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Abstract

A finitely presented inverse semigroup is the most interesting ob-

ject of research in inverse semigroup theory from the point of view of

algorithmic problems. Several finitely presented inverse semigroups

can be presented as HNN extensions of finite semilattices. In this
paper we discuss such inverse semigroups.

1 Introduction

HNN extensions of semigroups were introduced by Howie [3] in a restricted

case. A more general definition was given in [8] so that the class of HNN ex-
tensions can include important classes of inverse semigroups. For example,

free inverse semigroups, free inverse monoids, free Clifford semigroups and

the bicyclic semigroup have HNN extension structures. HNN extensions and

amalgamated free products of inverse semigroups were employed to show the
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undecidability of Markov properties of inverse semigroups and the undecid-

ability of some other decision problems in [8]. It seems that HNN extensions

and amalgamated free products are indispensable tools to study algorithmic

problems in inverse $\mathrm{s}\mathrm{e},\mathrm{m}\mathrm{i}\mathrm{g}\mathrm{r}\mathrm{o}\mathrm{u}\mathrm{p}$ theory. In the present paper we investigate

HNN extensions of finite semilattices as a first step toward understanding al-

gebraic structures of HNN extensions of inverse semigroups. For more details

on HNN extensions of semilattices, we refer the reader to [9].

Let $S$ be an inverse semigroup, $A_{i}$ and $B_{i}(i\in I)$ inverse subsemigroups

of $S$ . Suppose that $e_{i}\in A_{i}\subset e_{i}Se_{i},$ $f_{i}\in B_{i}\subset f_{i}Sf_{i}$ for some idempotents

$e_{i},$ $f_{i}$ of $S$ and that $\phi_{i}$ is an isomorphism of $A_{i}$ onto $B_{i}$ for every $i\in I$ . Then

the inverse semigroup $S^{*}$ presented by

$Inv(S, t_{i}(i\in I)|t_{i}^{-1}at_{i}=\phi_{i}(a)\forall a\in A_{i},$ $t_{i}^{-1}t_{i}=f_{i},$ $t_{ii}t_{i}^{-1}=ei\in I)$

is called an $HNN$ extension of $S$ associated with $\phi_{i}$ : $A_{i}arrow B_{i}(i\in I)$ . Each

element $t_{i}$ in $S^{*}$ is called a stable letter. A class $\mathrm{C}$ of semigroups is said to

have the weak $HNN$ property if $\mathrm{C}$ satisfies the following condition:

Suppose that $S,$ $A,$ $B\in \mathrm{C},$ $e\in A\subset eSe,$ $f\in B\subset fSf$ for some $e,$ $f\in E(S)$ .

Let $\phi$ : $Aarrow.B$ be an isomorphism. Then there exists $T\in \mathrm{C}$ and an embed-

ding $\psi$ : $S\mapsto T$ such that $t’\psi(a)t=\psi(\phi(a))$ for all $a\in A,$ $t’t=\psi(f)$ and

$\mathrm{t}t’=\psi(e)$ for some $t\in T$ and $t’\in V(t)$ .

Moreover, the class $\mathrm{C}$ is said to have the strong $HNN$ property if $\mathrm{C}$ satis-

fies the following:
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Suppose that $S,$ $A,$ $B\in \mathrm{C}$ and $A\subset eSe,$ $B\subset fSf$ for some $e,$ $f\in E(S)$ .
Let $\phi$ : $Aarrow B$ be an isomorphism. There is $T\in C$ and an embedding
$\psi$ : $S‘arrow T$ such that $t’\psi(a)t=\psi(\phi(a)),$ $tt’=\psi(e),$ $t’t=\psi(f)$ for some $t\in T$

and $t’\in V(t)$ and $t’\psi(s)t\cap\psi(S)=t’\psi(A)t=^{\psi}(B)$ .

It is shown that the class of inverse semigroups has the strong HNN prop-
erty in [8]. Hence, an inverse semigroup $S$ is naturally embedded into an
HNN extension of $S$ . We usually $\mathrm{i}\mathrm{d}\mathrm{e}\mathrm{n}\mathrm{t}\mathrm{i}\phi s$ and the isomorphic inverse sub-

semigroup of the HNN extension, and hence, we have

$t_{i}^{-1}St_{i}\cap S=t_{i}^{-1}A_{i}t_{i}=B_{i}$

for each $i\in I$ in $S^{*}$ .

2 HNN extensions of finite semilattices

There are many inverse semigroups which are presented as HNN extensions
of finite semilattices. For example, free inverse semigroups on a finite set and

the bicyclic semigroup are $\mathrm{H}\mathrm{N}\mathrm{N}\mathrm{e}\mathrm{x}- \mathrm{t}\mathrm{e}\mathrm{n}\mathrm{s}\mathrm{i}_{0}\mathrm{n}\mathrm{S}$ of finite semilattices as we see
below.

Example Free inverse semigroups: Let $\{x\}$ be a singleton set and $FIS(\mathrm{f}x\})$

be the free inverse semigroup on $\{x\}$ . Let $E$ be the semilattice presented by

$Inv(\{e, f, g\}|e^{2}=e, f^{2}=f,g^{2}=g, ef=fe=g)$ .

Clearly $E$ is the free semilattice on two generators ( $e$ and $f$ ) and so $E$ is a
finite semilattice. Put $A=\{e\},$ $B=\{f\}$ and let $\phi$ : $Aarrow B$ be the trivial
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isomorphism. Let $S=Inv(E, t|t^{-1}et=f,t^{-1}t=f,\mathrm{t}t^{-1}=e)$ . Clearly $S$

is an HNN extension of $E$ associated with $\phi$ . We show $S$ is the free inverse

semigroup generated by an singleton set using Tietze transformations. We

have
$Inv(E,t|t^{-1}et=f, t^{-1}t=f, tt^{-1}=e)$

$=Inv(e,$ $f,$ $g,$ $t|e^{2}=e,$ $f^{2}=f,$ $g^{2}=g$ ,

$ef=fe=g,t^{-1}et=f,$ $t^{-1}t=f,$ $tt^{-1}=e)$

$=Inv(e,$ $f,$ $g,$ $t|(\mathrm{t}t^{-1})^{2}=tt^{-1},$ $(t^{-1}t)^{2}=t^{-1}t,$ $(t^{-1}ttt^{-1})^{2}=t^{-1-1}ttt$ ,

$t^{-1}ttt^{-1}=tt^{-1}t^{-1}t=g,$ $t^{-1-1}ttt=t^{-1^{\backslash }}t,$ $t^{-1}t=f,$ $\mathrm{t}t^{-1}=e)$

$=Inv(\mathrm{t}|(tt^{-1})^{2}=tt^{-1}, (t^{-1}t)^{2}=t^{-1}t,$ $(t^{-1}ttt^{-1})^{2}=\mathrm{t}^{-1}ttt^{-},$$t1-1tt^{-1}\mathrm{t}=t^{-1}t)$

$=Inv(t|\emptyset)=FIS(\{t\})$ .

A similar argument shows that the free inverse semigroup of rank $n$ is an

HNN extension of the free semilattice on $2n$ generators.

Example The Bicyclic semigroup: First of all we should note that the bicyclic

semigroup $B$ is presented by

$Inv(x|xx^{-1}X^{-1}x=x^{-1}x)$ .

Let $E=\{e_{1}, e_{2}\}$ be a two element semilattice such that $e_{1}>e_{2}$ . Put $A=\{e_{1}\}$

and $B=\{e_{2}\}$ . Let $\phi$ : $\mathrm{A}arrow B$ be the trivial isomorphism. Then the inverse

semigroup $S$ presented by $Inv(E, t|t^{-1}e_{1}t=e_{2},\mathrm{t}^{-1}t=e_{2}, tt^{-1}=e_{1})$ is an

HNN extension. Using Tietze transformations, we have

$S=Inv(e_{1,2}e,$ $t|e_{1}^{2}=e_{1},$ $e_{2}^{2}=e_{2}$ ,
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$e_{1}e_{2}=e2e1=e_{2},t^{-1}e_{1}t=e2,$ $t^{-}1t=e_{2},$ $tt^{-1}=e_{1})$

$=Inv(e_{1},$ $e_{2},$ $t|(\mathrm{t}t^{-1})^{2}=tt^{-1},$ $(t^{-1}t)^{2}=t^{-1}t$ ,

$u^{-1}\mathrm{t}^{-1}t=t-1ttt^{-1}=t^{-1}t,$ $t^{-1}tt^{-1}t=t^{-1}t,$ $t^{-}t=e_{2}1,\mathrm{t}t^{-1}=e1)$

$=Inv(t|(tt^{-1})^{2}=tt^{-1}, (t^{-1}t)^{2}=t^{-1}t$ ,

$tt^{-1}t^{-1}.t=t^{-1}\mathrm{t}tt^{-1}=t^{-1}t,$ $t^{-1}tt^{-1}t=t^{-1}\mathrm{t})$

$=Inv(t|tt^{-1-1}t=t^{-1}, ttt^{-1}=t)=B$ .

Hence, the bicyclic semigroup is the HNN extension of a finite semilattice.
Another important example is a universally $\mathrm{E}$-unitary inverse semigroup.

An inverse semigroup $S$ is universally $E$-unitary if $S$ is presented by

$Inv(X|e_{i}=f_{i}(i=1,2, \cdots n))$

where $X=\{x_{1}, x_{2,\ldots,n}x\}$ and $e_{i}$ and $f_{i}$ are Dyck words on $X$ . We refer the
reader to [9] for the results and terminology on universally E–unitary inverse
semigroups. The word problem for a universally $\mathrm{E}$-unitary inverse monoid
is considered by Margolis and Meakin [5]. Using Rabin’s tree theorem, they

showed the solvability of the word problem for a universally $\mathrm{E}$-unitary inverse
monoid. An alternate approach is provided in [7]. The similar result for
inverse semigroups follows immediately.

Proposition 1 ([5]) Let $S$ be an $inver\mathit{8}e$ semigroup presented by

$Inv(X|e_{i}=f_{i}(i=1,2, \cdots n))$

where $X=\{x_{1}, x_{2,\ldots,n}x\}$ and $e_{i}$ and $f_{i}$ are Dyck words on X. Then the
word problem for $S$ is solvable.
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We borrow some terminology and notation from language theory. Let $L_{1}$

and $L_{2}$ be subsets of $X^{*}$ and $Y^{*}$ , respectively. We define the Shuffie product

of $L_{1}$ and $L_{2}$ to be the set

$\{u_{1}v_{1}u2v_{2}\ldots u_{n}v_{n}\in(X\cup Y)^{*}|u_{1}u_{2}\ldots u_{n}\in L_{1}, v_{1}v_{2}\ldots v_{n}\in L_{2}, n\geq,1\}$

and denote it by $L_{1}\circ L_{2}$ .

Lemma 2 Let $X=\{x_{1}, x_{2}, \ldots , x_{n}\},$ $\mathrm{Y}=\{y_{1}, y_{2}, \ldots, y_{m}\}$ and $D$ the Dyck

language on X. Suppose that $e_{i}$ and $f_{i}$ are in $(D\cup\{1\})\mathrm{o}(Y\cup \mathrm{Y}^{-1})^{+}$ for
each $i=1,2,$ $\ldots,$

$s$ where 1 denotes the empty word. Let $S$ be the inverse

semigroup $pre\mathit{8}ented$ by

$Inv(X, Y|e_{i}=f_{i}(i=1,2, \cdots S), y_{k}y_{j}=y_{\beta(}k,j))$

where $\rho$ is a function of $\{$ 1, 2, $\ldots$ , $m\}\cross\{1,2, \ldots, m\}$ into $\{$ 1, 2, $\ldots$ , $m\}$ sat-

isfying $\rho(k, k)=k$ and $\rho(k,j)=\rho(j, k)$ . Then $S$ has solvable word problem.

Proof. We consider the inverse semigroup $S^{*}$ presented by

$Inv(X,$ $Y,$ $t_{y}(y\in \mathrm{Y})|e_{i}--f_{i}(i=1,2, \cdots s)$ ,

$y_{k}y_{j}=y_{\rho(k,j}),$ $t_{y}-1t_{y}=i_{y}i_{y}-1\forall=yy\in Y)$ .

We note that the inverse subsemigroup generated by $\mathrm{Y}$ in $S$ is a semilattice

since $y_{i}y_{i}=y_{i}$ for every $i=1,2,$ $\cdots,$ $n$ . Clearly $S^{*}$ is an HNN extension of

$S$ associated with the partial isomorphisms of $E_{y}$ to $E_{y}$ where $E_{y}=\{y\}$ for

each $y\in Y$ . Let $e_{i}’$ and $f_{i}’$ be words obtained from $e_{i}$ and $f_{i}$ by substituting

$t_{y}t_{y}^{-1}$ for every $y\in \mathrm{Y}$ , respectively. We can easily check that $e_{i}’$ and $f_{i}’$ are
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Dyck words on $X\cup\{t_{y}|y\in Y\}$ . Using Tietze transformations of type II,

we can show that $S^{*}$ can be presented by

$Inv(X, t_{y}(y\in Y)|R)$

where $R$ consists of

$e_{i}’=f_{i}’(i=1,2, \cdots S),$ $\mathrm{s}t_{y_{k}}t_{yk}^{-}1t_{yjyj}t^{-1}=t_{y_{\rho(}}k,j)y_{\rho(\mathrm{j}}t^{-}1k,)$
’

$t_{y}^{-1}t_{y}=ty_{y}t^{-1}\forall y\in Y$.

Then $S^{*}$ has the presentation as in Proposition 1, and hence, $S^{*}$ has solvable

word problem. Since $S^{*}$ is an HNN extension of $S,$ $S$ is embedded in $S^{*}$ .
Since $S$ is finitely generated, $S$ has solvable word problem. $\square$

Theorem 3 An $HNN$ extension of a finite semilattice offinite non-idempotent

rank has solvable word problem.

Proof. Let $S$ be an HNN extension of a semilattice $E$ presented by

$Inv(E, t_{i}(i\in I)|t_{i}^{-1}et_{i}=\phi_{i()\in}e\forall eE_{i},$ $t_{i}^{-1}t_{i}=f_{i},$ $t_{i}t_{ii}^{-1}=e\forall i\in I)$

where $I$ is a finite set and $\phi_{i}$ : $E_{i}arrow F_{i}$ is an isomorphism for each $i\in I$ .
Assume that $E=\{h_{j}|j\in J\}$ . Note that $J$ is a finite set. Then we define

the function $\sigma$ of $J\cross J$ into $J$ by $\sigma(j_{1},j_{2})=j_{3}$ if and only if $h_{j_{1}}h_{j_{2}}=h_{j_{3}}$ in
$E$ . We note that $\sigma$ satisfies the conditions $\sigma(k, k)=k$ and $\sigma(k,j)=\sigma(j, k)$ .

Clearly $E$ is presented by

$Inv(\{y_{j}|j\in J\}|R_{1})$
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where $R_{1}$ consists of $y_{j_{1}}y_{j2}=y\sigma(j_{1},j_{2})$ with $j_{1},j_{2}\in J$ . It follows that $S$ is

presented by

$Inv(\{y_{j}|j\in J\}, t_{i}(i\in I)|R_{0}, R_{1})$

where $R_{0}$ consists of $t_{i}^{-1}y(e)t_{i}=y(\phi_{i}(e))$ for all $e\in E_{i},$ $t_{i}^{-1}t_{i}=y(f_{i})$ and

$t_{i}t_{i}^{-1}=y(e_{i})$ for all $i\in I$ where $y(e)$ is an element in $\{y_{j}|j\in J\}$ correspond-

ing to $e$ in $E$ . Therefore $S$ has a presentation as in Lemma 2, and hence, the

word problem for $S$ is solvable. $\square$

For example, an HNN extension of a free inverse semigroup of finite rank

associated with finite subsemilattices is an HNN extension of a finite semilat-

tice of finite non-idempotent rank, and hence, it has solvable word problem.

In general, it is shown that an HNN extension of a free inverse semigroup

associated with finitely generated inverse subsemigroups has solvable word

problem in [4]. It is also shown in [1] that a free product of free inverse semi-

groups amalgamating a finitely generated inverse subsemigroup has solvable

word problem.

Examples: Let $S_{1},$ $S_{2}$ be the inverse semigroups presented by

$Inv(x_{1},$ $x_{2},$ $y_{1},$
$y_{2}|x_{1}^{-1}y_{1}y2X1=y_{2}x_{2^{X_{2}}}-1$ ,

$x_{2}^{-1}y_{1}X2y2=y1x1x-1y_{2}1’ y_{1}^{2}=y_{1},$ $y_{2}^{2}=y_{2})$

and

$Inv(x_{1},$ $x_{2},$ $y_{1},$ $y_{2},$ $y_{3}|x_{1}^{-1}y^{-1}1y2x1=x_{2}y^{-1-1}22xy_{3}$ ,

$y_{1}^{2}=y_{1},$ $y_{2}^{2}=y_{2},$ $y_{1}y_{2}=y_{3})$ .
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We should note that the presentations above are not the one as in Lemma 2,
however, it is clear that $S_{1}^{\mathrm{Y}}$ and $S_{2}$ can be presented as in Lemma 2. Therefore
both $S_{1}$ and $S_{2}$ have solvable word problem.

An HNN extension of a finite semilattice is finitely presented. Conversely,
we can prove that finitely presented universally $\mathrm{E}$-unitary inverse semigroup
is an HNN extension of a finite semilattice. The proof of the next theorem is
too long to put here and so we refer the reader to [9].

Theorem 4 ([9]) If an inverse semigroup $S$ is presented by

$Inv(X|e_{i}=f_{i}(i=1,2, \cdots m))$

where $X=\{X_{1}, X_{2}, \cdots, Xn\}$ and $e_{i}$ and $f_{i}$ are Dyck words on $X$ , then $S$ is
an $HNNexten\mathit{8}ion$ of a finite semilattice of non-idempotent rank $n$ . $\square$

We now raise a question whether or not every finitely generated universally
$\mathrm{E}$-unitary inverse semigroup is an HNN extension of a finite semilattice of
finite non-idempotent rank. Let us see the following examples. Let $\mathrm{R}$ be a
$\mathrm{r}\mathrm{e}\mathrm{c}\mathrm{u}\mathrm{r}\mathrm{s}\mathrm{i}\acute{\mathrm{v}}\mathrm{e}\mathrm{l}\mathrm{y}$ enumerable and non-recursive set of non-negative integers. Then
let $S_{1}$ and $S_{2}$ be the $\mathrm{i}\mathrm{I}\mathrm{l}\mathrm{v}\mathrm{e}\mathrm{r}\mathrm{s}\mathrm{e}$ semigroups presented by

$Inv(x, y|x^{-r}x^{\gamma}=y^{-r}y^{\gamma}\forall r\in \mathrm{R})$

and

$Inv(x, t|t^{-1_{X^{-}}r}x^{r}t=x^{-\gamma\gamma}x\forall r\in \mathrm{R}, t^{-1}t=t\mathrm{t}^{-1}=x^{-m}x^{m})$ ,

respectively, where $m$ is the minimum number in R. First of all, we note that
$S_{1}$ and $S_{2}$ are universally $\mathrm{E}$-unitary inverse semigroups because the defining

relations are given by equations of Dyck words.
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Lemma 5 The inverse semigroups $S_{1}$ and $S_{2}$ defined above have unsolvable

word problem.

Proof. We show that $r\in \mathrm{R}$ if and only if $x^{-r}x^{f}=y^{-r}y^{r}$ in $S_{1}$ for non-

negative integer $r$ . We temporarily asssume that this is true. If the word

problem for $S_{1}$ is solvable, then we can decide whether or not a non-negative

integer $r$ is in $\mathrm{R}$ using the algorithm that solves the word problem for $S_{1}$ .
This contradicts the fact that $\mathrm{R}$ is non-recursive. Hence, the word problem

for $S_{1}$ is not solvable. We now show that $x^{-\Gamma}x^{f}=\overline{y}yrr$ in $S_{1}$ implies $r\in \mathrm{R}$ .

We note that $S_{1}$ is a free product of the free inverse semigroups $FIS(\{X\})$ and

$FIS(\{y\})$ amalgamating the semilattices $E_{1}$ and $E_{2}$ where $E_{1}=\{x^{-r}X^{r}|r\in$

$\mathrm{R}\}$ and $E_{2}=\{y^{-r}y^{r}|r\in \mathrm{R}\}$ . We remark that $E_{1}$ and $E_{2}$ are chains

of $FIS(\{X\})$ and $FIS(\{y\})$ , respectively. We may regard $FIS(\{X\})$ and

$FIS(\{y\})$ as subsemigroups of $S_{1}$ . Obviously, $x^{-f}xr\in E_{1}$ if and only if $r\in \mathrm{R}$

and $y^{-r}y^{r}\in E_{2}$ if and only if $r\in \mathrm{R}$ . Since the class of inverse semigroups has

the strong amalgamation property ([2]), $FIs(\{X\})\cap FIS(\{y\})=E1=E_{2}$ in

$S$ . Suppose that $x^{-\mathrm{r}_{X}\Gamma}=y^{-t\gamma}y$ in $S_{1}$ . Then $x^{-\mathrm{r}_{X}r}=y^{-f}yr\in FIS(\{X\})\cap$

$FIS(\{y\})=E_{1}=E_{2}$ . Hence, we have $x^{-r}x^{r}\in E_{1}$ and so $r\in \mathrm{R}$ . Conversely

$r\in \mathrm{R}$ implies $X^{-t}X^{r}=\overline{y}y^{f}r$ in $S_{1}$ .
We note that $S_{2}$ is an HNN extension of the free inverse semigroup

$FIS(\{X\})$ associated with the subsemilattice $\{X^{-r}x^{r}|r\in \mathrm{R}\}$ . We can show

that $t^{-1}x^{-r}x^{r_{t}}=x^{-f}x’$ if and only if $r\in \mathrm{R}$ in $S_{2}$ using the strong HNN

property. Hence, $S_{2}$ also has unsolvable word problem. $\square$

We note that the maximal group homomorphic images of $S_{1}$ and $S_{2}$ are the
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free group of rank 2 and so they have solvable word problem. It is interesting

to ask whether or not there is a finitely presented $\mathrm{E}$-unitary (or F-inverse)

inverse semigroup whose word problem is unsolvable but its maximal group

homomorphic image is a free group (or has solvable word problem).

Theorem 6 There is a finitely generated $univer\mathit{8}allyE$-unitary $inver\mathit{8}e$ 8emi-

group which cannot be embedded into an $HNN$ extension of a finite semilat-

tice. In particular it is not finitely presented as an $HNNexten\mathit{8}ion$ of a finite
$\mathit{8}emilattice$ , that $i\mathit{8}$, it does not have a presentation as \’in Theorem 4.

Proof. By Lemma 5, $S_{1}$ (or $S_{2}$ ) defined above has unsolvable word prob-

lem. If it is embedded in an HNN extension of a finite semilattice, then by

Theorem 3 it has solvable word problem as $S_{1}$ (or $S_{2}$ ) is finitely generated. It

follows that $S_{1}$ (or $S_{2}$ ) cannot be embedded in an HNN extension of a finite

semilattice. $\square$

The inverse semigroup $S_{1}$ (or $S_{2}$ ) defined above is recursively presented,

nevertheless it cannot be embedded in a finitely presented universally E-

unitary inverse semigroup. Therefore an analogue of Higman’s embedding

theorem in group theory does not hold for the class of universally E-unitary

inverse semigroups.

References

[1] A.Cherubini, J.C.Meakin and B.Piochi, Amalgams of free inverse semi-

groups, Semigroup Forum 54 (1997) 199-220

235



[2] T.E.Hall, Free products with amalgamation of inverse semigroups, J. of
Algebra 34 (1975) 375-385

[3] J.M.Howie, Embedding theorems for semigroups, Quart. J. Math. 14

(1963) 254-258

[4] T.Jajcayova, HNN extensions of inverse semigroups, Ph.D Thesis, Uni-

versity of Nebraska-Lincoln (1997)

[5] S.W.Margolis and J.C.Meakin, Inverse monoids, trees and context-free

languages, Rans. Amer. Math. Soc. 335 (1993) 259-276

[6] J.C.Meakin and A.Yamamura, “Bass-Serre theory and inverse monoids”

Semigroups and Applications ed. by J.M.Howie and N.Ru\v{s}kuc, World

Scientific (1998) 125-140

[7] P.V.Silva, Rational languages and inverse monoid presentations, Int. J.

Algebra and Computation 2 (1992) 187-207

[8] A.Yamamura, HNN extensions of inverse semigroups and applications,

Int. J. Algebra and Computation 7 (1997) 605-624

[9] A.Yamamura, HNN extensions of semilattices, (to appear in Int. J. Al-

gebra and Computation)

236


