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‘Abstract

We give a new proof of one part of the Krohn-Rhodes decomposition theorem for au-
tomata.

1 Introduction

The Krohn-Rhodes Decomposition Theorem [8] has a number of formulations in terms of au-
tomata, transformation semigroups, or semigroups, see [1, 6, 2, 9, 7, 5, 10], or [3], for an ex-
tension.  The aim of this paper is to give a simple proof of the hard part of the theorem
involving automata: Each finite automaton A is the homomorphic image of a subautomaton
of a (generalized) cascade composition of automata A1,..., A, where each A; is either the
two-sate identity-reset automaton U or a group-type automaton Aut(G) corresponding to a
simple group G which divides the semigroup of A. In addition to the well-known decomposition
of permutation-reset automata, the new argument uses a single construction and is based on the
following observation. Given the automaton A, there is a sequence

BO,B].J v 7’Bm

of finite automata such that By is trivial, B,, is the automaton A, and for each integer 1 < i < m,
either there is a surjective simple regular G-homomorphism A; — A;_;, or there is a surjective
simple regular G-homomorphism A;_; — A;. Here G denotes the class of simple groups dividing
the semigroup of A, and a homomorphism B — C is termed a simple regular G-homomorphism
if its kernel p satlsﬁes the following conditions.

¢ The non-singleton equivalence classes of p, or p-blocks, for short, have equal cardinality.

o If C and D are (non—smgleton) p-blocks and u is an input word of B with Cu C D, then
exther Cu=DorCuisa smgleton set.

. For any two non-singleton p—blocks C and D there is a word u with Cu = D.

o If C is a p-block and G is the group of all bijections C — C' induced by an input word,
then any sunple group divisor of G belongs to G.

*Partially supported by the National Foundation for Scientific Research of Hungary under gra.nt No. T7383-
and by the Japan Society for the Promotlon of Science.
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We then show thatif h: B — Cisa surjective simple regular G-homomorphism with kernel p,
then B is isomorphic to a subautomaton of a cascade composition of C and a permutation-reset
" automaton D such that each simple group divisor of the semigroup of D is in G.

The proof presented here has been used in [4] to show that the Conway axioms and an identity
associated with each finite (simple) group provide a complete axiomatization of iteration theories.

2 Preliminaries

2.1 Automata

Suppose that X is a finite nonempty set. We denote by X* the free monoid of all words over
X including the empty word A. We set X+ = X* — {)}, so that X% is the free semigroup of
nonempty words over X. -

An X-automaton A is a system (A, X, 9) consisting of the finite nonempty set A of states, the
finite nonempty set X of input letters, and the transition function § : A x X — A which can be
extended to a function A x X* — A in the usual way. When a € A and u € X*, we will usually
write au for 6(a,u), in particular when A is understood. Suppose that C C A and u € X*. We
define Cu = {cu: c€ C}.

Homomorphisms, congruences and subautomata are defined in the usual way.

2.2  Cascade Composition

Suppose that A; = (A;, X, §;) are given automata, for i € [k] = {1,.. O k}, k > 0. Let X denote
a finite nonempty nonempty set, and for each i € [k], let ¢; be a function

AiXAQX...XA,,;_l)(X - X;.

The generalized cascade composition of the A; determined by the set X and functions ¢; is
defined to be the automaton A = (A,X,6), where A is the set A; X ... X A, and for each
(a1,...,a) € Aand r € X,

(a1,...,ax)r = (a1%1,...,akTk)
with
Ty = Sa'i(a’l"",ai—lyz)?
all i € [k].
When X = X; =...= Xj and ¢;(a1,...,0i-1,2) =z, foreachz € X, a1 € A1,...,ai—1 € A;—1

and i € [k], the cascade composition becomes the direct product Ay x ... X Ag.

In the sequel, we will never use a generalized cascade composition of more than two automata
at a time. Accordingly, we will write

Ay x Az (X, p1,92) _ (1)

to denote the generalized cascade composition of A; and Ay determined by the set X and
functions ¢;, 1 = 1,2. When X is the input set of the automaton A; and ¢; is the identity
function X — X, we call the automaton (1) the cascade composition of A; and Ay determined
by the function ¢y. Denoting ¢ = o, we will write '

A; X, Ag . (2)
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for short.

Suppose that A = (4,X,6) and B = (A,Y,¢') are given finite automata with identical state
sets. We say that B is a renaming of A if there is a function ¢ : Y — X such that

&a,y) = o(a,yp),

forallaec Aandy €Y.
Suppose that K is a class of automata. We define:

e S(K): all subautomata of automata in K;

N(K): all renamings of automata in K;

H(K): all homomorphic images of automata in K;

I(K): all isomorphic images of automata in K;

P.(K): all generalized cascade compositions of automata in K.

It is known that for any nonempty class K of automata, V.(K) = HSP.(K) is the smallest
class containing K and closed under the operators H, S and P,, and also the smallest class
containing K and closed under the operators H, S, N and the cascade composition (2). See [5].

2.3 Semigroups

Except for free semigroups X' and free monoids X*, each semigroup will be assumed to be
finite. We will use standard terminology. A submonoid of a semigroup is a subsemigroup which
is a monoid. Similarly, a subgroup of a semigroup is a subsemigroup which is a group. Suppose
that S and T are semigroups. We say that S divides T', denoted S|T, if S is a homomorphic
- image (or quotient) of a subsemigroup of T. It is known that this relation is transitive, see, e.g.,
[2, 9]. A proof of the following lemma can be found, e.g., in [5].

LEMMA 2.1 Suppose that S|T' and that S is a monoid (group, respectively). Then there is a
submonoid T' (subgroup, respectively) of T such that S is a quotient of T".

Suppose that A = (A, X, d) is an automaton. Each word v € X* induces a function

AA 5 A

a = au.

The functions u®, u € X*, form a monoid denoted M(A) whose unit is the identity function
M 1 A — A. We will denote by S(A) the subsemigroup of M(A) determined by the functions

A induced by the nonempty words u € X+. The group G(A) consists of those functions in
M(A) which are permutations.

We may'generalize the above concepts. Suppose that C and D are two nonempty subsets of A.
We define:

e MA(C,D): all functions f : C — D such that there exists a word u € X* with u|¢c = f,
where uAlc denotes the restriction of u® to C;

o SA(C,D): all functions f : C — D such that there exists a word u € X+ with uA|C =f;
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e GA(C,D): the bijections in Ma(C, D).

Of course, if G4 (C, D) # 0, then |C| = | D|, i.e., the sets C and D have equal number of elements.
We write Ma (C) for Ma (C, C). Note that Ma (C) is a monoid. We define the semigroup Sa (C)
and the group Ga(C) in a similar way. Note that Sa(C) may be empty. For a proof of the
following lemma, see [5].

LEMMA 2.2 Suppose that G is a subgroup of Ma(C) or a subgroup of Sa(C). Then there is a
nonempty set D C C such that G is isomorphic to a subgroup of G a(D). In particular, if G 1s
a subgroup of M(A) or a subgroup S(A), then there is.a set D C A such that G is isomorphic
to a subgroup of Ga(D). ' : ‘

2.4 Permutation-Reset Automata

An X-automaton is a permutatio.n automaton if each function z®, € X, is a permutation. It
then follows that the functions A, u € X*, are also permutations, so that M(A) = S(A) =
G(A). Conversely, if S(A) = G(A), or if M(A) = G(A), then A is a permutation automaton.
When G is a group, the system Aut(G) = (G, G, ) with (g, h) = gh, the product of the group
elements g and h, for all g,h € G, is a permutation automaton.

An automaton A = (4, X, d) is a permutation-reset automaton if each function z#, z € X, is
either a permutation or a constant map. It then follows that each function u® for u € X* is also
either a permutation or a constant map. For example, the automaton U = ([2], {z0, %1, %2}, 0)
is a permutation-reset automaton, where izg = ¢ and iz; = j, for i,j = 1,2.

For any automaton A, let G(A) denote the collection of simple groups G with G|M (A). (Note
that for any group G, G|M(A) iff G|S(A).) Moreover, we define Kg(A) = {Aut(G) : G € G(A)}
and K(A)= K4(A) U {U}. ‘

LEMMA 2.3 Suppose that A is a permutation-reset automaton. Then
A €V (K(A)).

If A is a permutation automaton such that at least one letter induces a nontrivial permutation,
then :
A €V (K4(A)).

For a proof of Lemma 2.3, see [5], or [9].

'3 The Krohn-Rhodes Decomposition Theorem

The Krohn—Rhode’s Decomposition Theorem consists of two parts, Theorem 3.1 and Theorem 3.2.
Let U denote a semigroup isomorphic to M(U) = § (U). (The automaton U was defined above).

THEOREM 3.1 Suppose that S is either a semigroup dividing U or a simple group. Let A be an
automaton and K a nonempty class of automata with A € V (K). If S|S(A) then there is an
automaton B € K with S|S(B). If S\M(A) then there is an automaton B € K with S|M(B).

THEOREM 3.2 For each autohiaton A,

A €V (K(A)).
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. The class K(A) was defined above.

The rest of the paper is devoted to proving Theorem 3.2. In our argument, we will make use of
Lemma 2.3, which is a particular instance of Theorem 3.2. .

4 Congruences

In this section we assume that G is a class of simple groups closed under division. Thus, if G
and H are simple groups with G|H and H € G, then G is also in . The class G consists of
the groups whose simple group divisors are in G. Note that G is closed under the formation of

“subgroups and homomorphlc images. It follows from Theorem 3.1 that G is also closed under
semidirect product and thus under direct product.

DEFINITION 4.1 Suppose that A = (A, X, 8) is an automaton and that p C Ax A is a congruence
relation. We call p

e simple, if |C| = |D| holds for any two non-singleton p-blocks C,D. € A/p, and if each
member of M (C, D) is either a bijection or a constant map;

e regular, if for each non-singleton p-block C, the smallest congruence relation which col-
lapses the states in C is the relation p itself;

o A G-congruence, if for each p-block C, each subgroup of Ma(C) is in G.

Note that p is a G-congruence iff for each p-block C, each subgoup of S5 (C) is in G, i.e., when
G € G holds for the simple groups G dividing S (C) or Ma (C). Moreover, a simple congruence
~p is a G-congruence iff GA(C) € G, for each (non-singleton) p-block C. This follows by noting
that when p is simple, each nontrivial subgroup of M4 (C) is a subgroup of G4 (C).

DEFINITION 4.2 Suppose that A and B are X -automata and that h is a homomorphzsm A — B.
We call h a simple, regular, or a G-homomorphism, if ker h, the kernel of h has the approprzate
property.

When G is empty, a G-homomorphism will be termed aperiodic.

LEMMA 4.3 Suppose that A1, Ay and A3 are X -automata with homomorphisms hy : A; — Ag
and Ay — Ajz. If hy is surjective and if

o= A A, P34,

isa G -homomorphism, then so are hy and hy.

Proof. Denote p; = ker h;, i = 1,2, and p = ker h. Each p;-block C is included in some p-block
D. The functions g € Ma, (D) with Cg C C form a submonoid M of M, (D), and the map
g~ glc, g € M is a surjective homomorphism M — Ma, (C). Thus My, (C)|Ma, (D), so that -
any divisor of Ma, (C) divides Ma, (D). Since p is a G-congruence, it follows that p; is also a
G-congruence, hence h1 is a G-homomorphism.

Suppose now that C is a py-block. Define D = hT 1(C) S0 that D is a p-block. Since h; is
surjective, the monoid M, (C) is a quotient of M. A, (D), a sur3ect1ve homomorphism My, (D) —
Ma, (C) is given by

W p = uh?g,
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all u € X* with Du C D. Thus any divisor of Ma,(C) divides My, (D). Tt follows that po is a
G-congruence and thus hg is a G-homomorphism. , 0O

'COROLLARY 4.4 Suppose that py < ps are congruence relations of the automaton A. If pa is a
G-congruence, then so is p1. Further, p2/p1 is a G-congruence of the quotient automaton A/pr.

REMARK 4.5 The assumption that h; is surjective was needed only in order to show that h is
_ a G-congruence. : :

In order to prove the converse of Lemma 4.3, we need the following fact.

LEMMA 4.6 Suppose that A = (A, X, 8) is a permutation X -automaton. Let p beaG -congruence
relation of A such that G(A/p) € G. Then G(A) is in G. '

" Proof. Assume first that A is strongly connected, i.e., for each a,b € A there is some u € X*
with au = b. Let Cy be a p-block. Define

Y = {ys:9€Ga(Co)}.
We turn Cp into an Y-automaton Co = (Co, Y, ép) by defining

do(c,yg) = cg,

for all ¢ € Cp and y, € Y. It is known, see, e.g., [6, 2, 7], that A is isomorphic to a cascade
composition of A/p and Cp. See also Remark 6.3. Thus, by Theorem 3.1, each simple group
divisor of G(A) divides G(A/p) or G(Cyp). (Note that Cp is a permutation automaton.) Since
p is a G-congruence, G(Cp) = Ga(Co) € G. Further, G(A/p) € G, by assumption. It follows
that G(A) € G. ,

When A is not strongly connected, then A is the disjoint sum of its strongly connected compo-
nents A; = (A1,X,61),..-,Am = (Am, X, 0m). Thus each A; is a strongly connected permuta-
tion automaton, moreover, the sets A; are pairwise disjoint, U™, A; = A, and é(a,z) = &;(a, x)
for-each a € A; and z € X with ¢ € [m]. The group G(A) is isomorphic to a subgroup of the
direct product of the groups G(A;), in particular

a(a) ] oA, ®)
=1 ’ .

For each i € [m], let p; denote the restriction of p to A;. Then each p; is a G-congruence relation
of the strongly connected permutation automaton A;. But G(A;/p;) is a quotient of G(A/p),
which is in G, by assumption. Thus each group G(A;/p;) is in G, so that G(A;) € G, by the first
part of the proof. Since G is closed under direct product, it follows by (3) that G(A) is also in
Gg. . ' 0O

LEMMA 4.7 Suppose that Ay, Az and A3 are X-automata and hy : Ay — A, and hy : Ay —
A3 are G-homomorphisms. Then the composite

o= A oA, Mg,

18 a G-homomorphism A; — As.
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Proof. Define p; = ker h.,, t=1,2, and p = ker h. Suppose that D is a p-block and that G is a
subgroup of My, (D). We need to show that G € G. By Lemma 2.2, there exists a nonempty
set Do C D such that G is 1somorphlc to a subgroup of G, (Dp). Let

{ys: 9 € Ga, (Do)}

Defining

‘50(0’ yg) = ag,

Dy becomes the state set of the permutatlon Y—automaton Dy = (Dy,Y,8). Since hy is a
G-homomorphism, the restriction p} of p1 to Dy is a G-congruence of Dgy. Further, Dy / Pl is a
permutation automaton, and since h; is a G-homomorphism, the group G(Dg/p}) is in G. Thus,
by Lemma 4.6, G(Do) € G. But the two groups G(Dy) and G As (Do) are 1somorph1c, so that
Ga,(Dy) is also in G. o -

COROLLARY 4.8 Suppose that p; < ps are congruence relations of the automaton A. If p; is a
G-congruence and if pa/p1 is a G-congruence of A/py, then ps is a G-congruence.

LEMMA 4.9 Suppose that A and B are X-automata and that h is a simple homomorphism
A — B which is not injective. Then there is an X -automaton C, a surjective simple reqular
homomorphism hy : A — C and a simple homomorphism hy : C — B such that hy is not
wnjective and

h=AMchp

Proof. Let p be minimal among those congruence relations of A which collapse the states in at
least one non-singleton congruence class of ker h. Then let C = A / p and let h; be the natural
homomorphism A — A/p. The deﬁmtlon of hy is forced. O

REMARK 4.10 By Lemma 4.3'and Lemma 4.7, h is a G-homomorphism iff h; and hz are G-
homomorphisms.

COROLLARY 4.11 Suppose that A is an X -automaton and p is a simple congruence relation of
A other than the identity relation. Then there is a simple regular congruence relation p' < p
which is not the identity relation and such that p/p' is also simple. Further, p is a G-congruence
iff both p' and p/p’ are G-congruences.

5 Two Relations

Throughout this section G denotes a given class of simple groups closed under division. We
define two relations on automata. :

DEFINITION 5.1 Suppose that A and B are X -automata. We define:
o A > B if there is a surjective g-homomofphism A — B;

o A > B if there is a surjective simple regular G-homomorphism A — B.
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Thus, if A > B, then A > B. Moreover, both relations are reflexive, and the relation > is
transitive, by Lemma 4.7. We let = (~, respectively) denote the smallest equivalence relation
containing the relation > (>, respectively).

LEMMA 5.2 Suppose that A and B are X -automata with A > B. Then A ~ B.

Proof. Suppose that p is a G-congruence of the X-automaton A = (A, X,d). We prove that
A ~ A/p. We argue by induction on : '

#p = max{|D|: D € A/p}.

The basis case that #p = 1 is obvious. Suppose that #p > 1. Define the X-automaton

= (A, X,4') on the set A as follows. For each a € A and 2 € X with p(a)z C p(ar) and
lp(az)| = #p, let & (a,z) be some fixed element of p(ax) — p(a)x, depending only on p(a) and
z. Otherwise define §'(a,z) = ax. (Here, for any b € A, p(b) denotes the p-block containing b.)
Note that p is a congruence relation of A’ and A/p is isomorphic to A'/p.

Let R denote the set

{a,b) €AxA:apb& (|p(a)] < #p or a # b))

Then R determines a subautomaton of the direct product A x A’. To prove this, suppose that
(a,b) € R and x € X. We need to show that (a,b)x € R.

CASE 1 |p(az)| = #p and p(a)z = p(az). Then a # b and z induces in A a bijection p(a) —
plaz). Thus (a,b)x = (az,bz) and ax # bz, proving (a,b)x € R.

CASE 2 |p(ax)| = #p and p(a)r C p(ax). Then bz # az, since bx & p(a)z. Thus (a,b)z € R.
CASE 3 |p(az)| < #p. Then (a,b)z € R holds obviously.

As noted above, p is a congruence relation of A’. We show that p is a G-congruence. For each
p-block C, Ma:/(C) is a submonoid of Ma (C)¢, the semigroup obtained by adding the constant
maps C — C to Ma(C). But since p is a G-congruence of A, each subgroup of Ma(C) is
in G, moreover, each nontrivial subgroup of Ma (C)¢ is a subgroup of Ma(C). Since p is a
G-congruence of A, it follows that p is a G-congruence of A’.

The functions

7:R— A, (a,b)—a
7 :R— A, (a,b)—>b

“are surjective homomorphisms R — A and R — A/, respectively, where R denotes the subau-
tomaton of A x A’ determined by the set R. Define @ = ker m and @' = ker /. Then #6 < #p
and #6' < #p. Thus, if 7 and ' are G-homomorphisms, then A ~ R and A’ ~ R, by the’
induction assumption, so that

A~A. | @
To prove that 7 is a G-homomorphism, note that each 6-block C is either of the form
{a} x p(a)

or

{a} x (pla) ~ {a}),
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for some a € A. Thus, writing D = p(a) or D = p(a) — {a}, Mgr(C) is a quotient of the
submonoid of Ma/(p(a)) determined by the functions g = uA'|p, u € X* with Dg C D and
au® = a. Since p is a G-congruence of A, it follows that each simple group divisor of Mg(C)
is in G. Thus 6 is a G-congruence and 7 is a G-homomorphism. The proof of the fact that =’ is
also a G-homomorphism is similar. Thus (4) has been established.

By (4) and since A/p and A’/p are isomorphic, to complete the proof we need to show that
A’ ~ A'/p. Let 7 denote the congruence relation of A’ whose non-singleton blocks are those
p-blocks C with |C| < #p. Then 7 < p, so that 7 is a G-congruence of A’, by Corollary 4.4.
Moreover, #7 < #p, and p/7 is a simple G-congruence of A’/7. Thus, A' ~ A'/r, by the
induction assumption. But by Lemma 5.3 below, A'/T ~ A’/p, completing the proof. O

LEMMA 5.3 Suppose that A and B are X -automata and h is a sur]ectwe szmple G-homomorphism
A — B. Then there is chain

A>A;>...=A,>B.

Proof. By Lemma 4.9, there exist X-automata A;,... ,An' and surjective simple regular G-
homomorphisms

AMaly Pt Mg g

COROLLARY 5.4 For any two X -automata A and B, A ~B iff A=B.

6 Proof of Theorem 3.2

In this section we complete our proof of Theorem 3.2.

LEMMA 6.1 Suppose that A = (A, X,0) is a given automaton and p is a simple regular G-
congruence of A, for some class G of simple groups closed under division. Let K consist of the
automata A /p and U as well as the automata Aut(G) for G € G. Then

_ A € V. (K).

Proof. We may assume that #p > 1. Let Cy,...,Ck, k > 0, denote the p-blocks C; with
|Ci| = #p, and let Dy = {d1},...,Dp = {dn} be the singleton p-blocks. Since p is simple,
the sets C; and D; are all of the p-blocks. For each i € [k] there exist words u;,v; € X* with
Ciu; = C; and Cjv; = C, and such that u;v; induces the identity function on C; and wvu;
induces the identity function on C;, so that (uivi)®|c, = Mg, and (v;u;)2|c, = AAc,. (We
may assume that u; = v; = A).

Define
{va:a€Ci}U{ys : s € SA(C1)}.
We turn C; into an Y-automaton C; by defining

Cla = .G
CYys = Cs,

for all a,c € C; and s € Sp(C1). Then A € IS({B}) holds for the cascade composition
‘ B = A/p Xp Cla |



where

p:AlpxX — Y
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is defined as follows. Let ag be a fixed element of C;. Then, for each i € [k] and z € X, define

W(Ciyz) = ys if Ciz C C;, where s = (u;zv;)*|c, and j € [k];
P\L) = gy, if Ciz = D; for some j € [m].

Moreover, for each i € [m] and z € X, let

Yo ifdiz=b€Cj, jEkK], a€C; ahdauj=b;
Yoo if diz = dj, for some j € [m].

Then the set
By = {(Ci,a):a€C, i€ lkl}U{(Dj,a):j€[m]}

determines a subautomaton Bg of B. Moreover, the function

h:By — A
(Ci, a) — au;

is an isomorphism By — A, as shown by the following commutative squares corresponding to

the 4 cases in the definition of ¢:

(C’i7 a‘) h au;

-

(Cj, aUTV;) ———— QUTVjUj = AU

T

h
(Ciya) b au;
(Dj7a‘0) i h > d]
(D;, ao) h ~d;
(Cj,a) — b = au;
(Di, a0) - - h ~ d;
(DJ"I"'O) dj
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To complete the proof, note that C; is a permutation-reset automaton and any simple group
dividing M(C;) is in G, since pi is a G-congruence. Thus,

C: € V.({U,Aut(G):Geg}),
by Lemma 2.3. It follows that A € V(K). - O

REMARK 6.2 The automaton By is a quotient of B under the homomorphism #' : B — By
defined by:

(Ci,a) — (Ci,a)
(Dj,a) ~ (Dj,a0),

for all i € [k], j € [m] and a € C;. The homomorphism #’ is simple and aperiodic, and has the
property that each (non-singleton) block of ker h' contains at most one state which is in the
range of the transition function of B. Such homomorphisms are termed elementary in [4].

Proof of Theorem 3.2. Let A = (A, X, ) be an automaton. Recall that the class X(A) consists
of the automaton U as well as the automata Aut(G) for simple groups G with G|M(A). W
need to show that

A € V. (K(A)).

Let T denote the trivial one-state X-automaton and let G denote the class of simple groups G
with G|M(A). Then, with respect to this class G, A > T, so that A ~ T, by Corollary 5.4.
Thus, there exists a sequence of X-automata By, ...,Bj such that By = T, B; = A, and for
each i € {0,...,k—1} either B; = B, or B;;; >= B;. We argue by induction on ¢ to show that
B; € V.(K(A)). When i = 0, this is obvious. For the induction step, suppose that i > 0 and
B,_; € V. (K(A)). If B;_1 > B;, then B; € H({B;_1}), so that B; € V.(KX(A)). Suppose that
B; = B;_1. Then there is a surjective simple regular G-homomorphism b : B; — B;_;. Thus,
by Lemma 6.1,

) B, ¢ Vc(’C(A) U Bi—l)- ‘
It follows from the induction assumption that B; € V.(K(A)). O
REMARK 6.3 When A is a permutation automaton and #p > 1; there is no singleton p-block.
We may define Y = {y; : s € G5o(C1)}, so that C; becomes the Y-automaton with cy, = cs, for

all c € C1 and s € GA(C}). Then C; is a permutation automaton and G(Cy) is in G. Moreover,
“A is isomorphic to a cascade composition of A/p with C;. -

COROLLARY 6.4 Suppose that G is a class of simple groups closed under division. Let K consist -
of U and the automata Aut(G) for G € G. Then the following conditions are equwalent for an
automaton A:

1. Each simple group divisor of S(A) is in G.

2. There is a sequence of automata Ay, ..., A, such that Ag is trivial, An is A, _ahd for each
i € [n], either A; is a quotient of A;_1 under a simple regular G-homomorphism, or A;_1
15 a quotient of A; under a simple regular G-homomorphism.

3. Ae V. (K).
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4. A is in the least class of automata containing K and closed under subautomata, simple
reqular g homomorphzc images, renaming and cascade composition.

5. A is in the least class of automata containing K and closed under subautomata, G-
homomorphic images, renaming and cascade composition.

Note This paper was submitted to an editor of Theoretical Computer Science in December
1995. Unfortunately the author has not received any referee report since then.
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