prime ideal minimal among containng a $\mathrm{a}$-generated ideal of $S$ .

2

$\mathrm{L}\mathrm{a}\mathrm{r}\mathrm{s}\mathrm{e}\mathrm{n}- \mathrm{M}\mathrm{c}\mathrm{c}\mathrm{a}\mathrm{r}\mathrm{t}\mathrm{h}\mathrm{y}’ \mathrm{s}$ Multiplicative Theory of Ideals [LM] is one of the
basic references of multiplicative ideal theory for commutative rings. In
2, we proved or disproved all the Theorems in [LM] for semigroups. We
will state two Theorems.

Let $M$ be a non-empty set. Assume that, for every $s\in S$ and $a\in M$ ,
there is defined $s+a\in M$ such that, for every $s_{1},$ $s_{2}\in S$ and $a\in M$ , we
have $(s_{1}+s_{2})+a=s_{1}+(s_{2}+a)$ and $\mathrm{O}+a=a$ . Then $M$ is called an
S-module.

Theorem. Let $S$ be a Noetherian semigroup, $M$ a finitely generated
$S$-module, $L$ and $N$ submodules of $M$ , and $I$ an ideal of $S$ . Then there
exists a positive integer $r$ such that for every $n>r$ , we have
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$(nI+L)\cap N=(n-r)I+((rI+L)\cap N)$ .

This is a semigroup version of the Artin-Rees Lemma for rings.
Let $M$ be an $S$-module. If $s_{1}+a=s_{2}+a$ (for $s_{1},$ $s_{2}\in S$ and $a\in M$)

implies $s_{1}=s_{2}$ , then $M$ is called cancellative.
Theorem implies that if $M$ is a finitely generated cancellative module

over a Noetherian semigroup $S,$ then $\bigcap_{n=1}^{\infty}(nI+M)=\emptyset$ for every proper
ideal $I$ of $S$ .

An element $s$ of a $\mathrm{g}$-monoid $S$ is called unit if $-\mathit{8}\in S$ . Let $s$ be
a non-unit of $S$ . If $s=s_{1}+s_{2}$ implies that $s_{1}$ or $s_{2}$ is a unit, then
$s$ is called irreducible. If every element of $S$ is expressed as a sum of
irreducible elements uniquely (up to units and permutation), then $S$ is
called factorial (or a UFS).

If there exists a family $\{V_{\lambda}|\lambda\}$ of $\mathrm{Z}$-valued valuation semigroups on
$q(S)$ so that $S= \bigcap_{\lambda}V_{\lambda}$ and each element of $\iota 9$ is a unit for almost all $\lambda$ ,
then $S$ is $\mathrm{c}\mathrm{a}\mathrm{l}\mathrm{l}\mathrm{e}\Lambda$ a Krull semigroup.

An $S$-submodule $I$ of $q(S)$ is called a fractional ideal of $S$ , if $s+I\subset S$

for some $s\in S$ . Let $F(S)$ be the set of fractional ideals of $S$ . For eveIy

fractional ideal $I$ of $S$ , we set $div(I)=\{J\in F(S)|J^{v}=I^{v}\}$ , and set
$D(S)=\{div(I)|I\in F(S)\}$ , and $C(S)=D(R)/\{div(x)|x\in q(S)\}$ ,
where $I^{v}$ is the intersextion of principal fractional ideals of $S$ containing
I. If $I^{v}=I$ , then $I$ is called divisorial.

Theorem. If $S$ is a $\mathrm{g}$-monoid, then the following conditions are equiv-
alent:

(1) $S$ is a factorial semigroup.
(2) $S$ is a Krull semigroup and $C(S)=0$.
(3) $S$ is a Krull semigroup and every prime divisorial ideal of $S$ is

principal.

3

Kaplansky’s Commutative Rings [Kap] is one of the basic rerences of
commutative ring theory. We know that all the Theorems in Chapters 1
and 2 of [Kap] hold for $\mathrm{S}[\mathrm{T}\mathrm{M}]$ .
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In 3, we showed that all the Theorems in Chapter 3 of [Kap] hold for
$\mathrm{g}$-monoids. We will state some Theorems.

Let $A$ be an $S$-module and $s\in S$ . If $s+a_{1}=s+a_{2}$ (for $a_{1},a_{2}\in A$)

implies $a_{1}=a_{2}$ , then $s$ is called a non-zerodivisor on $A$ . If $s$ is not a non-
zerodivisor, then $s$ is called a zerodivisor on $A$ . The set of zerodivisors
on $A$ is denoted by $Z(A)$ . Let $B$ be a submodule of an $S$-module $A$ ,

and $s\in R$ . If $s+a\in B$ (for $a\in A$) implies $a$ $\in B$ , then $s$ is called a
non-zerodivisor on $A$ modulo $B$ (or a non-zerodivisor on $A/B$). If $s$ is
not a non-zerodivisor on $A/B$ , then $s$ is called a zerodivisor. The set of
zerodivisors on $A/B$ is denoted by $Z(A/B)$ .

The ordered sequence of elements $x_{1},$ $\cdots,$ $x_{n}$ of $S$ is called a regular
sequence on $A$ , if $(x_{1}, \cdots, X_{n})+A_{\neq}\subset A$ and if $x_{1}\not\in Z(A),$ $X_{2}\not\in Z(A/((x_{1})+$

$A)),$ $\cdots,$ $x_{n}\not\in Z(A/((X1, \cdots, Xn-1)+A))$ .
Let $A$ be an $S$-module. If $Z(A)=\emptyset$ , then $A$ is called torsion-free.
Let $A$ be an $S$-module, and $I$ an ideal of $S$ . Let $x_{1},$ $\cdots,$ $x_{n}$ be a regular

sequence in $I$ on $A$ . If $x_{1},$ $\cdots,$ $x_{n},x$ is not a regular $\mathrm{s}\mathrm{e}\mathrm{q}\mathrm{u}\mathrm{e}_{p}\mathrm{n}\mathrm{c}\mathrm{e}$ on $A$ for
each $x\in I$ , then $x_{1},$ $\cdots,$ $x_{n}$ is called a maximal regular sequence in $I$ on
$A$ .

Let $A$ be an $S$-module, and $I$ an ideal of $S$ . Then the maximum of
lengths of all regular sequences in $I$ on $A$ is called the grade of $I$ on $A$ ,
and is denoted by $G(I, A)$ .

Let $A$ be an $S$-module. If any two maximal regular sequences in $I$ on
$A$ have the same length for every ideal $I$ with $I+A_{\neq}\subset A$ , then $A$ is said
to satisfy property $(^{*})$ . If $A$ satisfies property $(^{*})$ , we say also that $(S, A)$

satisfies property $(^{*})$ .

Theorem. Let $S$ be a Noetherian semigroup, and $A$ a finitely gen-
erated torsion-free cancellative $S$-module with property $(^{*})$ . Let $I=$

$(x_{1}, \cdots,x_{n})$ be a proper ideal of $S$ . Then $G(I, A)=n$ if and only if
$x_{1},$ $\cdots,x_{n}$ is a regular sequence on $A$ .

Let $S$ be a Noetherian semigroup with maximal ideal $M$ . If $G(M, S)=$

$dim(S)$ , then $R$ is called a Macaulay semigroup.

Theorem. Let $S$ be a Macaulay semigroup such that $(S,S)$ satisfies
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property $(^{*})$ . Then we have $G(I, S)=ht(I)$ for every ideal $I$ of $S$ .

Let $S$ be a Noetherian semigroup with maximal ideal $M$. The cardi-
nality of a minimal generators of $M$ is called the $\mathrm{V}$-dimension of $S$ , and
is denoted by $V(S)$ .

A Noetherian semigroup $S$ is called a regular semigroup if $V(S)=$

$dim(S)$ .

Theorem. Let $S$ be a Noetherian semigroup with maximal ideal $M$ .
Assume that $M$ is generated by a regular sequence $a_{1},$ $\cdots,$ $a_{k}$ on $S$ . Then
$k=dim(S)=V(S)$ , and $S$ is a regular semigroup.

Theorem. Any regular semigroup is a Macaulay semigroup.

Theorem. The polynomial semigroup $S[X]$ is a Macaulay semigroup
if and only if $S$ is a Macaulay semigroup.

4

Let $D$ be an integral domain with quotient field $K$ . Let $F(D)$ be
the set of non-zero fractional ideals of $D$ . A mapping $I\mapsto I^{*}$ of $F(D)$

to $F(D)$ is called a star-operation on $D$ if for all $a\in K-\{0\}$ and
$I,$ $J\in F(D)$ ;

(1) $(a)^{*}=(a)$ and $(aI)^{*}=aI^{*};$

(2) $I\subset I^{*};$

(3) If $I\subset J$ , then $I^{*}\subset J^{*};$ and
(4) $(I^{*})^{*}=I^{*}$ .

Let $\Sigma(D)$ be the set of star-operations on $D$ .
Let $F’(D)$ be the set of non-zero $D$-submodules of $K$ . A mapping

$I-I^{*}$ of $F’(D)$ to $F’(D)$ is called a semistar-operation on $D$ if for all
$a\in K-\{0\}$ and $I,$ $J\in F’(D)$ ;

(1) $(aI)^{*}=aI^{*};$

(2) $I\subset I^{*};$

(3) If $I\subset J$ , then $I^{*}\subset J^{*};$ and
(4) $(I^{*})^{*}=I^{*}$ .
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Let $\Sigma^{l}(D)$ be the set of semistar-operations on $D$ .
A valuation ring (or a valuation semigroup) $V$ is said to be discrete if

its value group is discrete.
In 4, we proved the following Theorems.

Theorem. Let $D$ be a domain with dimension $n$ . Then $D$ is a dis-

crete valuation ring if and only if $|\Sigma’(D)|=n+1$ .

Let $S$ be a $\mathrm{g}$-monoid with quotient group $G$ . A mapping $I-I^{*}$

of $F(S)$ to $F(S)$ is called a star-operation on $S$ if for all $a\in G$ , and
$I,$ $J\in F(S);(1)(a)^{*}=(a);(2)(a+I)^{*}=a+I^{*};(3)I\subset I^{*};$ (4) If $I\subset J$ ,
then $I^{*}\subset J^{*};$ (5) $(I^{*})^{*}=I^{*}$ .

For example, let $I^{v}$ be the intersection of principal hactional $\mathrm{i}\mathrm{d}\mathrm{e}$.

als containing $I$ , then $v$ is a star-operation on $S$ which is calleJd the $v-$

operation on $S$ . Let $\Sigma(S)$ be the set of star-operations on $S$ .
Let $F’(S)$ be the set of submodules of $G$ . A mapping $I-I^{*}$ of

$F’(S)$ to $F’(S)$ is called a semistar-operation on $S$ if, for all $a$ $\in G$ and
$I,$ $J\in F’(S);(1)(a+I)^{*}=a+I^{*};$ (2) $I\subset I^{*};$ (3) If $I\subset J$ , then $I^{*}\subset J^{*};$

(4) $(I^{*})^{*}=I^{*}$ .
Let $\Sigma’(S)$ be the set of semistar-operations on S.

Theorem. Let $S$ be a $\mathrm{g}$-monoid with dimension $n$ . Then $S$ is a dis-
crete valuation sernigroup if and only if $|\Sigma’(S)|=n+1$ .

Theorem. Let $V$ be a valuation semigroup of dimension $n,$ $v$ its
valuation and $\Gamma$ its value group. Let $M=P_{n}\supset P_{n-1}\neq\neq\supset\ldots\neq^{P_{1}}\supset$ be the
prime ideals of $V,$ $\mathrm{a}\mathrm{I}\mathrm{l}\mathrm{d}$ let $\{0\}\neq\subset H_{n-1}\neq\subset\ldots\subset\neq H_{1}\neq\subset\Gamma$ be the convex
subgroups of $\Gamma$ . Let $m$ be a positive integer such that $n+1\leq m\leq 2n+1$ .
Then the followings are equivalent:

(1) $|\Sigma’(V)|=m$ .
(2) The maximal ideal of the $\mathrm{g}$-monoid $V_{P_{i}}=\{s-t|s\in V, t\in V-P_{i}\}$

is principal for exactly $2n+1-m$ of $i$ .
(3) The ordered abelian group $\Gamma/H_{i}$ has a minimal positive element

for exactly $2n+1-m$ of $i$ .
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Theorem. Let $V$ be a valuation ring of dimension $n,$ $v$ its valuation
and $\Gamma$ its value group. Let $M=P_{n}\neq\supset P_{n-1}\neq\supset\ldots\neq\supset P_{1}\neq\supset(0)$ be the
prime ideals of $V$ , and let $\{0\}\neq\subset H_{n-1}\neq\subset\ldots\neq\subset H_{1}\neq\subset\Gamma$ be the convex
subgroups of F. Let $m$ be a positive integer such that $n+1\leq m\leq 2n+1$ .
Then the followings are equivalent:

(1) $|\Sigma’(V)|=m$ .
(2) The maximal ideal of $V_{P_{i}}$ is principal for exactly $2n+1-m$ of $i$ .
(3) $\Gamma/H_{i}$ has a minimal positive element for exactly $2n+1-m$ of $i$ .

5

Let $R$ be a commutative ring, and let $K$ be its total quotient ring;
$K=$ {$a/b|a\in R,$ $b$ is a non-zerodivisor of $R$}. Let $\mathrm{S}$ be a $\mathrm{g}$-monoid, and
let $\mathrm{G}$ be the quotient group of S.

An element $\alpha\in G$ is called almost integral over $S$ if there exists an
element $s$ of $S$ such that $s+n\alpha\in S$ for every positive integer $n$ . The
set of almost integral elements of $G$ over $S$ is called the complete integral
closure (or the CIC) of $S$ . If the complete integral closure of $S$ coincides
with $S$ , then $S$ is called completely integrally closed (or CIC).

$R$ is said to be root closed if whenever $x^{n}\in R$ for some $x\in K$ and
positive integer $n$ , then $x\in R$ .

The maximal number $\mathrm{n}$ so that there exists a set of $n$-elements in $G$

which is independent over $\mathrm{Z}$ is called the torsion-ffee rank of $G$ , and is
denoted by $\mathrm{t}.\mathrm{f}.\mathrm{r}.(G)$ .

In 5, we proved the following Theorems.

Theorem. $R[X;s]$ is integrally closed if and only if $S$ is integrally
closed, $R$ is integrally closed, $K[X_{1}]$ is integrally closed and $q(K[X_{1},$ $\cdots$ ,
$X_{n-1}$ $])$ $[X_{n}]$ is integrally closed for every $n$ with $n\leq \mathrm{t}.\mathrm{f}.\mathrm{r}.(G)$ .

Theorem. $R[X;s]$ is CIC if and only if $S$ is $\mathrm{C}_{y}\mathrm{I}\mathrm{C},$ $R$ is CIC and
$R[X_{1}, \cdots, X_{n}]$ is CIC for every positive integer $n\leq \mathrm{t}.\mathrm{f}.\mathrm{r}.(G)$ .

Theorem. $R[X;s]$ is root closed if and only if $S$ is integrally closed, $R$

is root closed, $K[X_{1}]$ is root closed and $q(K[x_{1}, \cdots, x_{n-}1])[Xn]$ is root
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closed for every $n$ with $n\leq \mathrm{t}.\mathrm{f}.\mathrm{r}.(G)$ .

If, for each element a of $R$ , there exists an element $b$ of $R$ such that
$a=a^{2}b$ , then $R$ is called a von Neumann regular ring.

Theorem. Assume that $K$ is a von Neumann regular ring. Then
$R[X;s]$ is integrally closed if and only if $S$ is integrally closed and $R$ is

integrally closed.

Theorem. Assume that $K$ is a von Neumann regular ring. Then
$R[X;s]$ is CIC if and only if $S$ is CIC and $R$ is CIC.

Let $R$ be a Noetherian reduced ring. Then $R[X;s]$ is CIC if and only
if $S$ is CIC and $R$ is CIC.

Theorem. Assume that $K$ is a von Neumann regular ring. Then
$R[X;s]$ is root closed if and only if $S$ is integrally closed and $R$ is root
closed.

6

We denote the unit group of $S$ by $H$ . Let $R$ be a ring. Let $U(R)$ be
the unit group of $R$ . The group of units $f= \sum a_{s}X^{s}$ of $R[X;s]$ with
$\sum a_{s}=1$ is denoted by $\mathrm{V}(R[X;S])$ .

The following is a semigroup version of Karpilovsky’s Problem [Kar,
chapter 7, problem 9]:

Problem. Find necessary and sufficient conditions for $R[X;s]$ under
which,

(1) $H$ has a torsion-free complement in $\mathrm{V}(R[X;S])$ .

(V$(R[X;S])=\{X^{h}|h\in H\}\otimes W$, where $W$ is torsion-free.)
(2) $H$ has a free complement in $\mathrm{V}(R[X;S])$ .
(V$(R[X;S])=\{X^{h}|h\in H\}\otimes W$, where $W$ is free.)
(3) $\mathrm{U}(R[x;S])$ is free modulo torsion.
( $U(R[X;S])/\{\mathrm{t}_{0}\mathrm{r}\mathrm{s}\mathrm{i}\mathrm{o}\mathrm{n}$ elements} is free.)
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In 6, we proved the following,

Theorem (An answer to Problem for reduced rings). Let $R$ be re-
duced. Then,

(1) $H$ has a torsion-free complement in $\mathrm{V}(R[X;S])$ .
(2) $H$ has a free complement in $\mathrm{V}(R[X;S])$ if and only if $H$ is free.
(3) $\mathrm{U}(R[x;S])$ is free modulo torsion if and only if $\mathrm{U}(R)$ is free mod-

ulo torsion and $H$ is free.
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