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Homeomorphism groups of 2-manifolds and

spaces of embeddings into 2-manifolds

BT WA s W5 525 (Tatsuhiko Yagasaki)

1. INTRODUCTION

The purpose of this article is to survey main results on fhe topology of homeomorphism groups
of 2-manifolds and spaces of émbeddings of compact polyhedra into 2-manifolds with the compact-
open topology. Homeomorphism groups of topological manifolds draw our interest in two aspects:
group structures and topological structures. In this article we are mainly concerned with topology
of homeomorphism groups (homotopy types,igeometry as infinite-dimensional manifolds, etc).

There is a long history on the study of homeomorphism groups of topological manifolds (cf.
[22, §5.6]). In the 2-dimensional case, in the series of papers [11] M. E. Hamstrom studied the ho-
motopy types of the identity components of the homeomorphism groups of compact 2-manifolds
(with finite punctures). The PL-case is studied in [25] in the context of semisimplicial complex,
and the homotopy types of diffeomorphism groups of compact smooth 2-manifolds are investi-
gated in [4]. On the other hand, R.Luke - W.K.Mason [17, 18] showed that the homeomor-
phism groups of compact 2-manifolds are ANR’s, and R. Geoghegan - W.E. Haver [10] showed
that the pair of the homeomorphism group of any compact PL 2-manifold and the subgroup of
PL-homeomorphisms forms an (€2, 85 )-manifold. The subgroups of Lipschitz homeomorphisms
were studied by K.Sakai - R.Y. Wong [24], and in [28] we showed that the triple of the home-
omorphism group of any compact Euclidean PL 2-manifold and the subgroups of Lipschitz and
PL-homeomorphisms forms an (s, X, o)-manifolds. Since the topological types of these infinite-
dimensional topological manifolds are determined by their homotopy types, these results enable
us to determine the topological types of these homeomorphism groups and subgroups.

In the noncompact case, the whole homeomorphism groups of noncompact 2-manifolds are
not necessarily even locally connected [29]. However,' the identity components are always f2-
manifolds and are contractible except only several cases [32]. Therefore, we can also determine
the topological types of the identity components of these homeomorphism groups and subgroups
(32, 33]. |
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For Riemann surfaces we can consider the subgroups of quasiconformal homeomori)hisms.
Quasiconformality is a sort of boundedness condition like Lipschitz condition, and in [30] we
showed that these groups are also YX-manifolds. ‘

Spaces of embeddings into manifolds are closely related to the study of homeomorphism groups.
In [31] we showed that the restriction maps from homeomorphism groups of 2-manifolds to spaces
of proper embeddings of compact subpolyhedra are principal bundlés. These bundles were used in
[31, 32, 33] to derive some conclusions on home;)morphism groups of noncompact 2-manifolds and
embedding spaces into 2-manifolds from the corresponding results on homeomorphism groups of
compact 2-manifolds. In particular, in [31] we showed that the triple of the space of embeddings
of any compact subpolyhedron into a Euclidean PL 2-manifold and the subspaces of Lipschitz
and PL-embeddings is also an (s, X, 0)-manifold, and determined the topological types of the
components of spaces of embbeddings of aﬁ arc, a disk and a circle into 2-manifolds.

In Section 2 we provide two background materials: topological characterization of infinite-
dimensional manifolds and basic facts on homeomorphism groups of n-manifolds. The main
part, a survey on homeomorphism groups of 2-manifolds and embedding spaces into 2-manifolds
is included in Sections 3 and 4. The final section 5 contains some results about extension of

embeddings into 2-manifold to homeomorphisms and principal bundles.

2. BACKGROUNDS

2.1. Basic facts on infinite dimensional manifolds. First we recall some basic facts on
infinite-dimensional manifolds. A metrizable space X is called an ANR. (absolute neighborhood
retract) if any map f : B — X from a closed subset of a metrizable space Y has an extension to
a neighborhood U of B. By ¢2 we denote the separable Hilbert space {(z,) € R® : S r2 < oo}

The following is the simplest form of topological characterization of ¢£2-manifolds:

Theorem 2.1. ([26]) A space X is an £2-manifold iff X is a separable completely metrizable
ANR and X x 2> X.

It is known that the topological types of any ¢2-manifold is determined by its homotopy type.
EQery ¢%-manifold contains various submanifolds modeled on incomplete infinite-dimensional

~ spaces. We use the following standard notations:

(1.) s=R® (X 4s), ¥ = {(xn) €5 : sup,, |zn| <o}, o ={(zn) €5 : 2, =0 (.almost all n)},

(2) s = 5, £, o™ (with the product topology), , |

) ZF ={(zn) € E%° : zp =0 (almost all n)}, 6P = {(zn) € 6™ : 2, =0 (almost all n)}.
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To treat these submanifolds systematically, we need the notion of infinite-dimensional manifold
tuples: A triple (X, X1, X2) is called an (E, E1, E2)-manifold if each point of X has a neighbor-
‘hood U such that (U, UNXy, UNXz) & (E, E1, Ep). As typical examples we consider the following
triples: ,

(E, By, E3) = (5,%,0), (83,8 X 0,0%), (s,0%,0%) and (s*,Z%, IF).

Theorem 2.1 extends to a characterizations of manifolds modeled on these triples. To state the
precise statement we need some terminology: (X, X 1,X2) is (E, E1, Ez)-stable if (X x E, X; X
E1, Xa x Eg) & (X, X1,X2). A subset Y has the homotopy negligible (h.n.) complement in X if
there exists a homotopy ¢; : X — X (0 <t < 1) such that (,06 =idy and p(X)CY (0<t < 1)
A space is o-(fd-) compact if it is a countable union of (finite dimensional) compact subsets. For

each case M(E, E1, E3) denotes the class of triples (X, X1, X7) satisfying the following conditions:

(B, E1, E») X; X2
(s,2,0) o-compact | o-fd-compact
(s2,s x 0,0%) | F, in X |o-fd-compact
(s*,0%, a?°) F,s in X | o-fd-compact
(°,5°,EP) | Fosin X | o-compact

Theorem 2.2. ([28])

A triple (X, X1,X?2) is an (E, E1, Ez)-manifold zﬂ"

(i) X is a separable completely metrizable ANR (ii) X2 has the h.n. complement in X,
(iii) (X, X1, X2) € M(E, E1, E2) and (iv) (X, X1, X2) is (E, E,, E3)-stable.

The topological types of these manifolds are detected by their homotopy types.

Proposition 2.1. (Homotopy invariance [28]) Suppose (X, X1, X2) and (Y,Y1,Y2) are (E, Ex, Ep)-
manifolds.

(i) (X, X1, X2) 2 (Y,Y1,Y2) iff X =Y (homotopy equivalent).

(ii) If X has the homotopy type of a locally compact polyhedron P, then (X,X1,X2) &2 P x
(E, By, ).

We refer to [3, 19] for other basic results in infinite-dimensional topology.

2.2. Basic facts on homeoni”orphism groups of n-manifolds. Next we list basic properties
of homeomorphism groups and embedding spaces. Suppose M is a topological n-manifold and X
is a closed subset of M. We denote by Hx (M) the group of the homeomorphisms h of M onto
itself with h|x = idx, equipped with the compact-open topology. When M has a prefered metric,
H%)LIP (M) denotes the subgroup of (locally) LIP-homeomorphisms of M, and when M is a PL-

manjfold and X is a subpolyhedron of M, H5*(M) denotes the subgroup of PL-homeomorphisms
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of M. The superscript “c” denotes “compact supports”, the subscript “+” means “orientation
preserving”, and “0” denotes “the i_dentiﬁy connected components” of the corresponding groups.
A Euclidean PL-manifold means a PL-manifold which is a subpolyhedron of some Euclidean
space R™ and has the standard metric induced from R™. |

In an analogy to diffeomorphism groups, these homeomorphism groups are expected to be
topological manifold modeled on some typical infinite-dimensional spaces. After R.D. Anderson
showed that H, (R) 2¢ s [1], it was conjectured that 'H(M ) is always an s-manifold for any compact
manifold M. This basic conjecture is still open for n > 3. By Characterization Theorem 2.2, the
following class property and stability property can be used to determine the infinite-dimensional
model spaces associated to homeomorphism groups (R. Geoghegan [8, 9], J. Keesling-D. Wilson
[15, 16], K. Sakai-R. Y. Wong [24], T. Yagasaki [28]).

2.2.1. Class Property.

Lemma 2.1. (i) H(M) is a separable completely metrizable topological group.
(ii) HLLP (M) is Fys in H(M), and HYP (M) and HYP<(M) are o-compact (with respect to any
metric on M). ‘

(iii) If M is a PL-manifold, then HF“(M) is Fys in H(M) and HF“<(M) is o-fd-compact.

2.2.2. Stability Property. The next lemma is verified by using the Morse length of the image

of a fixed segment under the homeomorphisms.

Lemma 2.2. (i) H(M) is s-stable for any n-manifold M. -

(2) Suppose X is a locally compact polyhedron. -

(i) (H(X), HPL(X)) is (s,0)-stable.

(ii) If X is noncompact, then (H(X ),HPL(X ), HPL4(X)) s (s, 0%, 05°)-stable.
(3) Suppose X is a Euclidean polyhedron with the standard metric.

() (H(X), HYP(X), HPL(X)) is (s, &, 0)-stable.

(ii) If X is noncompact, then (H(X), HLMP(X), HMPC( X)) is (s, £, X¥)-stable.

2.2.3. ANR~Property. For n > 3 it is still unknown whether H(M) is an ANR, and this -

problem is equivalent to the basic conjecture that H(M) is an £2-manifold. It is only known that
H(M) is locally contractible (A.V. Cernavskii, R. D. Edwards-R.C. Kirby, D. B. Gauld)

Proposition 2.2. (i) H(M) is locally contractible for any compact n—mdm’fald M [2, 5].
(ii) HPL(M) is locally contractible for any compact PL-manifold M [7).
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Since any countable dimensional locally contractible metric space is an ANR (W.E. Haver
[13]), it follows that HFL(M) is an ANR, and Characterization of o-manifolds means the next
conclusion (J. Keesling - D. Wilson [16]):

Theorem 2.3. HFY(M) is an o-manifold for any compact PL-manifold M.

Once we assume that (M) is an ANR, Characterization Theorem 2.2 implies some conclusions
on the triples of homeomorphism groups and subgroups. Let H(M)* = cl HPL(M) and let
HLUP (M)* = HMP (M) N clHPY (M) when M is a Euclidean PL-manifold. Consider the following

condition:
(*) n#4 and OM =0 forn=>5.

Under this condition H(M)* is the union of some components of H(M).

Theorem 2.4. Suppose that M is a compact n-dimensional Euclidean PL-manifold which sat-
isfies (*) and that H(M) is an ANR.

(1) (H(X), HYP (X)) is an (s, X)-manifold (K. Sakai-R.Y. Wong [24]).

(2) (H(X)*, HLP(X)*, HPL (X)) is an (s, , 0)-manifold (R. Geoghegan - W. E. Haver [10], T. Yagasaki
[28]).

The 2-dimensional case will be treated in the next section. In the 1-dimensional case we have

([1, 28])

Proposition 2.3. (1) (H(G), H'F(G), H'H(Q)) is an (s, T, o)-manifold for any Euclidean graph
G.
(2) (H+(R), HEL(R), HPLS(R)) 2 (s, 0%, 0%°) and (H4(R), HYP(R), HMPA(R)) & (s, T%, ZF).

2.2.4. Embedding spaces. Suppose Y is a Euclidean polyhedron and K C X are compact sub-
polyhedra of Y. Let £k (X,Y) denote the spaces of embeddings f of X into Y with f|x = idk,
equipped with the compact-open topology, and let EUP(X)Y) and E};L(X ,Y) denote the sub- -
spaces of Lipschitz and PL-embeddings respectively. Here, a Lipschitz embedding is a Lipschitz

. homeomorphism onto its image.
Lemma 2.3. EYP(X,Y) is o-compact and EL"(X,Y) is o-fd-compact [9].

Lemma 2.4. If dim(X \ K) > 1, then (Ex(X,¥), EFP(X,Y),ERM(X,Y)) is (s, T, 0)-stable [24].
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3. HOMEOMORPHISM GROUPS OF 2-MANIFOLDS

3.1. The compact case. Suppbse M is a compact connected PL 2-manifold and X is a compact

subpolyhedron of M.

Theorem 3.1. Hx (M) is an ANR and hence it has the homotopy type of a CW-complez (R. Luke-
W. K. Mason [17]).

Theorem 3.2. Hx (M) is an £2-manifold.

Homotopy types of the identity component Hx (M) was studied by M. E. Hamstrom and it
was shown that Hyx (M )o is contractible in most cases. In the PL-case, G.P.Scott studied the
weak homotopy type of H5(M)o in the context of semisimplicial complex. These results are
summarized in the next statements: The notations Sz,b'IIQ, P2, K2, D? and M denote the 2-sphere,

torus, projective plane, Klein bottle, 2-disk annd Mébius band respectively.

Theorem 3.3. (M. E. Hamstrom, G.P. Scott et.al. [11, 12, 21, 25])

(1) H(8%) ~ SO(3),

(2) H(T?)p ~ T?, .

(3) mH(P?)o: 71 = Zg, 7 = 0,m; = mP? (i > 3),

(4) Hx(M)o ~ S if (M, X) = (D*0), (D?0), (S' x [0,1],0), (M,8), (S 1pt), (S 2pts),
(P2, 1pt), (K2, 0).

(5) Hx(M)o =~ * if (M, X) is not the cases (1)(4) (i.e. (M, X) 2 (D?,0), (ﬂiﬁ,o), (S x[0,1],0),
(M, 9), (S2,0), (S2, 1pt), (S2, 2pts), (T2,0), (K2, 0), (B2, 0), (B2, 1pt)).

Theorem 3.4. (R. Geoghegan - W. E. Haver, K. Sakai - R.Y. Wong, T.Yagasaki, et.al. [10, 24,
28)) |

(i) HYE (M) has the h. n. complement in Hx(M). Hence, Hx (M) ~ H5F (M) ~ HE:(M).

(i) (Hx (M), H¥P (M), HEE (M) is an (s, T, 0)-manifold.

When M is a compact connected Riemann surface, we can consider the subgroup HRC(M) of
QC-homeomorphisms of M. Since the quasiconformaﬁty is a kind of boundedness condition, the

corresponding model space is X:
Theorem 3.5. (H(M)4, HC(M)) is an (s, T)-manifold.

From Theorem 3.3 and Homotopy invariance of (s, X, o)-manifolds (Proposition 2.1), we can

detect the topological types of these homeomorphism groups and subgroups.
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'3.2. The noncompact case. (T.Yagasaki {29, 32, 33])
Suppose M is a noncompact connected PL 2-manifold and X is a compact subpolyhedron of

M.
Theorem 3.6. Hx(M)o is an 2-manifold.

Theorem 3.7.
(1) Hx(M)o =8t if (M, X) = (R2,0), (2, 1pt), (S' x R',0), (8* x [0,1),0) or (P*\ 1pt,0),
(2) Hx(M)o ~ * if (M, X) is not the case (1). |

Theorem 3.8.
(1) H,P(L’C(M Yo C Hx (M)g has the h.n. complement. Hence Hx(M)o ~ ’HE}L(M Yo =~ ’H?"C(M )o-
(i) (Hx(M)o, HEE(M)o, H"(M)o) is an (s%,0%,0%)-manifold.

Corollary 3.1.

(1) (H(M)o, HPL(M)o, HPL=(M)o) & S x (s%,0%,0%) if (M, X) = (R%,0), (R?,1pt), (S' x
RL,0), (S' x [0,1),8) or (P?\ 1pt,0),

(2) (H(M)o, HPL(M)g, HPL<(M)o) & (s%°,0%, 0%°) in the case of not (1).

When M is a noncompact connected Euclidean PL 2-manifold, we have the Lipschitz - version:

Proposition 3.1. (1) (Hx(M)o, H¥F (M)o) is an (s, E)-manifold.
(2) (Hx (M)o, HE™P (M)o, My ©(M)o) is an (s, £%°, TF)-manifold.

When M is a noncompact connected Riemann surface, we can consider the subgroup HLQC (M)

of locally QC-homeomorphisms [30].

Theorem 3.9. (1) (H(M)o, HIC(M)o) is an (s, T)-manifold.
(2) (Hx(M)o, H533C(M)o, HF(M)o) is an (s, T, £F)-manifold.

Finally we determine the condition on the end of M under which the whole group H(M) is an
£2-manifold [29] Consider the following condition on M:

(¥) M = N\ (FUA), where N is a compact connected 2-manifold, F is a finite subset of Int N
and A is a 0-dimensional compact subset of N.

When M has the form of (x), we can consider H..(A), the group of order preserving homeomor-
phisms of A: Let Cy, - - - , Cy, be the circle components of 8N which meet A, and set A; = ANGC;.
We choose a component U; of C; \ A; and set I; = C;\U;. Then I; is an arc (or a single point) and
any orientation on I; induces a linear order on A4;. Let H(A) = {f € H(A) : fla, € H+(4)},

where the subscript “+” means “order preserving”.
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Theorem 3.10. (1)(i) Hx(M) is lbcally connected iff M takes the form of (x) and Hy(A) is
discrete,

V(ii) in this case (Hx (M), H3(M)) = (Hx (M), H¥F (M)) and they are (s°°,&°°)-manz'fold.
(2)(1) Haux (M) is locally connected iff M takes the form of (x),

(i) in this case (Haux (M), Hh5x (M) & (Haux (M), H5E (M) and they are (s, 0™)-manifolds.

4. SPACES OF EMBEDDINGS INTO 2-MANIFOLDS

Suppose M is a Euclidean PL 2-manifold and K C X are compact subpolyhedra of M.

Proposition 4.1. Ifdim(X\K) > 1, then (5K(X, M), E¥P (X, M), ERV(X, M)) is an (s, %, 0)-
manifold [31].

Let €k (X, M) denote the connected component of the inclusion i : X C M in Ex(X, M). We
can determine the homotopy type of £(X, M) for X = an arc I, a disk D or a circle C [33]:

Theorem 4.1.

(1) E(I, M) ~ S(TM) (the unit circle bundle of the tangent bundle of M).

(2) E(D,M) ~ S(TIVI ), where M is the orientation double cover of M.

(3-1) If M £ §? then {f € £(C, M) : [ is inessential} ~ S(TM) and if M 2 §? then £(C, M) =~
S(TM).

(3-2) Suppose C is an essential simple closed curve in M.

(a) If M # P2, T2, K2, then £(C, M)y ~ S'.

(b) If M = T?, then £(C, M) ~ T2.

(c) Suppose M = K2 and M \ C is connected.

(c-i) If C preserves the orientation then £(C, M)q ~ T2,

(c-ii) If C reverses the orientation then £(C, M)y ~ S

(c-iii) If M \ C is not connected (i.e., C is a common boundary of two Mobius bands) then
E(C, M) ~ S

(d) If M = P2, then mE(C, M) = Zy, m2E(C, M)o = 0 and mE(C, M) = m(P?) (k > 3).

When X is an arbitrary compact subpolyhedron of M, we can take a regular neighborhood N of
X in M and consider a core K of N. If X is néither an arc nor a circle which preserves orientation,
the restriction map n : E(N, M) — (X, M)o, n(f) = flx, is a homotopy equivalence. Since we
can choose the core K to be a disk, a circle or a one-point union of ::éircle\s‘, thei classification of
homotopy types of £(X, M)y will be completed when we finish writing dt;wn the homotopy types

of £(X, M)y for X = a one-point union of circles. This is our remaining task.
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5. PRINCIPAL BUNDLE Hg(M)o — Ex(X, M)j

In this final section we show that the restriction maps from homeomorphism groups to embed-
ding spaces are principal bundles in the 2-dimensional case, and then we seek some conditions
under which the fibers of these bundles are connected [31, 32]. These principal bundles enable
us to derive the results on homeomorphism groups of noncompact 2-manifolds and embedding
spaces into 2-manifolds in Sections 3.2 and 4 from the corresponding results on homeomorphism
groups of compact 2-manifolds [31, 32, 33]. To exhibit principal bundles, we need to show “exis-
tance of sections. In our case, this is equivalent to obtain some extension theorem for embeddings
of a compact 2-polyhedron X into a 2-manifold M to ambient homeomorphisms of M. Since
every graph can be decomposed into ads (i.e., cones over finite points) and arcs connecting them,
it suffices to study the embeddings of trees into .a disk. The key ingredients are the conformal
mapping theorems, extension to boundary and continuity (cf. [20, Ch.1,2]). The proper embed-
ding case is a consequence of a direct application of the mapping theorem on simply connected
domains (and seems to be well known ([12, 17])). ‘Thus our interest is in the case of embeddings
into the interior of a disk, where we need to apply the mapping theorem on a doubly connected
domain one boundary circle of which is collapsed to a tree. The conclusion is summarized as
follows: Suppose M is a PL 2-manifold and X is a compact subpolyhedron of M. We say that
an embedding f : X — M is proper if f(X N M) C OM and f(XﬂIntM)'C Int M. Let
Ex (X, M)* denote the subspace of proper embeddings of X into M, and let £k (X, M) denote

the connected component of the inclusion i : X C M in Ex (X, M)*.

Theorem 5.1. For every f € Ex(X, M)* and every nez'ghborhood U of f(X) in M, there exist
a neighborhood U of f in Ex(X,M)* and a map ¢ : U — Hruanuy(M)o such that (9)f = g
for each g € U and o(f) = idpm.

Suppose U is an open neighborhood of X in M and 7 : Hrupanv)(M)o — Ex(X, V)5, w(h) =
h|x, denote the restriction map. The group G = Hxyanu)(M)oNHx (M) acts on Hxuanvy(M)o

by right composition.
Corollary 5.1. The map n : Hgyn\v)(M)o — Ex(X,U)§ is a principal bundle with fiber G.

Next we investigate some condition which implies that § = Hx(M)o. Suppose M is a 2-
manifold and N is a 2-submanifold of M. In [6] it is shown that (i) two homotopic essential
simple closed curves in IntM and two proper arcs homotopic rel ends in M are ambient isotopic

rel 8M, (i) every homeomorphism h : M — M homotopic to idj is ambient isotopic to idp.
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Using these results or arguments we can show that if, in addition, h|y = idy then h is isotopic to
idy rel N under some restrictions on disks, annuli and Mébius bands components (i.e. the pieces
which admit global rotations). The symbol #X denotes the number of elements (or cardinal) of
aset X.

Theorem 5.2. Suppose M is a connected 2-manifold, N is a compact 2-submanifold of M and
X is a subset of N such that

(i) M #T2, P2, K? or X #0.

(ii)(a) if H is a disk component of N, then #(H NnX)>2,

(b) if H is an annulus or Mébius band component of N, then HN X # 0,

(iii) (a) if L is a disk component of cl(M\N), then FrL isa disjoint union of arcs or #(LNX) > 2,
(b) if L is a Mébius band component of cl(M\N), then FrL is a disjoint union of arcs or LNX # 0.
Ifhy : M — M is an isotopy rel X such that ho|n = hi|n, then there exists an isotopy b}, : M —
M rel N such that hy = ho, By = hy and hi = h, (0 <t < 1) on M \ K for some compact subset
K of M.

Corollary 5.2. Under the same condition as in Theorem 5.2, we have Hy (M) N Hx (M) =
Hn(M)o.

We conclude this section with some problems. Suppose M is a compact PL n-manifold, n > 3,

and X is a compact subpolyhedron of M.

Problem. (1) Is Hx (M) always an £2-manifold ?

(2) Is the triple (£(X, M), EYP (X, M), EPL(X, M)) always an (s, T, o)-manifold ?

(3) When 7 is an arc and D" is an n-disk, calculate the homotopy group of £(I, D) for n > 3
(4) Extend the theory of topological embeddings from the viewpoint of spaces of embeddings.
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