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Abstract

We give the following homomorphic characterization of slender
context-free languages. Let $\Sigma$ be an alphabet. Then, an alphabet
$\Delta$ , a homomorphism $h$ : $\Delta^{*}arrow\Sigma^{*}$ and a linear Dyck language $D_{\mathcal{L}}$

over $\Delta$ can be determined according to $\Sigma$ such that for every slender
context-free language $L$ over $\Sigma$ , there can be found a regular language
$R\subseteq\Delta^{*}$ with $L=h(D_{\mathcal{L}}\cap R)$ .

1 Introduction
Slender languages attract many researchers from the theoretical point of view
as well as from the point of view of the application to the cipher systems.
Recently, the loop chacacterizations of them are obtained, which will be
stated in the next section.

On the other hand, many characterization results for language classes
have been obtained from several viewpoints. Grammatical characterization,
characterization by automata, homomorphic characterization, characteriza-
tion with Dyck reduction, and characterization with equality sets are exam-
ples of them. The homomorphic characterization of language class is one
of the most attractive one and many results are known. The clasical and

数理解析研究所講究録
1106巻 1999年 196-203 196



famous homomorphic characterization is Chomsky and Stanley’s $\mathrm{o}\mathrm{n}\mathrm{e}[1,9]$ ,
which states that any context-free language $L$ can be obtained with the form
$L=h(D\cap R)$ , where $D$ is a Dyck language, $R$ a regular language and $h$ a
homomorphism.

In this paper, we investigate a Chomsky-Stanley type characterization
for the class of slender context-free languages. However, Chomsky-Stanley
type characterization of the $\mathrm{c}\mathrm{l}\mathrm{a}_{\iota}\mathrm{s}\mathrm{s}$ of slender context-free languages is almost
meaningless, because a slender context-free language is linear but a Dyck lan-
guage is not linear. If we use a Dyck language for characterization, then it
becomes to the fact that we use structually complicated languages to charac-
terize simple ones. We consider another characterization which is in parallel
form to Chomsky-Stanley’s one.

This paper is organized as follows. In Section 2, we introduce some fun-
damental notions, notations, definitons of slender languages, and the loop
characterization results for slender languages. In Section 3, we give our main
theorem, which characterize the class of slender context-free languages by
Chomsky-Stanley type. Section 4 gives some concluding remarks.

2 Preliminaries
For all notions and notations not defined here, see [2, 3, 4, 8].

A language $L\subseteq\Sigma^{*}$ is said to be $k$ -slender if $card\{w\in L||w|=n\}\leq k$ ,
for every $n\geq 0$ . And a language is slender if it is $k$-slender for some positive
integer $k$ . Especially, a 1-slender language is called a thin language.

A language $L$ is said to be a union of single loops (or, in short, USL) if
for some positive integer $k$ and words $u_{i},$ $v_{i},$ $w_{i},$ $1\leq i\leq k$ ,

$(*)L= \bigcup_{i=1}^{k}u_{i}v_{i}^{*}w_{i}$ .

A language $L$ is called a union of paired loops (or UPL, in short) if for some
positive $k$ and words $u_{i},$ $v_{i},$ $w_{i},$ $x_{i},$ $y_{i},$ $1\leq i\leq k$ ,

$(**)L= \bigcup_{i=1}^{k}\{u_{i}v_{i}^{n}w_{i}x_{i}^{n}y_{i}|n\geq 0\}$.

A USL language $L$ is said to be a disjoint union of single loops (DUSL,
in short) if the sets in the union $(*)$ are pairwise disjoint. The notion of
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a disjoint union of paired loops (DUPL) is defined analogously considering
$(**)$ .

For a $2\mathrm{n}$-letter alphabet $\Sigma=\{a_{i}, a_{i}’|i=1,2, \cdots, n\}$ , Dyck language $D$

over $\Sigma$ is a language generated with a Dyck grammar $G=(N, \Sigma, S, P)$ with
$N=\{S\}$ and $P=\{Sarrow\lambda, Sarrow SS\}\cup\{Sarrow a_{i}Sa_{i}’|i=1,2, \cdots, n\}$.
Rrthermore, if the set of productions of a grammar $G_{\mathcal{L}}$ is $P_{\mathcal{L}}=\{Sarrow$

$\lambda\}\cup\{Sarrow a_{i}Sa_{i}’|i=1,2, \cdots, n\}$ , then $G_{L}$ is called a linear Dyck grammar
and its language $L(G_{\mathcal{L}})$ is called a linear Dyck language.

We shall use the following well-known results about slender languages.

Proposition 1 [6]
The next conditions, $(i)-(iii)$ , are equivalent for a language $L$ .

(i) $L$ is regular and slender.
(ii) $L$ is $USL$ .

(iii) $L$ is DUSL.

Proposition 2 $[\theta]$

Every $UPL$ language is DUPL, slender, linear and unambiguous.

Proposition 3 $[\mathit{5}, 7]$

Every slender context-free language is $UPL$ .

We have the following direct consequence of Propositions 2 and 3.

Proposition 4 The class of slender linear languages coincides with the class
of slender context-fee languages. In addition, the class of slender context-free
languages contains only unambiguous languages.

3 Results
As stated in Introduction, when we consider the homomorphic characteiza-
tion of the class of slender context-free languages, Chomsky-Stanley type
characterization is almost meaningless, because a slender context-free lan-
guage is linear but a Dyck language is in the bigger class than the linear
one. Therefore, we adopt linear Dyck languages instead of Dyck languages
in Chomsky-Stanley type characterization.
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Theorem 1 Let $\Sigma$ be an alphabet. Then an alphabet $\Delta$ , a homomorphism
$h:\Delta^{*}arrow\Sigma^{*}$ and a linear Dyck language $D_{C}$ on $\Delta$ can be determined from $\Sigma$

such that for every slender context-free language $L\subseteq\Sigma^{*}$ , there can be found
a regular language $R\subseteq\Delta^{*}$ with $L=h(D_{L}\cap R)$ .

Proof. Let $\Sigma$ be an alphabet. Then, we first define an alphabet $\Delta$ , a
homomorphism $h$ , the linear Dyck language $D_{C}$ on $\Delta$ as follows:

An alphabet $\Delta$ is defined by
$\triangle=$. $\Sigma\cup\Sigma’\cup\overline{\Sigma}\cup\overline{\Sigma}’\cup\{d, d’,\overline{d}, d^{\overline{\prime}}\}$ ,

where $d\not\in\Sigma$ , and for $\Sigma$ ,
$\Sigma’=\{a’|a\in\Sigma\},$ $\Sigma-=\{\overline{a}|a\in\Sigma\}$ , and $\overline{\Sigma}’=\{\overline{a}’|a\in\Sigma\}$ .

The homomorphism $h:\Delta^{*}arrow\Sigma^{*}$ is defined by
$h(a)=h(\overline{a}’)=a,$ $a\in\Sigma$ and $h(x)=\lambda,$ $x\in\Delta\backslash (\Sigma\cup\overline{\Sigma}’)$ .

The linear Dyck language $D_{C}$ over $\Delta$ is the language generated by

$G_{\mathcal{L}}=(\{S\}, \triangle, S, P_{\mathcal{L}})$ ,

where
$P_{\mathcal{L}}=\{Sarrow aSa’, Sarrow\lambda|a\in\Sigma\cup\overline{\Sigma}\cup\{d,\overline{d}\}\}$ .

Let $L$ be any slender context-free language over $\Sigma$ . By Proposition 3,
we can find a finite index set $I$ and words $u_{i},$ $v_{i},$ $w_{i},$ $x_{i},$ $y_{i}$ , for all $i\in I$ with
$L= \bigcup_{i\in I}\{u_{i}v_{i}^{n}w_{i}x_{i}^{n}y_{i}|n\geq 0\}$ .

Furthermore, by a padding technique, we can assume $|u_{i}|=|y_{i}|$ and
$u_{i}d^{|y_{i}|-|_{u_{i}|}^{x_{i}|}}|v_{i}|=,\cdot d(\mathrm{O}\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{r}\mathrm{w}\mathrm{i}\mathrm{s}\mathrm{e}\not\in\Sigma.)$

’ for example, if $|u_{i}|<|y_{i}|$ then we set a new $u_{i}$ as

In order to simplify the notations, we use the following
$\mathrm{a}\mathrm{b}\mathrm{b}\mathrm{r}\mathrm{e}\mathrm{v}\mathrm{i}\underline{\mathrm{a}_{J}}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}\mathrm{s}$

.
For a word $w=a_{1}\ldots a_{\ell}\in\Sigma^{*},$ $w’=a_{1}’\ldots a_{\ell}’,\overline{w}=a_{1}^{-}\ldots\overline{a}_{\ell},\overline{w}’=a_{1}^{\overline{\prime}}\ldots a_{\ell}$ , and
$w^{R}=a_{\ell}\ldots a_{2}a_{1}$ .

For $L= \bigcup_{i\in I}\{u_{i}v_{i}^{n}w_{i}x_{i}^{n}y_{i}|n\geq 0\}$ , we define a regular grammar $G_{R}=$

$(N, \Delta, A, P_{R})$ , where $N=\{A, B, C\},$ $P_{R}=P_{1}\cup P_{2}\cup P_{3}\cup P_{4}\cup P_{5}$ as
$P_{1}=\{Aarrow u_{i}\overline{y}_{i}^{R}B|i\in I\}$ ,
$P_{2}=\{Barrow v_{i}\overline{x}_{i^{R}}B|i\in I\}$ ,
$P_{3}=\{Barrow w_{i}w_{i}^{\prime R}C|i\in I\}$ ,
$P_{4}=\{Carrow\overline{x}_{i’}v_{i}^{\prime R}C|i\in I\}$, and
$P_{5}=\{Carrow\overline{y}_{i’}u_{i}^{;R}|i\in I\}$ .
Let $R$ be a language generated by $G_{R}$ , i.e., $R=L(G_{R})$ . Then, $L=$

$h(D_{\mathcal{L}}\cap R)$ can be proved by the following discussion.
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a). $L\subset h(D_{C}\cap R)$ .
Suppose $w$ is in $L$ , and $w$ is of the form $u_{i}v_{i}^{n}w_{i}x_{i}^{n}y_{i}$ for some $i$ and $n$ .
By the definition of $G_{R}$ , it is clear that a word

$\xi=u_{i}\overline{y}_{i}^{R}(v_{i}\overline{x}_{i^{R}})^{n}w_{i}w_{i}^{\prime R}(\overline{x}_{i’}v_{i}^{\prime R})^{n}\overline{y}_{i}’u_{i}^{\prime R}$

is generated by $G_{R}$ as follows.
$A\Rightarrow u_{i}\overline{y}_{i}^{R}B\Rightarrow u_{i}\overline{y}_{i^{R}}v_{i}\overline{x}_{i^{R}}B\Rightarrow^{*}u_{i}\overline{y}_{i}^{R}(v_{i}\overline{x}_{i^{R}})^{n}B\Rightarrow u_{i}\overline{y}_{i}^{R}(v_{i}\overline{x}_{i^{R}})^{n}w_{i}w_{i}^{\prime R}C$

$\Rightarrow u_{i}\overline{y}_{i^{R}}(v_{i}\overline{x}_{i^{R}})^{n}w_{i}w_{i^{R}}’\overline{x}_{i’}v_{i}^{\prime R}C\Rightarrow u_{i}\overline{y}_{i^{R}}(v_{i}\overline{x}_{i^{R}})^{n}w_{i}w_{i^{R}}’(\overline{x}_{i’}v_{i}^{\prime R})^{n}C$

$\Rightarrow u_{i}\overline{y}_{i^{R}}(v_{i}\overline{x}_{i^{R}})^{n}w_{i}w_{i^{R}}’(\overline{x}_{i’}v_{i}^{\prime R})^{n}\overline{y}_{i’}u_{i}^{\prime R}$.
Moreover, it is clear that $\xi$ is in $D_{\mathcal{L}}$ , and therefore, $\xi$ is in $D_{\mathcal{L}}\cap R$ . By

the definition of $h,$ $h(\xi)$ is a word $u_{i}v_{i}^{n}w_{i}x_{i}^{n}y_{i}$ , that is, $w$ . So $w$ is a word in
$h(D_{C}\cap\overline{R})$ .

b). $h(D_{C}\cup R)\subset L$ .
Let $w\in h(D_{\mathcal{L}}\cap R)$ . Then, there exists a word $\xi$ in $D_{\mathcal{L}}\cap R$ such that

$w=h(\xi)$ . By the definition of $G_{R},$ $\xi$ should be of the form

$\xi=u_{i_{1}}\overline{y}_{i_{1}}^{R}(v_{j_{1}}\overline{x}_{j_{1}}^{R})(v_{j_{2}}\overline{x}_{j_{2}}^{R})\ldots(v_{j_{m}}\overline{x}_{j_{m}}^{R})w_{i_{2}}w_{i_{2}}^{\prime R}(\overline{x}_{k_{1}}’v_{k_{1}}^{JR})\ldots(x_{k_{m}}^{-J}v_{k_{m}}^{\prime R})\overline{y}_{i_{S}}u_{i_{3}}^{\prime R}$

for some $i_{1},$ $i_{2},$ $i_{3},j_{1},$
$\ldots$ , $j_{m},$ $k_{1},$ $\ldots k_{n}\in I$ . By the definition of $D_{\mathcal{L}}$ , these

indices should be the same, say $i$ , and $n=m$ . Hence, $\xi=u_{i}\overline{y}_{i}^{R}(v_{i}\overline{x}_{i^{R}})^{n}w_{i}w_{i}^{rR}$

$(\overline{x}_{i^{\prime/R}}v_{i})^{n}\overline{y}_{i’}u_{i^{R}}’$ and $h(\xi)=u_{i}v_{i}^{n}w_{i}x_{i}^{n}y_{i}$ . Therefore, $w=h(\xi)$ is in $L$ .
This completes the proof. $\square$

Remark. There exists a regular language $R$ such that $h(D_{\mathcal{L}}\cap R)’ \mathrm{i}\mathrm{s}$ not
slender. For example, choose a regular language $\Delta^{*}$ as $R$ . Then, by the fact
that $D_{C}\cap R$ is $D_{L}$ and the fact $h(D_{L})$ is $\Sigma^{*}$ , the remark follows.

By the Remark, it is interesting to find a subclass $C$ of regular languages
satisping the following condition.

Condition. For any slender context-free language $L$ , we can find $R$ in $C$

of regular languages such that $L=h(D_{C}\cap R)$ , and for any $R$ in $C,$ $h(D_{L}\cap R)$

is slender context-free.
To determine such language class, we introduce a following notion.
A language $\mathrm{L}$ is called a union of double loops (or UDL, in short) if for

words $u_{i},$ $v_{i},$ $w_{i},$ $x_{i},$ $y_{i}$ for $1\leq i\leq k$ ,

$L= \bigcup_{i=1}^{k}\{u_{i}v_{i}^{*}w_{i}x_{i}^{*}y_{i}\}$ .
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Since $L$ can be generated with a regular grammar $G=(N, \Sigma, P, S)$ , where
$N=\{S\}\cup\{A_{i}, B_{i}|i=1,2, \cdots, k\},$ $P=\{Sarrow u_{i}A_{i},$ $A_{i}arrow v_{i}A_{i},$ $A_{i}arrow$

$w_{i}B_{i},$ $B_{i}arrow x_{i}B_{i},$ $B_{i}arrow y_{i}|i=1,2,$ $\cdots k\}!$”
$L$ is regular. However, it is not

slender by Proposition 1.
Then, we have the following result, a little stronger than Theorem 1.

Theorem 2 For an alphabet $\Sigma$ , an alphabet $\Delta$ , a homomorphism $h:\Delta^{*}arrow$

$\Sigma^{*}$ and a linear Dyck language $D_{\mathcal{L}}$ on $\Delta$ can be determined from $\Sigma$ such that
for every slender context-free language $L$ over $\Sigma$ , there can be found a $UDL$

regular language $R$ over $\Delta$ such that $L=h(D_{C}\cap R)$ . Moreover, for any $UDL$

regular language $R,$ $h(D_{\mathcal{L}}\cap R)$ is slender context-free.
Proof. We can find that a language $R$ employed in the proof of Theorem 1
is a UDL regular language. Therefore, the former part of the theorem holds.

We consider the latter part. Let $R$ be a UDL regular language. Then,
since the class of linear context-free languages is closed $\mathrm{u}\mathrm{n}\mathrm{d}\mathrm{e}^{\underline{\gamma}}$ the operation
of intersection with a regular set, $D_{\mathcal{L}}\cap R$ is linear. Furthermore, by counting
the number of words of length $n$ in $D_{\mathcal{L}}\cap R$ , we can find $D_{L}\cap R$ slender. Since
a homomorphism does not increase the number of words of length $n$ (and the
class of context-free languages is closed under homomorphisms), $h(D_{\mathcal{L}}\cap R)$

is slender context-free.
This completes the proof. $\square$

4 Concluding Remarks
In this paper, we investigated Chomsky-Stanley type homomorphic charac-
terization for slender context-free languages and obtained the first character-
ization as Theorem 1 and the second characterization as Theorem 2, in which
for any slender language can be represented by the homomorphic image of
the intersection of a linear Dyck language and UDL regular language, and
for any UDL regular language, the homomorphic image of the intersection
of it with a linear Dyck language is slender. This means the second one is a
stronger result than the fisrt one.

At last, we mention here the closure property under the homomorphisms,
since the operation of homomorphisms is one of the key operations of this
paper. In general, the class of slender languages is not closed under the
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operation of homomorphisms. In fact, let $\Sigma$ be a set $\{a, b\}$ , and define a
numbering function $f$ : $\Sigma^{*}arrow N$ , a noninegative integers, with $rightarrow w_{i}$ , the
i-th word of $\Sigma^{*}$ in the lexicographical order. And let $n$ be an inverse of
$f$ . Then, a language $\mathrm{L}$ is defined as $L=\{wc^{n(w)}|w\in\Sigma^{*}\}$ . Moreover, a
homomorphism $h$ : $(\Sigma\cup\{c\})^{*}arrow\Sigma^{*}$ is defined by $h(a)=a,$ $h(b)=b$, and
$h(c)=\lambda$ . Then, $h(L)$ is $\Sigma^{*}$ , which is not slender1 However, this language
$L$ is not context-free, but context-sensitive, if we restrict language class to
context-free, the following proposition is holds.

Proposition 5 The class of slender context-free languages is closed under
the operations of homomorphisms and intersection.
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