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Abstract

_This paper generalizes the conditional expectation framework by replacing the Hilbert-
norm with a more general measure of approximation errors. This enables one to develop
the concept of conditioning for non-expectation certainty equivalents. Under this concept
a single-agent model, in which the optimal level of information is endogenously determined
through the agent’s optimization behavior, can be constructed. In this setting it is possible
for the anti-preference for information to dominate the benefits of better planning available
under more information. In particular, I show that the “biasedness” of this new conditioning
is important in endogenizing the choice of information.
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1. Introduction

This paper generalizes the conditional expectation framework by replacing the Hilbert-
norm (i.e., L?-norm) with a more general measure of approximation errors, which enables us to
develop the concept of conditioning for non-expectation certainty eQuiva.lents, and to construct
a single-agent model in which the optimal level of information is endogenously determined
through the agent’s optimization behavidr, and in which the anti-preference for information could
dominate the benefits of better planning which would become available under more information.

We first develop the concept of conditioning M (z|G) for non-expectation certainty equiv-
alents. Here z is a random utility and G is a sub-o-algebra which represents partial information
held by the agent. To this end, we assume that the agent is endowed with a functional, by
which she measures approximation errors. We then define M(z|G) as the best approximation
to z within the G-measurable functions when approximation errors are measured by this er-
ror functional (its well-definition will be proved in Proposition 2.2). If the error functional
is specified by the L®-norm, M(z|G) coincides with the conditional expectation E(z|G). We
call the conditioning thus defined as non-Hilbert conditioning. Given the error functional, we
can define thé associated certé.inty equivalent as the best approximation within the constants.
Therefore, for any (non-expectation) certainty equivalent M, defining its conditioning can be
reduced to finding the error functional which defines the given certainty equivalent. The same
error functional is now used to define M(z|G) for any G. In this manner, Section 3 develops the
conditioning for a broad class of non-expectation certainty equivalents.

While the conditional expectation is unbiased, the non-Hilbert conditioning is typically
biased in the sense that M (M (z|G)) # M(z). Here we interpret the LHS as the current “mean”
utility when fhe agent expects partial information G to be obtained in the future, and the
RHS as the current “mean” utility when the agent expects no more information. Therefore, it
affects agent’s welfare whether or not she gets future information. In particular, obtaining some
information G may decrease agent’s current utility, which in turn implies that she may prefer
not to be informed (rather than be informed) although new information would promote better
planning. For example, imagine the person who hates to be informed of the result of a medical
examination regardless of a better medical treatment he could get if he found some disease. This
aspect is missing in the standard conditional expectation framework. In Section 4, a simple 2-
period model will be constructed in which the agent chooses the level of information (together
with control variables) in order to maximize her overall utility. We show that it could be the
case that being ignorant is preferred to being informed. This new approach would allow us to
endogenize the evolution of agent’s information in dynamic models as a result of optimization

behavior. In Section 5, we briefly mention the future research along this line.
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2. General Theory

We specify the states of the world by a probability space (2, F, 1), where F is a o-algebra
of all conceivable events on €, and p is a probability measure on F. We then define the space
of essentially bounded real-valued functions on Q by

L®(F) ={z: Q — R|z is F-measurable and esssup,¢q|z(w)| < +oo}.

We identify = € L®(F) with y. € L®(¥) if = y p-almost everywhere (a.e.), and simply write
as z = y. That is, we regard L®(F) as the set of p-equivalence classes of functions. We denote
by F* the space of all sub-c-algebras of 7. When G € F*, we say that z is dlmost G-measurable
if there exists y such that y is G-measurable and = = y p-a.e. We denote by L™ (G) the space
of all essentially bounded almost G-measurable functions, which becomes a subspace of L (A).
In the current paper, any element of L®(F) or L*®(G) may be regarded as a random utility.
More specifically, we may consider = as z(w) = u(w(w),w), where u is a state-dependent von
Neumann-Morgenstern utility function and w is a random income. We are more concerned with
the attitude toward uncertainty (that is, how to aggregate z over states) rather than the attitude
toward wealth (that is, the curvature of u). '
For any z € L®(F) and for any G € F*, the conditional expectation E[z|G] is defined

by

Blolg) = argmin{ ||z - z[la] z € L°(G)} 1)
where || - ||z is the L2-norm. This definition is typically applied to L? spaces, in which case
the minimum is always uniquely attained by the orthogonal projection since L? (G) is a closed
subspace of L2(F). The uniqueness of E[z|G] is up to a p-equivalence class and we can always
choose a version which is G-measurable. Because L™ C L2, this definition can be directly
applied to the current context. Furthermore, if the above definition is extended to L' spaces
by the st_a.hda.rd approximation argument, it coincides with a more common definition of the

conditional expectation.! Among the implications of this definition are

Elz] = Elz‘l{tﬁ,ﬂ}] \ (2)

and . )
Elz] = E[Elz|g]]. | (3)

The conditional expectation (1) can be interpreted as the “best” approximation to z within the

G-measurable functions when approximation errors are measured by the L2-norm.

‘vTh'at is, E[z|G)] is defined as a G-measurable integrable function which satisfies (VG € G) fc E[z|G)dp =
J; ©dp. In this regard, see Billingsley (1986, p. 477, 34.15). .
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' We now extend (1) to a more general conditioning concept by replacing the L?-norm in
(1) with a more general measure of errors, which we will call error functional. To this end, we
first define a partial order on L*°(F) by

T3y & 24+ <ys and - <y,

where z4 and z_ are the positive part and the negative part of z, reépectively. This order
measures the “closeness”. That is, z is “closer” to x than 2’ is if z — z < 2 — 2'. In this case, both
of the overestimate and the underestimate (at each state) by z are smaller than those by 2/. Also
note that this order is a proper subset of the order by the absolute values: z <y = |z| < |y|
" but not <« in general.

Let X be a convex cone of L*®(F). In what follows, we set X = L®(F) unless otherwise
stated. An error functional on X is a mapping & : X x X — R which satisfies the following six

axioms.2

El. (Vz,ze X) ®(z,2)>0;
E2. ®(z,2)=0 & z=2z2;
E3. z—-z3z-2 = ¥(z,2) < ®(z,7);
E4. (Vz e X) ®(z,')is a convex function ;
E5. (Vz,z1,2 € X)(VA € (0,1))
z1 # 23 and (3G € F*) 21,2, € L®(G) and = & L*®(G)
= @ (2,3 + (1= N)22) < \8(z, 21) + (1 - N&(z, 22) ; and
E6. (VzeX)(Fpe[l,+00)) |z —20lp =0 = lim, .00 ®(z, 2) > &(z, 20) ,

where || - ||, is the LP-norm. The number given by &(z,z) measures the error when we ap-
proximate z by z. El and E2 are normalization axioms which are imposed so that the best
approximation of z is achieved by z itself with no error. E3 requires consistency of the error
with the “closeness” discussed earlier. E4-E6 are technical axioms which are sufficient for the
existence of the best approximation. E4 and E5 require that ®(z,-) is convex and strictly con-
vex, and E6 requires that ®(z, -) is strongly lower semi-continuous. While & resembles a metric,
we do not impose the symmetric axiom: ®(z, z) = &(z, z).

We can construct an error functional from the functional ® : X — R which satisfies:

2The domain of ¢ implicitly requires that &(x’,2') = &(z,2) if 2’ =z a.e. and 2’ = z a.e.
821 # 22 means that there does not exist N such that {w | z1(w) # z2(w) } C N and p(N) = 0.
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Nl. (VzeX) &(x)=0;

N2. &(z)=0 & z=0;

N3. z=<y = &) <3®);

N4 (Vz€X) A>0 = 3(0z)=x8(z);

N5. (Vz,y€X) 3(z+y)<8(z)+3);

N6. B(z+y) < &(z)+ &(y) unless (Ic > 0) z=cy ; and

N7. (Fp€(L,+00)) ||Za—Toll, =0 = lim, ,0o®(zn) = 3(20) -

N7 can be replaced by the following axiom:
N7'. (3pe|[l,+o0)and K > 0)(vz) 3(z) < K||z|l,-

It immediately follows that N5 and N7’ imply N7. By N4 and N5, ® is a Minkowski functional.

While 5 resembles a norm, it is not symmetric in the sense that &(-z) # 3(z).

Lemma 2.1: Define &(z,2) = ZI;(:I: -2). If 3 satisfies N1-N7, then & satisﬁes E1-E6.
(Proof in Appendix) ' :

Given an error functional &, we define
(Vz € X)(VG € F*) M (z|G) = argmin{ &(z,z) |z € L%(G) }. (4)

The class of functions Mg (z|G), if it exists, is the “best” approximation to z within the almost G-
measurable functions where approximation errors are measured by the error functional $. When
z is (almost) G-measurable, z = z uniquely attains the minimum by E1 and E2. When z is not

(almost) G-measurable, the next proposition guarantees the existence of the best approximation.

Proposition 2.2: Let & be an error functional. Then for any z and for any G, Ms(z|G)

is well-defined and unique (up to a p-equivalence class). (Proof in Appendix)

We can always choose a version of Mg (z|G) which is G-measurable, and refer to it as the
non-Hilbert conditioning. The non-Hilbert conditioning (4) generalizes the conditional expec-
tation (1), and coincides with it when @ is speciﬁed.by the L2-metric. Any strictly increasing
transformation of ® can generate the same conditioning concept.

We define the certainty equivalent * generated by an error functional ® by

(Vz € X) Myp(x)= Mas(z|{$,02}). . (5)

“The term “certainty equivalent” is used for M only to mean that M(z) = = when z is constant. Recall that
x is now a random utility rather than a rondom income.
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The p-equivalence class of functions Mg (x) is the “best” approximation to z within the (almost)
constant functions where approximation errors are measured by ®. Again, we can choose a ver- .
‘sion of Ma(z) which is constant. The certainty equivalent Mg(-) generalizes the expectation
functional E(-), and coincides with it when & is s;peciﬁed by the L2-metric. Note that the equa-
tion (5) is the definition while the equation (2) is an implication of the conditional expectation.
Given a certainty equivalent M, we can develop the concept of conditioning for M by seeking
for an error functional @ such that (Vz) M(z) = Mp(z|{{¢,2}). Such a & then would be used
to define the conditioning of M against any G € F* by means of (4). Section 3 develops the
conditioning for a broad class of non-expecta.tibn certainty equivalents in this way. Henceforth,
we suppress @ and simply write as M(z|G) and M(z) when & is understood.

An error functional @ is of integral form if there exist mappings ¢ : ®2 — R and
w: R — R such that |

(Vo2 € X) 8(z,2) = p [ 9(o0), (w))ud))

and if ® satisfies E1-E6. The error functionals of this form allow convenient characterization of
M(z|G) and M(z), which follows immediately from the definition.

Lemma 2.3: Let @ be of integral form. If ¢ is continuously differentiable in its second
argument and if o s strictly increasing, then, for any z € X, M(z) is defined as the unique

solution z to
/ ¢2(z,z)dp =0
Q
and M(z|G) satisfies (Vh € L®(G))

/!)¢2($,M(xlg))hdu =0.

Lemma 2.4: Let ® be of integral form. If ¢ is twicely continuously diﬁerentiable and

if ¢ is strictly increasing, then M(-) is Gateauz differentiable and (Vz,h € X)

) /9 éo1 (z, M(z)) hdu

OM(z; h) = — ‘ .
memmw,

For each z € X, the value of information G is a real number V,(G) defined by
Va(6) = M(M(2l0)) - M(a).

Here M (M (x|G)) is the current “mean” utility when the agent expects partial information G to .

be obtained in the future, while M(z) is the current “mean” utility when the agent expects no
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more information. When M coincides with the expectation E, Vz(G) = 0 for any z and for any

G because of (3). However, V could be either positive or negative in general because
M(z) # M(M(z|G)) . (6)

The “biasedness” (6) of non-Hilbert conditioning contrasts with the “unbiasedness” (3) of con-
ditional expectation. The agent with the L? error functional is indifferent to the partial infor-
mation she might attain in the future (apart from the benefits of better planning which would
become available with the additional information). On the other hand, with the non-Hilbert
conditioning, the agent may strictly prefer to be uninformed. The preference over information
can be introduced only by the “biasedness” of non-Hilbert conditioning. This new feature of
non-Hilbert conditioning will be further illustrated by the examples in Sections 3 and 4.

3. Examples

This section considers several examples of non-expectation cértainty equivalent, for each
of which we develop the concept of conditioning. We also see its implications to the value of

information.

A L? Error Functional

Let p € (1,400). The L? error functional is defined by:

1/
2(z,2) = ( [ 4a(),2@)du@) | where (@,2) = lo = 2P

This is the metric generated by LP-norm and clearly satisfies E1-E6. We need to assume that p €
(1,400) since M(z|G) is not unique in general when p =1 or 4+-c0. When p = 2, the conditional
expectation will be recovered. Dependent upon the value of p, the certainty equivalent generated
by this error functional exhibits different sensitivity to events’ probabilities. M is very sensitive
to probabilities when p is close to one, while large p shows the insensitivity of M to probabilities.
To see this, let Q = {wy,ws }, and let (Vi) p; = p({w;}) > 0. When p =1, M(z) = z(w;), where
i = arg max; p;. (When there is a tie, M(z) is any convex combination of such z(w;)’s.) On the
other hand, when p = 400, M(z) = (1/2)(z(w1) + z(w2)) regardless of p;’s. 4
For p # 2, M(z) # M(M(z|G)) in general as the following simple example shows. Let -

Q = {wr,we,w3}; (Vi) pi = p({wi}); G = {¢, {1}, {wa, w3}, U; 21 = 2(w1) = z(w2) < 23 =
z(w3); and y = 1/(p — 1). Then -

(pr+p2) P
M(z) = T1 +
(=) Pr+p2) +p) (o1 +p2) + 7}

z3 and
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pi(p2 + p3)” 23
(p3 +p3)p] + (P2 +p3)7) "

pi(p3 + p3) + p3(p2 + p3)”
M(M(z|G)) = )+
| M) = G + BT + (oo + 1)
The several lines of algebra show that

M(z) > M(M(z|G)) & p>2.

Although this example is very specific and general cases seem to be very complicated, some
intuition can be derived from this example. First, assume that p > 2. For this case, an interme-
diate aggregation (i.e., M(z|G)) dampens (resp. promotes) the mean when the aggregation takes
place among better (resp. worse) outcomes. This is because the values of outcomes (rather than
the associated probabilities) count more and the best (resp. worst) outcome is always averaged
downward (resp. uqud). In the above example, the intermediate aggregation lowers the best
outcome and hence dampens the mean. Next, assume that p < 2. For this case, an interme-
diate aggregation (i.e., M(z|G)) promotes (resp. dampens) the mean when the relatively high
probabilities are associated with the lower (resp. higher) outcomes. This is because the increase
of the probability of better (resp. worse) events by the aggregation may cause the reversal of
relative probabilities between better outcomes and worse outcomes. In the above example, the
aggregation causes the increase in the probability of better outcome, which contributes increase

of the mean.

B. Asymmetric Error Functional

Let p € (1,+00) and let vy > 0. The asymmetric error functibnal is defined by:

YV —zf i z>2

b(z,2) = (‘/s‘z ¢(a:(t;)),z(w)) du(w)) e , where ¢(z,2) = {

lz—2]p if z<z.

When 7 < 1, the certainty equivalent generated by this error functional is a parametric speci-
fication of preferences studied by Gul (1991), and exhibits disappointment aversion. This error
functional measures the approximation errors asymmetrically. That is, an underestimate is tol-
erated (resp. penalized) compared with an overestimate when v < 1 (resp. v > 1). This error

functional can be generated from the asymmetric “norm” which is defined in the next lemma.

Lemma 3.1: Let p € (1,+00) and let a,b > 0. Definey: R— R by
‘ e if >0
(Ve € %) 7(3:):{ b if z<0.
Finally, de;ﬁne llzlly by

loth = ( [ 1@l au)
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Then (Vz,z € X). ||z + 2lly < llzlly + |2lly. Furthermore, ||z + 2zlly < llzlly + llzlly unless
(F3c>0) z=cz. (Prodf in Appendix)

Proposition 3.2: The asymmetric error functional is well-defined.

Proof: By Lemma 2.1, it suffices to prove that &(z) = ||z||, satisfies N1-N7. N1-N4
are obvious. N5 and N6 follow from Lemma 3.1. N7’ holds with K = (max{a, b})¥r. O

When p = 2, this error functional has a convenient implication on the value of information

as the next proposition shows.

Proposition 3.3: Let M be generated by the asymmetric error functional with p = 2.
Then for any G and for any =, M(z) > M (M(z|G)) < v <1. (Proof in Appendix)

C. Quasilinear Error Functional

For this example, set X to be the positive cone of L*°(F), and let a > 0. The quasilinear

error functional is defined by:
| &(z,2) = /ﬂ d(z(w), 2(w)) du(w), where ¢(z,z) = az®t — (@ +1)z%z + 2.

When a = 1, the conditional expectation will be recovered. The certainty equivalent generated

by this error functional is a parametric family of quasilinear mean, (E[z®])Y/°.

Proposition 3.4: The quasilinear error functional is well-defined.

Proof: This is a special case of Proposition 3.5. O

By Lemma 2.3, we can compute M(z|G) explicitly as (Vz)(VG) M(z|G) = (E[z>|G])Y=.
Hence, for this error functional, the value of information is always O because M(M(z|G)) =
(EE[°|G)Y* = (B[z])V/* = M(z).

D. Implicit Error Functional

For this example, we first define the certainty equivalent, and then seek for the error
functional which generates this certainty equivalent. Given z € X, M(z) is defined as the

unique solution z € R to

| ¢aw),2)dutw) = 0
where ¢ : ®2 — R satisfies: (i) p(z,z) = 0, (ii) (V) ¢(z,-) is strictly decreasing, and (iii)
(Vz) (z,-) is continuous. Note that z = M(z) is well-defined by the mean value theorem. This
certainty equivalent, called implicit mean, was studied by Fishburn (1986). By the continuity
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(iii), there exists ¢ : ®2 — R such that (Vz,z) da(z,2) = —p(z,z). Furthermore, ¢(z,-) is
strictly convex by (ii) and has a minimum at z = z by (i). Finally, let ¢(z, 2) E'(;(.'L', z) -$(a:, z).
We define the implicit error functional by:

22,9 = [ $(o(w), () du(e).
Note that the quasilinear error functional is recovered when ¢(z, z) = (@ + 1)z® — (a + 1)z°.

Proposition 3.5: The wmplicit error functional is well—deﬁned and it generates the
implicit mean M(zx). '

Proof: EI-E6 follow since ¢(z,) is a strictly convex function which has the minimized
value 0 at z = z.- E7 holds by Aubin and Ekeland (1984, p. 13) since #(z,-) is continuous. The

second statement in the proposition is obvious by Lemma 2.3. O

By the construction of ® and Proposition 3.5, we can always find the error functional
which generates the given implicit mean. The value of information is non-zero except when ¢

is separable (as in Example C).

E. Rank-dependent Error Functional

Let 6 be a normalized capacity on (2, F), that is, 6 : F — [0,1] is a mapping which
satisfies 6(¢) = 0, 6(Q) =1, and A C B = 6(A) < 6(B). We will also assume that 8 is convez
in the sense that 6(AU B) +6(AN B) > 6(A) + 6(B). A simple example of a convex capacity is
(VA) 6(A) = (u(A))*, where o > 1. Let X be the positive cone of L®(F). A Choquet integral
with respect to a capacity @ is defined by: '

(Vz € X) /Q 2(w) B(dw) = /0 8 {w € Qo(w) > £} )dt,

where the integral in the right-hand side is an improper Riemann (or equivalently, Lebesgue)
integral. The Choquet integral crucially depends upon the ranking of outcomes, and (given
§’s convexity) it captures the notion of uncertainty aversion (for exa.mple, see Gllboa 1987,
Schmeidler, 1989, and Chateauxneuf 1991). ’

We construct the error functional which generates the certainty equivalent defined by
the Choquet integral. To this end, we introduce a couple of concepts. We denote by ba the space
of bounded charges. That is, ba is the space of bounded finitely additive set functions on (£, F)
which are null at ¢ and absolutely continuous with respect to u. Note that ba = (L®(F))*,
the topologica,l dual of L™ (}' )- Let () be a nondecreasing sequence of simple functions which
uniformly converges to z. Such a sequence always exists. Then the Dunford-Schwartz integral
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of z € X with respect to v € ba is defined by

[ o) vldo) =l [ en@)vids),

where the integrals of simple functions in the RHS a;re defined in the same manner as for an
integral with respect to a measure. The limit exists and is independent of the choice of the
sequencé of simple functions (Danford and Schwartz, 1954, p. 111). Finally, the core of the
normalized capacity 8 is deﬁned by

core(d) = {v € ba| (VA € F) 8(A) < v(A) and V(Q):l}.‘

It immediately follows that core(f) is weak * compact. The following lemma is due to Schmeidler
(1986): | |

Lemma 3.6: Let 0 be a normalized capacity. Then 0 is convez if and only if

(Vz € X) ‘/de0=min{/9:1:du'

v € core(0) } .

We now define the error functional. Let 6 be a normalized capacity which is convex.

Then define a mapping = — v, from X into core(#) such that

/a:dGz/zduw,
Q IR

where the RHS is the Dunford-Schwartz integral. Such a mapping exists by Lemma 3.6 while it

is not unique in general. We define the rank-dependent error functional by:

b(z,2) = /Q(a:(w) — 2(w))? dvz(w).

Note that the integral is again in the sense of Dunford and Schwartz since v is a charge rather

than a measure. We can prove

Proposition 3.7: The rank-dependent error functional is well-defined, and it generates
the Choquet integral. (Proof in Appendix)

For this error functional, the value of information is in general non-zero. Lemma 2.3

(and the similar argument to the proof of Proposition 3.7) shows

M(z) = /ﬂ wdv, = fn M(z|g) du,

but the last expression does not equal M(M(z|G)) since v and vps(z|g) are in general different.
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4. Application to 2-Period Dynamic Model: An Example

Thé general two-period model is described as follows. Let (€, F,u) be the set of all
possible states of the world of tomorrow together with all conceivable events and a probability
measure on it. And let cg and ¢; be a consumption of today and of tomorrow, respectively.
co is a non-negative real and c; : & — Ry is a function of tomorrow's state. 'The feasibility
of a consumption plan is described by the compact-valued and F-measurable correspondence
F:Q —» R2. It will be required that (Yw) (co,c1(w)) € F(w). A function u: 0 — Ris a
F-measurable utility function which gives future's utility given tomorrow’s state w. A function
W : Ry xR — R is an intertemporal aggregator which generates today’s utility given today’s
consumption and tomorrow’s “mean” utility. In order to caluculate tomorrow’s “mean” utility,
the agent employs the certainty equivalent M which is generated by some error functional.

' The information structure of the model is as follows. Let F* be the space of sub-o-
algebras of 7, and let G* be some subset of 7*. Today, the agent chooses any G € G* together
with a feasible consumption plan (co,c1). The information G will be revealed to the agent
tomorrow, and ¢; must be chosen so as to be G-measurable. Therefore, the finer G is, the more
variety of functions the agent can consider as a possible plan of tomorrow’s consumption c¢;.
This substantiates the idea that the additional information contributes the utility by #llowing
the more flexible planning. Finally, the utility of tom_orrdw will be computed as a conditional
utility given G, and this conditional utility will be aggregated again over states by M to generate
“mean” utility of tomorrow. When M is given by the expectation operator E and when W is
linear in its second argument, this double aggregation leads to the identical “mean” utility
regardless of G. But since M need not be E now, the “mean” utility may be affected by the
choice of g.

In a summary, the agent chooses ¢, c1, and G to maximize:
W (co, M [W (c1(w), Mu(w)|G])]) (7)

(Vw € Q) (co,c1(w)) € F(w)
subject to G eG* and

c1 is G-measurable.
When W(e,m) = v(c) + fm a,nd.M = E, where v: Ry — R, > 0 and E is an expectation
operator, equation (7) is reduced to
v(co) + BEv(er(w))] + B*E| Elu(w)|d]]
= v(co) + BE[v(c1())] + B Elu(w)]
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Here G vanishes, and hence it cannot affect the overall utility. More information is always

preferred. Next suppose that W(c,m) = m. Eqaution (7) is now reduced to
M| M[u(w)|G]]

Hence if M # E, G could affect the overall utility even for this simple intertemporal aggregator.
| A finer G leads to better planning, but it may not be preferred according to the anti-
preference for information itself. To illustrate this point, we now provide a specific example of
the above model in which the attainment of new information (and hence more flexible planning)
may not necessarily improve the agent’s overall utility.
Information Structure. Let 0 = {w,wy,ws }; F = 2%, (V4) pi = p({wi}); Go = {9,
G1 = {¢, {w1}, {wa2,ws},}; and G* = {Go,G1 }. For this simple example, the agent has only
two alternatives: no information at all or partial information which can’t distinguish state 2
from state 3. We assume that it takes no cost obtaining information. |

Feasibility. Let € > 0 and let ¢ > 0. The feasibility correspondence is given by:

{(z0,z1) €RL|zo =0 and 0< z; <T} if w=uw
(Vw) F(w)= .

{(z0,21) €ER: |20 =0 and 0<z <c+e} if w=wy or wy
When Gy is chosen by the a.gent,. the best consumption available tomorrow is given by (Vw) e1(w) =
€. When G; is chosen by the agent, the best consumption available tomorrow is given by
c1(w1) = and ¢ (w2) = ¢1(ws) = €+ €. The more information leads to a better consumption of
tomorrow as we expect.

Preference. Let b > 0. Define W by (Vc,m) W(c,m) =c+ m and u by

0 if w=uw; or wy
(Vw) u(w) =
b if w=uws
The state 3 is special in the sense that the agent gets a bonus utility b only when this state
is realized. Finally, the certainty equivalent M is the one generated by the L? error functional
(which was introduced in Section 3.A). Under these specifications, equation (7) is reduced to
M(c1(w) + M(uw)|g)) - |
Let v =1/(p —1). The overall maximum utility when the agent chooses Gy is given by:
3 b
(p1 + p2)" + 13
On the other hand, the overall maximum utility when the agent chooses G is given by:

Uy = E+M(y(w)) =T+

) 4 if w=uw
Ui = M(a(w)+ Mu(w)|G)) where cl(w)={
: C+e i w=wy or ws

(p2 +p3)’ p3(p2 + p3)?

= et (p! + (p2 +P3)”’)E+ (3 + p3)(p] + (P2+P3)"’)b'
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As the example in Section 3.A shows, Up = M(z) < M(M(z'|G)) = Ui when p < 2. In this case,
obtaining partial information merits the higher utility (partly because of the better vplanning
‘and partly because of the preference for information itself). On the contrary, when p > 2 and
€ is small enough (or, b is large enough), Uy = M (x) > M(M(2'|G)) = Uy. For instance, when
p > 2 (and hence v < 1) and p; = p; = ps, it immediately follows that Uy > U if (and only if)
b> [27/(1 — 27-)je. In this cése, the agent prefers to remain uninformed rather than become

informed. This is because the anti-preference for information dominates the merit by the better

planning.

5. Concluding Remarks

The simple example of 2-period model in Section 4 shows that the agent with a general
error functional (which may be different from L?-norm) can exhibit a strict preference or a strict
anti-preference for information, the latter of which sometimes dominates even the merit of better
planning. In this manner, the non-Hilbert conditioning allows us to make more general models in
which the information will be jurisdictionally chosen by the agent and hence will be endogenized.
In the traditional dynamic models, the accumulation of agent’s information is exogenously given
by some filtration of o-algebras. In another word, the choice of variables the agent observes
to obtain information is out of her control (where the filtration is generated by the variables).
Multi-period (in particular, infinite-horizon) models with the non-Hilbert conditioning contrast
with the traditional ones and would provide new economic implications by endogenizing the
problem of which variables to observe. In an attempt to analyze such models (including the
general 2-period model described at the beginning of Section 4), it would be necessary to study
the existence of the optimal information level, which in turn requires the “continuity” of M(z|-)
with respect to some information topology on F*. To this end, we would need to extend the

argument developed by Allen (1983), which employs Boylan’s (1971) topology for information.
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APPENDIX

_ Proof of Lemma 2.1: The following implications are immediate: N1 => E1; N2 =
E2; N3 = E3; and N7 = E6. N4 and N5 imply E4 since:
(VA € (0,1)) & (z, Az + (1 - N)z2) | (8)
& (z — Mz + (1= N)z2))
d(A\(z—21)+ (1 - Nz — 2))
Mz —2))+ & (1 - Nz —2))
A(z—z1) + (1= N&(z — 2)
A®(z,21) + (1 — N)®(z, 22) -

hon

IA

It

Finally we 'prove E5. The inequality in (8) is strict unless there exists ¢ € 4 such that
Az — 21) = ¢(1 — N)(z — 22), which is the case only when A —¢(1 — X) = 0 or z is a linear
combination of z; and zp. But the both are impossible under the presupposition of E5. O '

Proof of Proposition 2.2: Let € X. Then there exists b € R such that |z| <.
Define
(L%(G)), = {z € L®(G) | esssup,eq |z(w)| < b}

We can look for z in (L(G)), because z — (z A b) V (—b) =X z — z and because it implies
3(z, ( Ab) V (~b)) < &(z, 2) by E3.
Let (z,)%2; be a sequence in (L*°(G)), such thal

8(z, ) — inf &(z, 2) = nf{ 8(z, 2) | = € (L2(G))s }- ©)

Since (L®(F))s is weak * compact, there exists a subsequence (z,,,)%2; and zg € (L%(F))s such
that z,, converges to zg in the weak * topology. We will show that zo € (L%(G))s in the rest
of this paragraph. Fix p with which ® meets E6 and let ¢ be its conjugate (When p = 1, let
q = +00). We claim that z,, converges to zg in the weak topology of LP(§2, F, ). To see this,
note that z,; and zg live in L?, and that, by the definition of the weak * topology,

(Vz € LY) /a:zn_.du—»/mzodu.
Q Q

The claim follows because L? ¢ L* and L? = (LP)*. Therefore, some sequence of convex
combinations of the elements z,; converges to zo in the LP-norm by the Mazur’s lemma. Then
some subsequence of this sequence converges to zg almost everywhere. Since each component of
this subsequence is almost G-measurable, 2 is also almost G-measurable.

This Iﬁara.gra.ph proves that &(z,zp) = inf, &(z, z). Because z,; converges to zo in the
weak topology by the second paragraph, and because ®(z,) is lower semi-continuous in the
weak topology by E4 and E6, lim,,_,,®(z, z»;) 2 ®(z, zp), which implies ®(z, z9) = inf; ®(z, 2)
by (9). ‘ '
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Finally, we prove the uniqueness. If z is almost G-measurable, z = z attains the unique
~ minimum by E1 and E2. Assume that z is not almost G-measurable, and that almost G-

‘measurable distinct functions z1 and 22 both attain the minimum. But this contradicts E5.
0 ' )

Proof of Lemma 3.1: If 2 =0 or z =0, the conclusion is trivial. Hence assume that
|z|ly = @ > 0 and ||z|l, = 8 > 0. Define o = z/c and 2 = z/8. Then azo = z-and ||zof, =1
(since || - fly is positively homogeneous). The same is true for z5. If we define A = a/(a + ),
then

¥(z + 2)|z + 2|F
= v(azo + Bz0)|azo + Bzof?
YA+ B)zo+ (1= A)(e + B)z0)[AMex + Bzo + (1 = A)(a + B)zof”
= (a+BPrz0+ (1 — N)z0)|Azo + (1 — N)zol?
< (a+B) (My(zo)lxol® + (1 — N)y(20)|0f?)

where the last equality holds since & + § > 0, and the inequality holds (with an equality only
when zo = zg) since y(-)| - |P is strictly convex. Therefore,

Il

N+ 22
= [ v+ 2o+ 2Py
< [(@+ 8 Ov(ao)laol? + (1 = Ny(ao)laol”) d
= (a+8) (Mol + (1 = Nl=ol2)
= (a+pB)7.
By taking p—root, the proof is completed. O -

Proof of Proposition 3.3: Define ¢ : 2 — R by
Ye—2) if z2z
p(z,2) =
T—2z if =z<z
Then M(z) is defined as a unique solution z to [, p(z(w), 2) du(w).
Let z,h € L*°(F) and let v > 1. Then by the convexity of ¢,
(V)  p(zWw) + hw), M(z + h)) — p(z(w), M (z))
— o] (z(w), M(z))h(w) ~ 5 (z(w), M (2))[M(z + h) — M(z)]
>0 )

where ] and ¢ are right-hand-side and left-hand-side derivatives, respectively. Hence

/9 (o (2(w), M(@)h(w) + v (2(w), M(z))[M(z + h) — M(2))) du<0.
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By setting h = M(z|G) — =z,

M(M(2lg)) - M(z) 2 |t ), M)pa(elg) -~ s
» ) /Q w5 (z(w), M(z)) dp

Note that [q @3 (z(w), M(z)) dp < 0, and that [o 7 (z(w), M(2))[M (z|G) — z] dp > 0 because
[ @), M@)M(el0) - 2] dis |
- f{ oty M) =) d+ L«uw }(M(m|g) —z)du
= -0 040e10) - z)du+ [ (M(alg) - ) d

> -0 [ (MG9)~2)du+ [ (04(lG) )
= 0,

where the last equality holds by Lemma 2.3. This completes the proof for v > 1. The similar
argument applies for y < 1. O

Proof of Proposition 3.7: EI1-E6 are obvious. Yoshida-Hewitt theorem claims
(V) vz = VS + VB, where 1 is a countably additive part of 1, and v2 is a pure charge, both of
which are nonnegative. Hence, ®(z,z) > [(z — z)2dvg, from which the lower semi-continuity
of & in z follows in a usual manner since VS is now a measure.

To show that & generates the Choquet integral, let (2,)» be a sequence of real numbers
which converges to z. Then ((z(w) — 2,)% — (z(w) — 2)?)/(2n, — 2) converges to (d/dz)(w(w) — 2)?

in “charge” because

(@) = =)’ ~ (@w) -2 _d
Zn—2z dz

(W) (ww) = 2)*| = | 20— 2|.

Therefére, by the dominated convergence theorem for charges (Rao and Rao, 1983, p. 131),
(d/dz) [o(z(w) — 2)* dyy = [(d/dz)(z(w) ~ 2)? dv, which proves the claim by the definition of
v, O : '
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