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 Fixed Point Theorems and Related Topics in
| Abstract Convex Spaces

Hidetoshi Komiya (hE EE)
Faculty of Business and Commerce
Keio University

It is well known that we can derive important results.such as fixed point
theorems, separation theorems, selection theorems of continuous functions, -
etc. from convexity in linear space structure. Many researchers have tried
to extend these theorems under weaker conditions, apply them in general
circumstances and get new results. We shall introduce the study of H-spaces
which started with the concept of singular face structures due to Horvath][8].
We mainly cite the topics discussed below from [8], [9], [11].

Definition 1 Let X be a topological space and F(X) be the family of all
nonvoid finite subsets of X. A mapping F : F(X) — X is said to be a
singular face structure if it satisfies the following two conditions:

1. For any A € F(X), F(A) is nonvoid and contractible;
2. For any A, B € F(X) with A C B, F(4) C F(B).

Definition 2 A pair (X, F) of a topological space X and a singular face
structure F' is said to be an H-space. A subset C of X is said to be convez if
F(A) C C holds for any A € F(C). An H-space (X, F) is said to be a locally
convez metric H-space if X is a metric space, and a set {x € X : d(z, A) < €}
is convex for any € > 0 and any convex set A, and any open ball is convex.

1 " KKM Type Theorems and Fixed Point The-
orems

The following propositioxi is fundamental to develop the theory of H-spaces.



Proposition 1 Let (X, F) be an H-space and A € F(X) with A = {a,,...,a.}.
Denote by A,_; the standard (n — 1) dimensional simplex co{ej,...,ep}in
R™. Then there is a continuous function f : A,_; — X satisfying the follow-
ing conditions:

F(Aj) C F(Ay) for any J C {1,...,n},
where Ay =co{e;j:j€ J} and Ay ={a;j:j € J}.

Proof Firstly, take r; € F({a,}) arbitrarily for each a; € A, and define a
continuous function f°: A2_, — X by f°(e;) = z;, where AY_, denotes. the
0-dimensional skeleton of An_l Secondly, assume that, for any k dimensional
skeleton AF_, of A,_, there is a continuous function f*: A% _, — X such
that f"(AJ) C F(A;) for all J with |J| <k +1.

Let A be a 'k + 1 dimensional face of A,_;. Put J; = J \ {i} for i€ J.
Since the boundary dA; = | J;c; Ay, of A; is included in the k dimensional
skeleton AX¥~! of A,_;, we have '

74( 3AJ c U an) c|JF(Ar) c F(Ay).

teJ - ieJ

Since F(A;) is contractible, f*¥ can be extended to a continuous function

A+l Ay — F(As) on A;. Let Ay and Ay be two k + 1 dimensional faces
of An_isuch that Ay N Ay # 0. Then f5*! and %+ have the same values
as f¥ on A;jN Ay since AyN Ay is contained in the k dimensional skeleton
Ak_.. Hence, we can paste all of the continuous functions on £+1 dimensional
faces constructed above and make a continuous function f¥+!: AF! — Ron
the (k + 1) dimensional skeleton. Repeating this process, we have a desired
continuous function f on A,_;. O

The next theorem is an H-space version of the KKM theorem.

Theorem 1 Let (X, F) be an H-space. Let A € F(X) with A = {a1,...,a.}
‘and {R;}%, be a family of closed subsets of X. If F(A;) C U;c; R: holds
for any J C {1,...,n}, then we have N, R; # 0.

Proof Let f:A,_1 — X be a continuous functlon obtained in Proposition
1. Then f(Ay) C F(Ay) C UZE ; R; holds for any J. Hence, it follows that
Ay C FHUies Ri) = Uiey F7H(Ri), and there is a point £g € A,_y such that
to € (i, fH(Rs) by virtue of the KKM theorem. The point f(¢o) belongs
to n?:l ‘R’L o



The next is an H-space version of the extension of KKM theorem by
Fan[6].

Theorem 2 Let (X, F) be a compact H-space, Y a subset of X. If a closed
multi-valued mapping v : Y —» X satisfies F(4) C Uzea 7(z) for any A €
F(Y), then it follows that ),y 7(z) # 0.

Proof We have [,y 7() # 0 because {7(z)}zcy has the finite intersection
property by virtue of Theorem 1. O

Definition 3 For a multi-valued mapping v : X —» Y, we define the dual
7Y o X of y by v*(y) = X \ 7 (y).

Definition 4 Given multi-valued mappingv: X —» X, a point 2y € X with
¥(zo) = 0 is said to be a mazimal element of +, and a point of Neex 7(z)
is said to be a mazimum element of y. From the definitions above, it is
easily seen that a maximal element of v is a maximum element of v*, and
a maximum element of v is a maximal element of v*. Moreover, it follows
,Y —_— ’Y**.

The existence of a maximum element is nothing but the conclusion of a
KKM type theorem, and hence we can easily prove the following theorem
using a KKM type theorem.

Theorem 3 Let (X, F) be a compact H-space and suppose that v : X — X
enjoys the following properties:

1. y(z) is closed for any z € X;
2. z € v(z) holds for any z € X;

3. v*(z) is convex for any z-€ X,
Then, we have [, 7(z) # 0.

Proof We only need to show F(A) C (J,c47(a) for any A € F(X) by
virtue of Theorem 2. If there is a point z such that z € F(4)\ Usea 7(a),
then a € y*(z) for any a € A, and hence, we have A C v*(z). Since
7*(z) is convex by the assumption, we have F(A4) C v*(z). Therefore, it
follows = € F(A) C v*(z), and we have z ¢ (z), but this contradicts our
assumption. O ‘ '

We have the following theorem paying attention to Theorem 3 above and
the duality between maximal elements and maximum elements.



Theorem 4 Let (X, F)bea cdmpact H-space, and suppose that ¢ : X —» X
satisfies the following conditions:

1. ¢(z) is convex for any z € X;

2. z ¢ p(z) for any z € X;;

3. ¢~!(z) is open for any z € X.
Then there is z € X such that ¢(z) =

Proof If web put v = ¢*, then v satisfies all of the hypotheses of Theorem
3. Hence there is y € X such that y € (|,cx v(z), that is, we have z ¢ cp(y)
forallz € X, and ¢(y) = 0. D

2 Continuous Selections

Theorem 5 Let X be a paracompact topological space, and (Y, F) an H-
space. Suppose that a multi-valued mapping ¢ : X —» Y enjoys the following
properties:

1. p(z) is nonvoid and convex for all z € X;
2. ¢~ }(y) is open for all y € X.

Then, ¢ has a continuous selection.

Proof Note that the family {¢™!(y)},ey is an open covering of X. Since X
is paracompact, there are an locally finite open covering U = {U} of X and
a function y : U — Y such that U C ¢~ (y(U)) for all U € U. Let {By} be a
partition of unity subordinate to &. Let A/ be the nerve of the locally finite
open covering U, and let |[V] be the geometrical realization of the nerve N.
Denote by v(U) the vertex of |N| corresponding to an open set U in Y. Now
define a continuous function f : X — |N| by

@) = Bolep(U), zeX.
2 ,

On the other hand, define a function 77: |N|° = Y by n = yov~!, where
IN]° is the 0 dimensional skeleton of |A/|. Denote a simplex in |V by s and



the set of all vertexes of s by s°. We consider a pair (L, g), where L is a sub-
complex of |V} and g is a function on L to Y such that g(s) C F(n(s?)) for all
simplex s in L. Let Z be the set of all the pairs of this type. Moreover, define
a partial order < in Z by (L,g) < (L', ¢') if and only if L is a sub-complex
of L' and ¢'|p = g.

Firstly, if we define a function g : |[V|° — Y, where |V|° is the 0.dimen-
sional skeleton of ||, by g(u) € F(n(u)) for each vertex u, then (JA]°, g) is
an element of Z and we can conclude Z is nonvoid. -

Secondly, take a chain C = {(Li,¢:)}ier in (Z,<). Define L by L =
Uier Li» and 3 : L = Y by g(z) = gi(z) for  with z € L;. Then (Z,7)
belongs to Z, and it is obviously an upper bound of C. Therefore, (Z, <) has
a maximal element (L, g) by Zorn’s lemma. We can establish the equation

= |N| as follows.

If L # |V, then there is a k dimensional skeleton of |A/| which is not
contained in L. Let ky be the minimum value of such k’s. It is impossible
ko = 0. Indeed, if kg = 0, then there is a vertex u ¢ L, but we can extend
g to LU {u} and this contradicts the maximality of (L, g). Let s be a ko-
simplex of |N| not belonging to L. The boundary s of s is contained in the
(ko — 1) dimensional skeleton of |A/], and hence in L. If ¢ is one of the faces
of s constructing Js, then g(t) C F(n(to)) C F(n(s%)), and hence we have
9(8s) C F(n(s°)). However, since F(n(s°)) is contractible, we can extend g
to s and obtain the extension ¢’ : s — F(n(s°)). If we put L = L Us, L
becomes a sub-complex of || because 8s C L. Moreover, define §: L — Y
such that g is equal to g on L and is equal to ¢’ on s. Then (L, g) belongs to
Z, and this contradicts the maximality of (L, g) and we have a contradiction.
Now we have proved the existence of a continuous function g : |N'| = Y such
that g(s) C F(n(s")) for all simplexes s in |A].

Take the composite go f of f : X — ||, which is constructed in the first
part of this proof, and g : |[M| — Y whose existence we have just proved.
Then this is a continuous selection of . Indeed, take any point z € X. Let
s be the simplex in || whose vertexes are {v(U) : U 3 z}. Then we have

=90} Bu(z)v(V)) € g(s) C
U

| F({n(v(U)) : U 3 z}) c F({y(U) : U 3 z}) C ().
The last inclusion is verified as follows: If z € U, then we have z € ¢~ (y(U))
by the definition of y, and F({y(U) : U 3 z}) C ¢(x) by the fact y(U) € ¢(z)



and the convexity of o(z). O

Proposition 2 Let X be a paracompact topologwal space, (Y, F') a locally
convex metric H-space. Suppose that a multi-valued mapping ¢ : X—»Y
enjoys the following properties: .

1. ¢ is lower semicontinuous;

2. ¢(z) is nonyoid convex for all z € X.

Then, for any ¢ > 0, there is a continuous function g : X — Y with the
following property: " :

o(z) N B(g(z),e) # 0 for all z € X.

Moreover the multi-valued mapping ¢’ : X —» Y defined by ¥ (x) e(z)N
B(g(z), €) is lower semicontinuous.

Proof Define ¢ : X —» Y by ¥(z) = {y € Y : o(z) N B(y,¢) # 0}. Then,
- () is nonvoid and convex, and ¢X(y) = {z € X : ¢(z) N B(y,¢) # 0}
is open because B(y,€) is open and ¢ is lower semicontinuous. 1) has a
continuous selection g by Theorem 5, and this g is the desired function.
The lower semicontinuity of ¢’ is shown as follows. If we put B =
{(y,y") €Y x Y : d(y,y') < €}, then we have the equation

{zreX:Gny(x) #0} = {z € X: ({9(2)} x p() N(BN(Y X G)) # 0}
for any subset G of Y, and the multi-valued mapping z ~ {9(z)} x p(z)
from X to Y x Y is lower semicontinuous. O

Theorem 6 Let X be a paracompact topological space, (Y, F) a locally
convex complete metric H-space. Suppose that a multi-valued mapping ¢ :
X —» Y enjoys the following properties:

1. ¢ is lower semicontinuous;

2. ¢(z) is nonvoid closed convex for any z € X.
Then, ¢ has a continuous selection.

Proof By virtue of Proposition 2 and the mathematlcal induction on n, we
can find a sequence {f,} of continuous functions satisfying

0(z) N iy B(fa(2),1/2") # 0. Since d(far1(z), fa(z)) < 1/2%+ +1/2°
holds, {f,} is a Cauchy sequence in the sense of uniform convergence. Hence,
frn converges a continuous function f umformly It is easily seen that f(z) €
() form the property of f,. O



3 Fixed Point Prvoperties

Definition 5 An H-space (X, F) is said to have the fized point property if
any continuous function from X into X has a fixed point. A multi-valued
mapping v from (X, F) into itself is said to be a K-mapping if it has nonvoid
closed convex values and is upper semicontinuous. A multi-valued mapping
@ from (X, F) into itself is said to be an FB-mapping if it has nonvoid convex
values and the set ¢~!(y) = {z € X : p(z) > y} is open for any y € X. An
H-space (X, F) is said to have the K-fized point property if any K-mapping
on (X, F) into itself has a fixed point, and have the FB-fized point property
if any FB-mapping on (X, F) into itself has a fixed point.

Proposition 3 Let (X, F) be a paracompact H-space. If (X, F) has the
fixed point property, then (X, F) has the FB-fixed point property.

Proof The proof is trivial by Theorem 5. O

Proposition 4 Let (X, F) be a locally convex metric H-space. If (X, F) has
the FB-fixed point property, then (X, F') has the K-fixed point property.

Proof We derive a contradiction assuming that (X, F) lacks the K-fixed
point property. Let v : X — X be a K-mapping with no fixed point. Since
7 is upper semicontinuous and 7(z) is closed, for any x € X, there are an
open neighborhood U, of z and an open convex neighborhood G, of v(z)
such that U; N G, =0 and v(z) C G, for all z € U,.

Since X is paracompact, there are a locally finite closed covering V = {V}
of X and a function z : V — X such that V C Ug(vy for all V € V. For each
z € X, let W, be a neighborhood of z such that theset {V € V | VW, # 0}
is a finite set. ' .

Let , ={VeV|V3z}land J,={VeV|VNW,#0}. Define a
multi-valued mapping ¢ : X —» X by

p(z) = ﬂ Ga(vy, z € X.

Vel

It is obvious that ¢(z) is convex forallz € X. If V € I, thenz € V C Uy,
and hence y(z) C Gyv). Then, we have y(z) C ¢(z), and ¢ is nonvoid-
- valued. On the other hand, it follows that z ¢ ¢(z) for all z € X by the
definition of ¢.



Next we show that ¢~*(y) is open for all y € X Let xo € ¢~ (y), that is

,YE ﬂ G(v). Define a set W by
Vel

W W.’L‘o) » lf I.‘.ro - Ioa
Woo N VIV € Jay \ Ino } if Iy # Jao-

Then, we have W is open and zo € W. It is obvious that I, C I, for all
z € W. Hence, it follows that

0(2) = [ Gar) D [ Ga(v) = 9(%0) 3

VEI: VGI&:O

Therefore, we have ¢ (y) 3 z, that is, ™' (y) D W.
Summing up, ¢ is an FB-mapping, but z ¢ ¢(z) for all z € X, and ¢
has no fixed point. This contradicts the FB-fixed point property of X. O
We obtain the following theorem combining the previous two propositions.

Theorem 7 Let (X, F) be a locally convex metric H-space whose singleton
sets are convex. Then, the following three statements are equivalent each
other:

1. (X, F) has the fixed point property;
2. (X, F) has the FB-fixed poinﬁ property;
3. (X, F) has the K-fixed point property.

We can regard a convex subset X of a locally convex metrizable linear
topological space as a locally convex metric H-space (X, F') if we regard the
mapping F as the usual operation of taking convex hulls in a linear space.
Therefore, we have the following corollary to Theorem 7.

Crollary 1 Let X be a convex subset of a locally convex metrizable linear
topological space. Then the following three statements are equivalent each
other:

1. X has the fixed point property;
2. X has the FB-fixed point property;



3. X has the K-fixed point property.

Any non-compact convex subset of a locally convex metrizable linear
topological space lacks .the fixed point property by [10, Theorem 2.3], and
hence we have the following corollary.

C'rollary 2 Any non-compact convex subset of a locally convex metrizable
linear topological space lacks the FB-fixed point property.

4 Topological Semilattices as H-spaces

We introduce topological semilattices with some conditions as nontrivial H-
spaces.

Definition 6 A partially ordered set X with a topology is called a topological
semilattice if there is a supremum z V y for any two points z,y € X, and the
mapping (z,y) —» zVy from X x X to X is continuous.

Definition 7 A topological space X is said to be w-connected if we can
extend any continuous function from the n dimensional unit sphere S™ into
X to a continuous function from the n + 1 dimensional unit ball B**! into
X for any natural number n.

Remark 1 A topological space X is w-connected if and only if X is path-
connected and the fundamental group m,(X, z) is trivial for any z € X and
any natural number n. (cf. [15, page 51])

If a topological space X is contractible, then it is w-connected, but the
inverse is not necessarily true.

The discussion in the previous sections holds true even if we adopt the
assumption that the values F'(A) of the singular face structure F are w-
connected instead of the assumption that the values F(A) are contractible.
We proceed in this section under the condition that the values F(A) are w-
connected and we call a topological space an H-space if it has a singular face
structure with w-connected values.

Definition 8 Let X be a topological semilattice. Define F' : F(X) — X by

F(A)=|Jlo,sup 4], Ae F(X).

a€EA



If all of the order intervals in X are path-connected, then F(A) is path-
connected, and hence F(A) is w-connected by [4, Theorem B]. Therefore,
(X, F) is an H-space. In this section, (X, F)) denotes the pair of a topological
semilattice X whose order intervals are all path-connected and a singular face
structure F defined above. | '

The following proposition is trivial which describe the condition that a
set is convex. :

Proposition 5 A subset C of X is convex if and only if the following two
conditions are true.

1. z,,z2 € C implies z; V 25 € C,
2. 71,22 € C and z, < 3 imply [z1,2,] C C.

Every proposition in the previous sections is true in a topological semi-
lattice (X, F). We take Theorem 4 as an example, and interpret it in this
context.

Theorem 8 Suppose that X is compact, and ¢ : X —» X satisfies the
following conditions:

. If 21,15 € ¥(z), then z; V 5 € ¢(z);

Pt

o

. X 11,79 € ¥(x), 71 < To, then [z1,22) C p(z);
.z ¢ o(z) for all z € X;

w

. ¢~Y(z) is open for all zeX.

>

Then there is £ € X such that ¢(z) = 0.
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