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Abstract

We consider closure property of some classes of codes under composition.

A code $X$ is a strongly infix(outfix) code if $X$ is an infix(outfix) code and any

catenation of two words in $X$ and has no proper (infix)outfix in $X$ , which is

neither a left factor nor a right factor. We show that the class of strongly

outfix codes is closed under composition, and as the dual result, that the

property to be strongly outfix is inherited by a componet of a decomposition.
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1 Introduction

The theory of codes has been studied in algebraic direction in conection to au-
tomata theory, combinatrics on words, formal languages, and semigroup theory.
Many classes of codes have been defined and studied ([1], [2]). Among those classes,
the class of infix codes and the class of outfix codes have many remarkable algebraic
properties, like that of prefix (suffix, bifix) codes ([2], [3], [4]).

On the other hand, composition on codes is very important as a binary operation
by which more complicated codes can be constructed from simpler ones. So we are
interested in whether the properties of codes are preserved under composition or
not.

As though the classes of prefix codes, suffix codes, and bifix codes are closed
under composition [1], the class of neither infix codes nor outfix codes is not [5].
Recently a strongly infix code has been defined and it has been proved that the
class of those codes is closed under composition.

In section 2 some basic definitions and results are presented. Moreover, the
concept of strongly outfix code is introduced.

In section 3 we first show that if a code $X\subseteq\Sigma^{+}$ is a strongly outfix code, then
$X^{*}$ is midunitary. Next, as the main result in this note, we show that the class
of strongly outfix codes is closed under composition. Last, we consider whether
properties of codes are inherited by a component of a decomposition or not. We
show that for the composition $X$ of two codes $Y$ and $Z$ , if $X$ is strongly outfix, then
also is $Y$ .

2 Preliminaries

Let $\Sigma$ be an alphabet. $\Sigma^{*}$ denotes the free moniod generated by $\Sigma$ , that is, the set
of all finite words over $\Sigma$ , including the empty word 1, and $\Sigma^{+}=\Sigma^{*}-1$ . For $w$ in
$\Sigma^{*}$ , $|w|$ denotes the length of $w$ .

A word $x\in\Sigma^{*}$ is a factor or an infix of a word $w\in\Sigma^{*}$ if there exists $u,$ $v\in\Sigma^{*}$

such that $w=uxv$ . A factor $x$ of $w$ is proper if $w\neq x$ . A catenation $xy$ of two words
$x$ and $y$ is an outfix of a word $w\in\Sigma^{*}$ if there exists $u\in\Sigma^{*}$ such that $w=xuy$ .
A word $u\in\nabla \mathrm{r}^{*}$ is a left factor of a word $w\in\Sigma^{*}$ if there exists $x\in\Sigma^{*}$ such that
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$w=ux$ . A left factor $u$ of $w$ is called proper if $u\neq w$ . A right factor is defined

symmetrically. An outfix $xy$ of $w$ is proper if $xy\neq w$ .

A language over $\Sigma$ is a set $X\subseteq\Sigma^{*}$ . A language $X\subseteq\Sigma^{*}$ is a code if $X$ freely

generates the submonoid $X^{*}$ of $\Sigma^{*}$ (See [1] about the definition.). A language $X$

$\subseteq\nabla+\sim \mathrm{i}\mathrm{s}$ a prefix code ( $\mathrm{r}\mathrm{e}\mathrm{s}$ p.suffix code) if no word in $X$ has a proper left factor (a

proper right factor) in $X$ . A lariguage $X\subseteq\Sigma^{+}$ is a bifix code if $X$ is both prefix and

suffix. A language $X\subseteq\Sigma^{+}$ is an infix code (resp. outfix code) if no word $x\in X$ has

a proper infix (a proper outfix) in $X$ .
A language $X\subseteq\Sigma^{+}$ is incatenatable (resp. outcatenatable) if a catenation of two

words in $X$ has a proper infix (proper outfix) in $X$ which is neither a proper prefix

nor a proper suffix. In other words, $X$ is incatenatable (resp. outcatenatable) if

there exist $u_{1},$ $u_{2},$ $u_{3},$ $u_{4}\in\Sigma^{+}-X$ such that $u_{1}u_{\mathrm{z}},$ $u_{3}u4$ , and $u_{2}u_{3}(u_{1}u_{4})$ is in $X_{:}$

A language $X\subseteq\Sigma^{+}$ is a strongly infix code (resp. strongly outfix code) if $X$ is

an infix code (outfix code) and is not incatenatable (outcatenatable).

Let $M$ be a monoid and let $N$ be a submonoid of $M$ . Then $N$ is right uni-

tary(resp. lefl unitary) in $M$ if for all $u,$ $v\in M,$ $u\in N$ and $uv\in N$ $(vu\in N)$

together imply $v\in N$ . The submonoid $N$ is biunitary if it is both left and right

unitary.
The submonoid $N$ is double unitary in $M$ if for all $u,x,$ $y\in M,$ $u\in N$ and

$xuy\in N$ together imply $x$ and $y\in N$ . The submonoid $N$ is midunitary in $M$ if for

all $u,$ $x,$ $y\in M,$ $xy\in N$ and $xuy\in N$ together imply $u\in N$ .

Let $Z\subseteq\Sigma^{*}$ and $\mathrm{Y}\subseteq\triangle^{*}$ be two codes with $\Delta=alph(Y)$ . Then the codes $\mathrm{Y}$

and $Z$ are called composable (through $\beta$) if there is a bijection $\beta$ from $\Delta$ onto $Z$ .

Then $\beta$ defines a morphism $\triangle^{*}arrow\Sigma^{*}$ which is injective since $Z$ is a code. The set
$X=\beta(Y)\subseteq Z^{*}\subseteq\Sigma^{*}$ is obtained by composition of $Y$ and $Z$ . We denote it by $X$

$=\mathrm{Y}\mathrm{o}_{\beta}Z$ or $X=Y\mathrm{o}Z$ when the context pernits it.

Proposition 1 [1] Let $X\subseteq\Sigma^{+}$ be a code. A language $X$ is a prefix code (resp.,

suffix code, bifix code) iff $X^{*}$ is right unitary (left unitary, biunitary.).

Proposition 2 [5] Let $X\subseteq\Sigma^{+}$ be a code. A language $X$ is a strongly infix code iff
$X^{*}$ is double unitary.
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3 Closure properties under composition

In this section we consider the closure properties of some classes of codes under
composition.

Proposition 3 $[\mathit{1}][\mathit{5}\mathit{1}$ The class of prefix ($suffi_{X,}$ and bifix) codes is closed under
composition.

Theorem 4 [5] The class of strongly infix codes is closed under composition.

The class of outfix codes is not closed under composition, as that of infix codes
is not closed [5]. For outfix codes $Z=\{aba, abb, aaa\}$ and $Y=$ { $c,$ de}, $\beta$ is defined
by $\beta(C)=ab_{a,\beta}(d)=abb$ , and $\beta(e)=aaa$ . Then $X=Y\mathrm{o}_{\beta}Z=$ { $aba$ , abbaaa} is
not an outfix code.

Next we consider composition of the class of strongly outfix codes.

Proposition 5 Let $X\subseteq\Sigma^{+}$ be a code. If a language $X$ is a strongly outfix code;
then $X^{*}$ is midunitary.

Proof. Suppose that $X$ is strongly outfix. Let $x,$ $u,$ $y\in\Sigma^{*}$ be such that $xy$ ,
$xuy\in X^{*}$ . Let $xy=u_{1}\ldots u_{n};xuy=v_{1}\ldots v_{m}$ for $u_{1},$

$\ldots,$
$u_{n}$ ; $v_{1},$

$\ldots,$
$v_{m}\in X.$ Sup-

pose that $u$ is not in $X^{*}$ .
(Case $1$ ) $|v_{1}|<|xu|$

(1.1) $|xu|<|v_{1}v_{2}|$ . There exists an integer $k>0$ such that $|v_{1}\ldots v_{k}|<|xu|<$

$|v_{1}\ldots v_{k+1}|$ . Moreover there exist $v_{1},$
$v(1)(2)\mathrm{i}$ , and $v_{(1)}^{(}k+1$

) , $v((2)k+1)$ in $\Sigma^{+}$ such that $v_{1}^{(1)}v_{1}^{(2}$
)

$=$

$v_{1},$ $v_{(k+1}^{(1}))^{v}((k2)+1)(k+1)=v$ and $v_{1}^{(2)}v_{2}\ldots vkv^{(1}(k)+1)=u$ . We have that $v_{1}v_{(}v$)
$(k+2)\cdots v_{m}(1)(2)k+1=$

$xy$ . Since $X$ is surfix, and $X^{*}$ is left unitary, $v_{1}^{(1)_{v_{(}}}(k+1)2)$ is in $X^{*}$ . If $v_{1(k}^{(1)_{v}}(2)+1)\in X^{n}$

for $n>1$ , either $v_{1}^{(1)}$ has a proper left factor in $X$ or $v_{2}^{()}k+1$ has a proper right factor
in $X$ . Moreover $v_{1}v_{(k+1}$ ) is not in $X$ since $X$ is not outcatenatable. Hence $v_{1}v_{(k+1)}$

(1) (2) (1) (2)

$=1$ . This is a contradiction.
$(1.2)|xu|<|v_{1}|$ . There exists $v_{1}’$ in $\Sigma^{+}$ such that $xuv_{1}’=v_{1}$ . We have that
$xv_{12}’v\ldots v=xym$ . Since $X$ is suffix, and $X^{*}$ is left unitary, $xv_{1}’\mathrm{i}_{\mathrm{S}}$ in $X^{*}$ . We get that
$xv_{1}’=1$ in the same way as in (1.1). Thus $u=v_{1}\in X$ .
(Case $2$ ) $|v_{1}|<|x|$

There exists an integer $k>0$ such that $|v_{1}\ldots v_{k}|<|x|<|v_{1}\ldots v_{(k+1}$ ) $|$ .
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$(2.1)|xu|<|v_{1}\ldots v_{(k1}+)|$ . There exists $v_{k+1},$
$v(1)(k2)+1\in\angle\nabla+\lrcorner$ such that $v_{k+1}^{(1)}uv_{k+}^{(2)}1=v_{k+1}$ .

We have that $x=v_{1}\ldots v_{k}v^{(1)}k+1’ v_{k}vk+2\cdots v(2)+1m=y$ . Since $xy$ is in $X^{*}$ , and $X$ is prefix

and suffix, $v^{(1)}k+1vk+1v_{(k1)}+\cdots v_{m}(2)$ is in $X^{*}$ . Moreover, since $v_{(k+1)}\ldots v_{m}$ is in $X^{*},$
$v_{k}^{(1)}v^{(2)}k$

is in $X^{*}$ . If $v_{k}^{(1)}v_{k}^{\mathrm{t}}2\rangle$ is in $X^{n}$ for $n>1$ , either $v_{k+1}^{(1)}$ has a proper left factor in $X$ or

$v_{k+}^{(2)}11_{1}\mathrm{a}\mathrm{S}$ a proper right factor in $X$ . Since $X$ is outfix, $v_{k+1k}^{(1)}v(2)+1$ is not in $X$ . Hence
$v_{k+}^{(1)}v1k+(2\rangle$$1=1$ . Thus $u=v_{2}\in X$ . This is a contradiction.
$(2.2)|v1\cdots v_{(k1}+)|<|xu|$ . There exists an integer $j>k$ such that $|v_{1}\ldots v_{j}|<|xu|<$

$|v_{1}\ldots v_{(j+}1)|$ . Then there exist $v_{k+}^{(1)()}1’ vk2+1$

’ and $v_{(j}^{(1)}v_{(}+1$

)’
$(j2)+1)$ such that $v^{(1)}k+1v^{(}k+1=v_{k}2$

)
$+1$ ,

$v_{(j+1}^{()})v1(2=v_{(j+1)}$ . We have that $v_{k+1}^{()}1v$
($2(vj+2)\cdots vm=xy$ . We get that

$v^{(1)}v^{(}k+1(j2)+1\square$)

$=1$ in the same way as in (1.1)

The converse of the previous proposition does not hold. Let a language $X$ be $\Sigma^{3}$

$=\{aaa, aab, aba, abb, baa, bab, bba, bbb\}$ , for $\Sigma=\{a, b\}$ . Then $X^{*}$ is mid unitary since

for every word $w\in\Sigma^{*},$ $|w|=3n$ for an integer $n$ iff $w\in X^{*}$ . It is obvious that $X$

is not a strongly outfix code.

Proposition 6 Let $Y$ and $Z$ be composable codes, and let $X=Y\mathrm{o}Z$ . If $Y$ is an

outfix code and $Z$ is a strongly outfix $code_{f}$ then $X$ is an outfix code.

Proof. Assume that $Y$ is an outfix code, and that $Z$ is a strongly outfix code.

Consider $xy,xuy\in X$ with $u\in\Sigma^{*}$ . Since $X\subseteq Z^{*}$ , we have that $xy,$ $xuy\in Z^{*}$ , and

since $Z^{*}$ is double unitary, this implies $u\in Z^{*}$ .

Let $w=\beta^{-1}(xy),$ $\approx=\beta^{-1}(Xuy)$ . Then, we have that $z=\beta^{-1}(Xuy)=$

$\beta^{-1}(x)\beta-1(u)\beta-1(y)\in Y$ , and $w=\beta^{-1}(xy)=\beta^{-1}(x)\beta^{-1}(y)\in$ Y. Since $Y$ is

outfix, $\beta^{-1}(u)=1$ . Consequently $u=1$ . This sh$o\mathrm{w}\mathrm{s}$ that $X$ is outfix. $\square$

Lemma 7 Let $X$ be a code and $Y_{f}Z$ be outfix codes with $X=Y\mathrm{o}Z$ . If $X$ is

$outcatenatable_{f}$ then either $Y$ or $Z$ is outcatenatable.

Proof. Let $\Delta=alph(Y)$ . Suppose that $X$ is outcatenatable. There exist $u_{1},$ $u_{4}\in$

$\Sigma^{+}-X,$ $u2,$ $u3\in\Sigma^{+}$ such that $u_{1}u_{2}\in X,$ $u_{3}u_{4}\in X,$ $u_{1}u_{4}\in X$ . Let $u_{1}u_{2}=z_{1}^{(1)}\ldots Z_{n}(1)$ ,
$u_{3}u_{4}=z_{1}^{(2)}\ldots Z_{m}(2)$ , and $u_{1}u_{4}=z_{1}^{(3)}\ldots z^{(}\iota^{3)}$ for $z_{1}^{(\perp},z_{n}$) $\ldots,(1)z_{1}(2)\ldots,(;,z);m.z(23)\ldots,\mathit{7}(1’\sim l3)\in Z$ .

(Case 1) $u_{1}\in Z^{*}$ .
There exists an integer $i>0$ and $j>0$ such that $u_{1}=z_{1}z_{l}(1)\ldots(1)=z_{1}^{(3)\ldots(3)}zj$ . Since
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$X$ is a (prefix) code, we have that $i=j$ , and $z_{1}^{(1)}=z_{1}^{(3)},$
$\ldots,$

$z_{i}^{()}1=z_{i}^{(3)}$ . It follows that

$\mathrm{w}\mathrm{e}\mathrm{h}\mathrm{a}\mathrm{v}\mathrm{e}\mathrm{t}\mathrm{h}\mathrm{a}\mathrm{t}Z_{m}-l+i+1=u_{2}=z_{i}^{(1}+1n’ u_{3}=Z.Z-,\iota 1m_{i}+i)\ldots(Z1)(2)..Z(2)(l-3)(2)\ldots$

’ and $u_{4}=z_{m-}^{(2)}\ldots Zl+i+1m(2)=zi+1Zl(3)\ldots(3)$ . Similarly
, $z_{m}^{(2)}=z_{l}^{(3)}$ . Let $\beta(a_{1}^{(1)})=\sim_{1}’,\beta(1)\ldots,(a_{n^{1}}^{(}))=$

$z_{n}^{(1)},\beta(a_{1}^{(}))=z\beta 1’(2(2)\ldots,2))=z_{m}(2)\beta(a_{1}(a_{m}^{(},)3)Z=1\mathrm{t}3),$ $\ldots..,\beta(al)(3)=z_{l}^{(3)}$ for $a_{1},a_{n}(1;(1)\ldots,)$

$a_{1},a_{m^{2}}^{(}(2)\ldots,)3\ldots,(;a_{1}^{()},a_{\iota}3)\in\triangle$ . We have that $a_{1}^{(1)}\ldots a_{n}^{()}1\in \mathrm{Y},$ $a_{1}^{(2)}\ldots a_{m^{2)}}^{(}\in Y$ , and
$a_{1}^{1^{3}}a_{l}=a_{1}a^{()})\ldots(3)(1)\ldots i1a_{l-i}\ldots a_{l}(\mathrm{s})(3)\in\}^{r}$ . Thus $Y$ is outcatenatable.
(Case 2) $u_{1}\not\in Z^{*}$ .
There exist an integer $i>0$ and $u,$ $v\in\Sigma^{+}-Z$ such that $u_{1}=z_{1}^{(1)}\ldots z_{i}u(1)$ and
$uv=\sim\nu_{i+1}^{()}1$ . Since $u_{1},$ $u_{4}\in X\subseteq Z^{*}$ , it is obvious that $u_{4}$ is not in $Z^{*}$ . Then there

$\mathrm{e}\mathrm{x},\mathrm{i}\mathrm{S}\mathrm{t}u,v’uv’=Z_{j+l}’(2)1.\in\Sigma+-^{z_{4}}\mathrm{S}\mathrm{i}\mathrm{n}\mathrm{C}\mathrm{e}u_{1}u=zz1=Zziuvz^{()}j+1.z^{(2)},\mathrm{a}\mathrm{n}\mathrm{d}uv’=z^{()}il’ \mathrm{w}\mathrm{e}\mathrm{h}\mathrm{a}\mathrm{v}\mathrm{e}\mathrm{a}\mathrm{n}\mathrm{d}j..>0\mathrm{S}\mathrm{u}\mathrm{c}_{1}\mathrm{h}\mathrm{t}..\mathrm{h}\mathrm{a}\mathrm{t}u3=z_{1}.z^{(2}uj’ u_{4}=v_{3}’Zj+2z_{l}^{\mathrm{t}}(3).(3)(1).(1),2.(2)\ldots)/(2)\ldots 2)$

,

that the catenation $\sim r_{i1}^{(1)}+z_{j}^{(2)}+1=uvu’v’$ of two words $z_{i+1}^{(1)}=.uv$ and $z_{j+1}^{()}2=u’v’$ has
a proper outfix $uv’=z_{i}^{(3)}\in Z$ which is neither a proper prefix nor a proper suffix.
Thus $Z$ is outcatenatable. $\square$

Theorem 8 The class of strongly outfix codes is closed under composition.

Proof. The result is immediate by Proposition 6 and Lemma 7. $\square$

Last we consider whether properties of codes are inherited by a component of a
decomposition or not.

Proposition 9 [1] Let $X_{f}Y$ and $Z$ be codes $u’ ithX=Y\mathrm{o}Z$ . If $X$ is prefix $(suffi_{X_{f}}$

bifix), then also is $Y$ .
Proposition 10 [5] Let $X,$ $Y_{f}$ and $Z$ be codes with $X=Y\mathrm{o}Z$ . If $X$ is $a$ infix
(strongly infix), then also is $Y$ .

Proposition 11 Let $X_{f}Y_{f}$ and $Z$ be codes with $X=Y\mathrm{o}Z$ . If $X$ is a $outfi_{X}$
) then

also is $Y$ .

Proof. Assume that $X$ and $Z\subseteq\Sigma^{*},$ $Y\subseteq\triangle^{*}$ , and $\beta:\triangle^{*}arrow\Sigma^{*}$ be an injective
morphism with $\beta(\Delta)=Z$ and $\beta(Y)=X$ . Let $xuy,$ $xy\in Y$ . Then $\beta(xuy)=$

$\beta(x)\beta(u)\beta(y)$ and $\beta(xy)=\beta(x)\beta(y)$ are in $X$ . Since $X$ is outfix, $\beta(u)=1$ . Thus
$u=1$ . $\square$
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Lemma 12 Let $X$ be an outfix code, and $Y_{f}Z$ be codes with $X=Y\mathrm{o}Z$ . If $Y$ is

outcatenatable, then also is $X$ .

Proof. Suppose that $Y$ is outcatenatable. There exist $u_{1},$ $u_{2},$ $u_{3},$
$u_{4}\in\triangle^{+}-Y$ such

that $u_{1}u_{2},$ $u3u_{4}$ , and $u_{1}u_{4}\in Y$ . Let $\beta(u_{i})=v_{i}$ for $i=1,$ $\ldots,4$ . Hence $v_{1}v_{2}=\beta(u_{1}u_{2})$ ,
$v_{2}v_{3}=\beta(u_{2}u_{3})$ , and $v_{1}v_{4}=\beta(u_{1}u_{4})\in X$ . It is obvious that $v_{i}=\beta(u_{i})\in\Sigma^{+}-X$

for $i=1,$ $\ldots,4$ . Thus $X$ is outcatenatable. $\square$

Proposition 13 Let $X_{l}Y_{f}$ and $Z$ be codes with $X=Y\mathrm{o}Z$ . If $X$ is a strongly outfix
$code_{l}$ then also is $Y$ .

Proof. It is obvious by Proposition 11 and Lemma 12. 口
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