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Abstract

A mathematical model of a directed graph with stochastic transfers is presented.
It will be used to analyze the optimality (or “competitiveness”) properties of a net-
work of transactions involving risky transfers of assets in an economic system. These
properties are discussed in a model with some specific directed graph structures
which result in a decompositon of the graph into parts with “narrow” linkage.

1 Introduction
The purpose of this paper is to present a mathematical model of a directed graph with
stochastic transfers, which will be used to analyze the optimality (or “competitiveness”)
properties of a network of transactions involving risky transfers of assets in an economic
system.

A $\mathrm{m}\mathrm{a}\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{m}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{c}\mathrm{a}\mathrm{l}\backslash$ model of stochastic transfers in a directed graph is presented in section
2. The concepts of optimality of stochastic transfers are discussed in terms of efficiency
and competitiveness in section 3. A specific model of risky transfers of assets, which will
be called the (

$‘ \mathrm{W}\mathrm{i}\mathrm{c}\mathrm{k}\mathrm{s}\mathrm{e}\mathrm{l}\mathrm{l}$ triangle” plus a simple barter is presented in section 4. Optimality
properties of risky transfers in the specific model are briefly discussed in section 4.

2 A Model of Stochastic Transfers in a Directed Graph

2.1 A directed graph
An ordered pair $(A,\mathcal{T})$ consisting of a nonempty finite set $A$ and a binary relation $\mathcal{T}$ on $A$

is a directed graph. The interpretation of the graph $(A,\mathcal{T})$ in this paper is the $\mathrm{f}\mathrm{o}\mathrm{l}\mathrm{l}\mathrm{o}\mathrm{w}\dot{\mathrm{m}}_{\mathrm{o}}\sigma$:
a point $a\in A$ is a trader or an agent; an ordered pair $(t_{1}, t_{2})\in \mathcal{T}$ shows a direction of
transfer, i.e., a transfer from $t_{1}$ to $t_{2}$ .

Two typical examples of a directed graph $\mathrm{a}\mathrm{r}\mathrm{i}\sin_{\mathrm{o}}\sigma$ from commodity and financial assets
transfers are illustrated in $\mathrm{f}\mathrm{i}_{\mathrm{o}}\sigma \mathrm{u}\mathrm{r}\mathrm{e}1$ and $\mathrm{f}\mathrm{i}_{\mathrm{o}}\sigma \mathrm{u}\mathrm{r}\mathrm{e}2$ . $\mathrm{F}\mathrm{i}_{\mathrm{o}}\sigma \mathrm{u}\mathrm{r}\mathrm{e}1$ illustrates a simple barter trade
transfers of commodities or assets. Agent $a_{1}$ sends commodities or assets to agent $a_{2}$ and
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nice versa. Then, it is represented by a directed graph $(A, \mathcal{T})$ with $A=\{a_{1}, a_{2}\}$ and
$\mathcal{T}=\{(a_{1}, a_{2}), (a_{2},a_{1}), (a_{1}, a_{1}), (a_{2}, a_{2})\}$ . In figure 2, each agent sends commodities or as-
sets counterclockwise to another agent, indicating the fact that there are no “double coin-
cidence of wants.” This type of transfers is known as a ‘Wicksell triangle.” It is represented
by $(A, \mathcal{T})$ with $A=\{a_{1},a_{2},a_{3}\}$ and $\mathcal{T}=\{(a_{1},a_{2}), (a_{2}, a_{3}), (a_{3}, a_{1}), (a_{1},a_{1}), (a_{2},a_{2}), (a_{3}, a_{3})\}$.
$\mathrm{F}\mathrm{i}_{\mathrm{o}}\sigma \mathrm{u}\mathrm{r}\mathrm{e}3$ gives an illustration of a general directed graph.

2.2 Probability structure
The stochastic transfer will be formalized in terms of a state space $\Omega$ . We assume that a
probability measure space $(\Omega, Pr)$ is given.

2.3 Commodities, endowments and preferences
Let there be 1 kinds of commodities or assets. (Henceforth, assets and commodities are
not distinguished and they are simply referred to as commodities.) $\mathbb{R}^{\ell}$ represents the space
of these $\ell$ commodities. The initial endowments of each agent $a\in A$ of these commodities
are specified by a $0\sigma \mathrm{i}\mathrm{v}\mathrm{e}\mathrm{n}$ mapping $e$ : $Aarrow \mathbb{R}_{+}^{\ell}$ . Thus, each agent $a$ $\mathrm{i}.\mathrm{s}$ endowed with the
bundle of commodities $e(a)\in \mathbb{R}_{+}^{\ell}$ .

In order to discuss state-contingent trade of these endowments, we adopt Arrow’s
convention that each type of commodity is a class of $\mathrm{s}\mathrm{t}\mathrm{a}\mathrm{t}\mathrm{e}- \mathrm{c}\mathrm{o}\mathrm{n}\mathrm{t}$ ingent commodities, one
for each state in $\Omega$ . Thus the set of all commodities is $\Omega\cross\{1, \ldots , l\}$ . Each agent $a$ is
endowed with $e^{j}(a)$ units of commodity $(\omega,j)$ for every $\omega\in\Omega$ . Formally, the commodity
space $L$ is $0\sigma \mathrm{i}\mathrm{v}\mathrm{e}\mathrm{n}$ by 1

$L\equiv(\mathbb{R}^{\ell})^{\Omega}$ .
A commodity bundle $x\in L$ may be viewed as a random vector defined on $\mathbb{R}^{\ell}$ or a mea-
surable mapping $x$ defined on $\Omega \mathrm{t}\mathrm{a}\mathrm{k}\mathrm{i}\mathrm{n}_{\mathrm{o}}^{\sigma}$ values in $\mathbb{R}^{\ell}$ .

We assume that each agent’s preference between commodity bundles conforms to
expected utility. $\mathrm{A}_{\mathrm{o}}\sigma \mathrm{e}\mathrm{n}\mathrm{t}$ $a$ has a von-Neuman-Morgenstern utility function $u_{a}$ : $\mathbb{R}^{t}arrow \mathbb{R}$.
Then, if $x\in L$ is a commodity bundle, the expected utility of $x$ for agent $a,$ $U_{a}(x)$ is given
by

$U_{a}(x)= \int_{\Omega}u_{a}(x(\omega))dPr$ .

2.4 Information partition
We shall consider two rounds of transfers. For each round of transfers, information of
$\mathrm{a}_{\mathrm{o}}\sigma \mathrm{e}\mathrm{n}\mathrm{t}\mathrm{s}$ is specified by an information partition $P$ on $\Omega$ . Denote by $P_{\tau\iota)}n=1,2$ , the
partitions corresponding to these rounds. It is assumed that information becomes finer as
rounds proceed so that $\mathcal{P}_{1}\subset \mathcal{P}_{2}$ . In a specific model presented in section 4, one assumes

lIf one wants to conform to the Arrow-Debreu convention strictly) then one needs to $\mathrm{d}\mathrm{i}\mathrm{s}\mathrm{t}\mathrm{i}\mathrm{n}_{\Leftrightarrow}o\mathrm{u}\mathrm{i}\mathrm{s}\mathrm{h}$

commodities by each state, the origin and the place of its consumption. Then, the commodity space
$L$ should be given by $L\equiv(\mathrm{R}^{p})^{\Omega \mathrm{x}\mathcal{T}}$ where for $t=(t_{1},t_{2})\in \mathcal{T},$ $t_{1}$ shows the $\mathrm{o}\mathrm{r}\mathrm{i}_{\mathrm{o}}\sigma \mathrm{i}\mathrm{n}$ of the commodity
whereas $t_{2}$ shows its place of consumption. In this paper we do not adopt the convention because we like
to aaeume each agent derives utility from the consumption of commodities provided at his own location.
This assumption not only simplifiae our analysis but also helps us to focus on the effects of transfers on
the flnal consumption attained by each agent.
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$\mathcal{P}_{1}=\{\Omega\}$ and $P_{2}=\{S,F\}$ . That is, there is no information available at round 1 and at
round 2 information becomes available whether transfers have safely done, i.e., $\omega\in S$ or
failed, i.e., $\omega\in S$ .

2.5 A network of stochastic transfers
A given directed graph $(A,\mathcal{T})$ represents the inffastructure of a network of stochaetic
transfers. For the purpose of our present analysis, we consider two rounds of transfers.
Each agent $a\in A$ in the network decides amounts and constituents of his transfer to other
$\mathrm{a}_{\mathrm{o}}\sigma \mathrm{e}\mathrm{n}\mathrm{t}\mathrm{s}$ in the network at each round. We assume, however, that agents make an agreement
for transfers of commodities among them before the initial round. The agreement among
them is $\mathrm{b}\mathrm{i}\mathrm{n}\mathrm{d}\mathrm{i}\mathrm{n}_{\mathrm{o}}\sigma$ . The list of stochastic transfers among agents for each round of transfers
is denoted by

$\tau_{n}$ : $\Omega \mathrm{x}\mathcal{T}arrow \mathbb{R}_{+}^{\ell},n=1,2$ ,

where $\tau_{n}$ is $P_{n}$-measurable, $\mathrm{i}\mathrm{n}\mathrm{d}\mathrm{i}\mathrm{c}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{n}_{\mathrm{o}}\sigma$ that agents can use information available at the
time of actual transfers. $\tau_{n}(\omega, (t_{1},t_{2}))$ represents a state-contingent transfer from $\mathrm{a}_{\Leftrightarrow}\sigma \mathrm{e}\mathrm{n}\mathrm{t}$

$t_{1}$ to $t_{2}$ in state $\omega$ at n-th round.
The stochastic nature of rounds of transfers will be described by a stochastic safety

rate function for each round, which indicates the safely arrived proportion of commodities
that are sent from one agent to another. Stochastic safety rate functions are given by

$\sigma_{n}:\Omega\cross \mathcal{T}arrow[0,1]$ , $n=1,2$ ,

where both $\sigma_{1}$ and $\sigma_{2}$ are $\mathcal{P}_{2}$-measurable. Since $P_{1}$ is the information available at initial
round, $P_{2}$-measurability of $\sigma_{1}$ means that agents do not know for initial round transfers
the actual proportion of commodities that reaches another $\mathrm{a}_{\mathrm{o}}\sigma \mathrm{e}\mathrm{n}\mathrm{t}$ , so that agents face risky
transfers. On the other hand, $P_{2}$-measurability of the stochastic safety rate function $\sigma_{2}$

for second round transfers means that agents exactly know the proportion of commodities
that will reach another $\mathrm{a}_{\mathrm{o}}\sigma \mathrm{e}\mathrm{n}\mathrm{t}$ at the time transfers are to be made. Thus, agents can make
second round transfer $\mathrm{a}_{\mathrm{o}}\sigma \mathrm{r}\mathrm{e}\mathrm{e}\mathrm{m}\mathrm{e}\mathrm{n}\mathrm{t}$ contingent on the events in $P_{2}$ . When $0<\sigma_{2}<1$ , it
means that second round transfers are costly. This cost which is sometimes called as
((

$\mathrm{i}\mathrm{c}\mathrm{e}\mathrm{b}\mathrm{e}\mathrm{r}_{\mathrm{o}}^{\sigma}$ cost,” can be viewed as a crude way of reflecting various intuitive considerations
$\mathrm{i}\mathrm{n}\mathrm{c}\mathrm{l}\mathrm{u}\mathrm{d}\mathrm{i}\mathrm{n}_{\mathrm{o}}\sigma$ time preference and exposure to business loss due to delayed availability of
transferred funds. We assume that the information $\mathcal{P}_{n},$ $n=1,2$ , is publicly available at
n-th round.

2.6 A transfer network economy
An ordered pair $\tau=(\tau_{1}, \tau_{2})$ of stochastic transfer functions will be called a stochastic
transfer. An ordered pair $\sigma=(\sigma_{1}, \sigma_{2})$ of stochastic safety rate functions will be called a
transfer technology.

93



A transfer network economy $\mathcal{E}$ will be given by a quintuple consisting of a directed
$\mathrm{o}^{\mathrm{T}\mathrm{a}\mathrm{p}\mathrm{h}}\mathrm{o}(A, \mathcal{T})$ , an initial endowment function $e$ : $Aarrow \mathbb{R}^{p}$ , a specification of a utility
function to each agent $(u_{a})_{a\in A}$ , a transfer technology $\sigma=(\sigma_{1}, \sigma_{2})$ , and an information
structure $\mathcal{P}=\{P_{n}\}_{n=1,2}$ , i.e.,

$\mathcal{E}=\{(A,\mathcal{T}), e, (u_{a})_{a\in A}, \sigma,P\}$ .

Let us introduce some further notation for convenience. For any $f$ : $\mathcal{T}arrow R_{+}^{\ell},$ $V,$ $W\subset$

$A$ , we write
$f(V, W)= \sum_{t\in U}f(t)$

where $U=(V\mathrm{x}W)\cap \mathcal{T},$ $f(a,W)=f(\{a\}, W)$ , and $f(V,a)=f(V, \{a\})$ . If we $\mathrm{r}\mathrm{e}_{\mathrm{o}}\sigma \mathrm{a}\mathrm{r}\mathrm{d}$ a
mapping $f$ : $\mathcal{T}arrow \mathbb{R}^{\ell}$ as a contingent transfer, then $f(a, W)$ is the total of commodities
that are sent from agent $a$ to $\mathrm{a}_{\mathrm{o}}\sigma \mathrm{e}\mathrm{n}\mathrm{t}\mathrm{s}\mathrm{b}\mathrm{e}\mathrm{l}\mathrm{o}\mathrm{n}_{\mathrm{o}}\sigma \mathrm{i}\mathrm{n}\mathrm{g}$ to $W$ , and $f(V, a)$ is the total of commodities
that are sent to $\mathrm{a}_{\mathrm{o}}\sigma \mathrm{e}\mathrm{n}\mathrm{t}$ $a$ from $\mathrm{a}_{\mathrm{o}}\sigma \mathrm{e}\mathrm{n}\mathrm{t}\mathrm{s}$ in V. (See $\mathrm{f}\mathrm{i}_{\mathrm{o}}\sigma$. $4.$ )

Given a transfer network economy $\mathcal{E}$ and a stochastic transfer $\tau=(\tau_{1}, \tau_{2})$ , it is assumed
that the consumptions take place after second round transfers are completed. Let us
denote by $\tau^{s}(\omega,t)$ the total of commodities in state $\omega$ sent from $t_{1}$ to $t_{2}$ where $t=(t_{1},t_{2})$ ,
i.e.,

$\tau^{s}(\omega,t)\equiv\tau_{1}(\omega,t)+\tau_{2}(\omega,t)$ ,

and by $\tau^{\sigma}(\omega,t)$ , the total of commodities in state $\omega$ sent from $t_{1}$ to $t_{2}$ and actually received
by $t_{2}$ , i.e.,

$\tau^{\sigma}(\omega, t)\equiv\sigma_{1}(\omega,t)\tau_{1}(\omega, t)+\sigma_{2}(\omega, t)\tau_{2}(\omega,t)$ .

Thus, by our notational convention, $\tau^{s}(\omega, a, A)$ represents the total of commodities
sent by $a\in A$ to other agents in $A$ and $7^{-\sigma}(\omega, A, a)$ represents the total of commodities
sent by various agents in $A$ that are received by $a$ . We say that a stochastic transfer $\tau$

is feasible for $\mathcal{E}$ if for every $a\in A$ and $\omega\in\Omega$ , we have

$0\leq\tau^{s}(\omega, a, A)\leq e(a)$ .

2.7 Consumptions resulting from a stochastic transfer

Let $\tau$ be a feasible stochastic transfer for $\mathcal{E}$ . We now provide an explicit definition of
$\mathrm{a}_{\mathrm{o}}\sigma \mathrm{e}\mathrm{n}\mathrm{t}\mathrm{s}$

’ consumptions resulting from a stochastic transfer. Each $\mathrm{a}_{\mathrm{o}}\sigma \mathrm{e}\mathrm{n}\mathrm{t}$ $a$ is endowed with
a bundle $e(a)$ of various commodities to start out with. Out of what $a$ has, $a$ transfers
a bundle $\tau^{s}(\omega, a, A)\mathrm{c}\mathrm{o}\mathrm{m}\mathrm{p}\mathrm{r}\mathrm{i}\sin_{\mathrm{o}}\sigma$ of various commodities to agents in $A$ and receives a
commodity bundle $\tau^{\sigma}(\omega, A, a)$ . In general one has

$\sum_{a\in A}\tau^{\sigma}(\omega, A,a)<\sum_{a\in A}\tau^{s}(\omega, a, A)$

for $\mathrm{a}.\mathrm{e}$ . $\omega\in\Omega$ (that is, the total of commodities received by various agents are strictly
less than that of commodities sent out by the $\mathrm{a}_{\mathrm{o}}^{\sigma}\mathrm{e}\mathrm{n}\mathrm{t}\mathrm{s}$ as first round transfers are $\mathrm{r}\mathrm{i}\mathrm{s}\mathrm{k}\gamma$ and
second round transfers are costly.) Thus, after the stochastic transfer $\tau$ is completed, the
amount of commodities at hand for agent $a$ , which is available for $a’ \mathrm{s}$ consumption, is
given by

$e(a)-\tau^{s}(\omega, a, A)+\tau^{\sigma}(\omega, A, a)$ .
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3 Efficiency and Competition

3.1 Efficiency
Given a stochaetic transfer $\tau$ for $\mathcal{E}$ and a nonempty subset $C\subset A$ , we say $\tau$ is C-inefficient
if there is another stochastic transfer $\mu$ feasible for $\mathcal{E}$ such that

(1) $(\forall a\in C)E[u_{a}(e(a)-\mu^{s}(\omega, a, A)+\mu^{\sigma}(\omega, A, a))]$

$\geq E[u_{a}(e(a)-\tau^{s}(\omega, a, A)+\tau^{\sigma}(\omega, A, a))]$ ,
(2) $(\exists a\in C)E[u_{a}-\mu^{s}(\omega, a, A)+\mu^{\sigma}(\omega, A, a)]$

$>E[u_{a}(e(a)-\tau^{\mathrm{s}}(\omega, a, A)+\tau^{\sigma}(\omega_{f}A, a))]$ , (3.1)
(3) $(\forall\omega\in\Omega)(\forall t=(t_{1}, t_{2})\in \mathcal{T}$ with $t_{1}\not\in C$ or $t_{2}\not\in C$ )

$\mu_{1}(t)=\tau_{1}(t)$ and $\mu_{2}(\omega, t)=\tau_{2}(\omega,t)$ .
$\tau$ is $C$-efficient if it is not $C$-inefficient. A feasible stochastic transfer $\tau$ is Pareto efficient
if it is $A$-efficient. A feasible stochastic transfer $\tau$ is totally efficient if for any nonempty
$C\subset A$ , it is C-efficient.

3.2 Competition
Since we are $\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{c}\mathrm{e}\mathrm{r}\mathrm{n}\mathrm{e}\mathrm{d}$ with efficiency and competitiveness properties of a network transfer
economy without$\cdot$ explicit consideration of “market prices”, we appeal to the game theo-
retic notion of core. For a nonempty $C\subset A$ , a stochastic transfer $\tau$ is C-subcompetitive
(or $C$-dominated) if there is another feasible stochastic transfer $\mu$ satisfying (1) and (2)
above and

(3) $(\forall\omega\in\Omega)(\forall t=(t_{1}, t_{2})\in \mathcal{T}$ with $t_{1}\not\in C$ or $t_{2}\not\in C$)
$\mu_{1}(\omega,t)=0$ and $\mu_{2}(\omega,t)=0$ . (3.2)

A feasible stochastic transfer $\tau$ is said to be $C$ -competitive if it is not C-subcompetitive.
Finally, a stochastic transfer $\tau$ is called totally competitive if it is $C$-competitive for all
nonempty $C\subset A$ . In particular, $\tau$ is called individually rational if it is $\{a\}$-competitive
for all $a\in A$ .

3.3 Facts

One can check the following lemma and propositions without difficulty.

Lemma 1 Assume $C_{1}\subset C_{2}$ . If $\tau$ is $C_{2^{arrow}}efficient_{J}$ then it is $C_{1}$ -efficient.
Proof Let $C_{1}\subset C_{2}$ . Assume $\tau$ is $C_{2}$-efficient but not $C_{1}$ efficient. Then, there is another
feasible stochastic transfer $\mu$ satisfying. the properties (1),(2) and (3) with $C=C_{1}$ . Since
$C_{1}\subset C_{2}$ , it also implies that $\tau$ is $C_{2}$-inefficient contradicting to the assumption. I

Proposition 1 $\tau$ is totally efficient if and only if it is Pareto efficient.
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Proof Assume $\tau$ is totally efficient. Then, it is trivially A-efficient.
One the other hand, assume $\tau$ is Pareto-efficient or $A$-efficient. Then, by Lemma 1,

for any $C_{1}\subset A,\tau$ is $C$-efficient. Thus, it is totally efficient. I

Proposition 2 If $\tau$ is totally competitive, then it is totally efficient.

Proof Let $\tau$ be totally competitive. Assume $\tau$ is not $A$-efficient. Then, there is another
feasible stochastic transfer $\mu \mathrm{s}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{s}\mathrm{f}\mathrm{y}\mathrm{i}\mathrm{n}_{\mathrm{o}}\sigma$ the properties (1),(2) and (3) with $C=A$. Since
the complement of $A$ is empty, $\tau$ must be $A$-subcompetitive contradicting the fact that it
is totally competitive. Thus, it must be $A$-efficient. It follows from Proposition 1 that $\tau$

is totally efficient. 1

3.4 A Specific Result
At this point we would like to introduce a network transfer economy with a very specific
directed graph which has relevance to some economic problems. (See, for example, [2]
and [3].)

The structure of a specific directed graph that we consider here is what we call a
“Wicksell triangle” plus a simple barter which is given by the following (see fig. 5) :

$\bullet A=\{a_{1}, a_{2}, a_{3)}a_{4}\}$

$\bullet \mathcal{T}=\{(a_{1}, a_{2}), (a_{2}, a_{3}))(a_{3}, a_{1}), (a_{3},a_{4}), (a_{4}, a_{3}), (a_{1}, a_{1}), (a_{2}, a_{2}), (a_{3}, a_{3}), (a_{4}, a_{4})\}$

For a transfer network economy with a directed graph which is given by a Wicksell $\mathrm{t}\mathrm{r}\mathrm{i}\mathrm{a}\mathrm{n}_{\mathrm{o}}\sigma 1\mathrm{e}$

plus a simple barter, we have the following characterization of its total competitiveness.

Proposition 3 Let $\mathcal{E}=\{(A, \mathcal{T}), e, (u_{a})_{a\in A}, \sigma, P\}$ be a transfer network economy with a
directed graph $(A, \mathcal{T})$ as specified above. Assume each $agent^{f}s$ utility fun$\mathrm{c}$tion $u_{a},$ $a\in A$ ,
be locdly nonsatiated in his own endowment goods. Let $\tau$ be a stochastic transfer feasible
for $\mathcal{E}$ . Then, $\tau$ is totally competitive if and only if the following conditions hold: $\tau$ is
indinidually rational, totally efficient, $\{a_{1}, a_{2}, a_{3}\}-$ and $\{a_{3}, a_{4}\}$ -competitive.

Proof Assume $\tau$ is totally competitive. Then, it must satisfy the conditions by defini-
tion and proposition 2.

Conversely, suppose that a stochastic transfer $\tau$ is individually rational, totally effi-
cient, $\{a_{1}, a_{2}, a_{3}\}$-and $\{a_{3}, a_{4}\}$ -competitive. The only nonemty subset $C$ for which $\tau$ could
be $C$-subcompetitive without explicitly violating one of the three conditions are then:

$\bullet$ A. The subsets consisting of $a_{4}$ together with either $a_{1}$ or $a_{2}$ ; and

$\bullet$ B. The subsets to which exactly two members of $\{a_{1}, a_{2}, a_{3}\}$ belong.

Call these type A and type $\mathrm{B}$ subsets respectively. We now show that any individually
rational and totally efficient stochastic transfer $\tau$ cannot be $C$-subcompetitive for any
subset of either type A or type B.

Assume that a stochastic transfer $\mu$ satisfied the conditions (1), (2), and (3’) for a
subset $C$ . Suppose $C$ is of type A. Since $\tau$ is totally efficient, it is $C$-efficient and thus
the only possible $\mu$ satisfying the conditions (1) and (3) is autarky, i.e., $\mu^{s}(\omega, a, \mathrm{A})=0$
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Fig. 5A Wicksell Triangle pius a Simple Barter
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for $a\in A$ when $C$ is $\{a_{1}, a_{4}\}$ or $\{a_{2}, a_{4}\}$ . But since $\tau$ is individually rational, $\mu$ cannot
satisfy condition (2) for either of those two subsets.

Now suppose that $C$ is of type B. That is, either $C=\{a, b\}\subset\{a_{1}, a_{2}, a_{3}\})$ or else
$C=D\cup\{a_{4}\}$ and $D=\{a,b\}\subset\{a_{1},a_{2}, a_{3}\}$ . In the.former case, without loss of generality,
$a=a_{j},$ $b=a_{i}$ with $j=i+1$ (mod 3). The only transfer that can occur in any state of
nature between these two $\mathrm{a}_{\mathrm{o}}^{\sigma}\mathrm{e}\mathrm{n}\mathrm{t}\mathrm{s}$ is for $a$ to receive some of $b’ \mathrm{s}$ endowment goods. This
must happen with positive probability, in order for (2) to be satisfied for $a$ . In that case,
though, neither (1) nor (2) can be satisfied for $b$ . The same $\mathrm{a}\Gamma_{\mathrm{o}}^{\sigma}\mathrm{u}\mathrm{m}\mathrm{e}\mathrm{n}\mathrm{t}$ applies in the latter
case, unless $b$ is agent $a_{3}$ who receives some of the endowment goods $0.\mathrm{f}$ agent $a_{4}$ (and $a$

is $\mathrm{a}_{\Leftrightarrow}\sigma \mathrm{e}\mathrm{n}\mathrm{t}a_{1}$ ). If so, define a stochastic transfer $\theta=(\theta_{1}, \theta_{2})$ by

$\theta_{n}(\omega,t)=\{$

$0$ if $t=(a_{3}, a_{1})$

$\mu_{\tau\iota}(\omega, t)$ otherwise

for $n=1,2$ . $\mathrm{A}_{\mathrm{o}}\sigma \mathrm{e}\mathrm{n}\mathrm{t}a_{3}$ strictly prefers $\theta$ to $\mu$ , and agent $a_{4}$ is indifferent between $\theta$ and $\mu$ .
Therefore, if $\tau$ were $C$-subcompetitive for $\mu$ , then $\tau$ would be $\{a_{3)}a_{4}\}$-subcompetitive for
$\theta$ , contrary to hypothesis. I

3.5 Decomposition of a graph
Before proceeding to obtain further results on efficiency and competition, we would like
to discuss concepts concerning the decomposition of a graph.

Let $(A, \mathcal{T})$ be a directed $0\sigma \mathrm{r}\mathrm{a}\mathrm{p}\mathrm{h}$ . $\{(A_{i}, T_{i})\}_{i=1,\cdots,n}$ is a decomposition of $(A, \mathcal{T})$ if
$\{A_{\mathfrak{i}}\}_{i=1,\cdots,n}$ is a partition of the set $A$ and $\mathcal{T}_{i}=\mathcal{T}\cap(\mathrm{A}_{i}\mathrm{x}A_{i})$ . We write $\mathcal{T}_{ij}=T\cap(A_{\dot{\mathrm{t}}}\mathrm{x}A_{j})$ ,
and put $\mathcal{T}_{ij}^{-1}\equiv\{(a, b)\in A_{i}\cross A_{j}|(b,a)\in \mathcal{T}_{ji}\}$ for $i\neq j$ . A decomposition $\{(A_{i}, \mathcal{T}_{i})\}_{i=1,\cdots,n}$

of a directed graph is called perfect if $\mathcal{T}_{ij}=\emptyset$ for all $i\neq j$ .
Let $\mathcal{E}=\{(A, \mathcal{T}), e, (u_{a})_{a\in A}, \sigma, \mathcal{P}\}$ be a transfer network economy. A feasible stochastic

transfer $\tau$ is said to be $C$-totally competitive if it is $C’$-competitive for all nonempty $C’\subset C$ .
We now $\cdot \mathrm{s}\mathrm{t}\mathrm{a}\mathrm{t}\mathrm{e}$ a very easy result.

Proposition 4 Let $\mathcal{E}=\{(A, \mathcal{T}), e, (u_{a})_{a\in A}, \sigma, P\}$ be a transfer network economy. Let
$\{(A_{i},T_{i})\}_{i=1,\cdots,n}$ be a perfect decomposition of $(A, \mathcal{T})$ . Then, a feasible stochastic transfer

$\tau$ is totally competitive if and only if it is $\mathrm{A}_{i}$ -totally competitive for each $i=1,$ $\cdots$ , $n$ .

Proof Let $\{(A_{i}, \mathcal{T}_{i})\}_{i=1,\cdots,n}$ be a perfect decomposition of the directed graph $(A, \mathcal{T})$ . If
$\tau$ is a feasible stochastic transfer which is totally competitive, then it is trivially $A_{i}$-totally
competitive for all $i=1,$ $\cdots$ , $n$ .

Conversely, assume that $\tau$ is $A_{i}$-totally competitive for each $i=1,$ $\cdots,$ $n$ . Assume
that there existed a nonempty subset $C\subset A$ and a feasible stochastic transfer $\mu$ such
that $\tau$ is not $C$-competitive with respect to $\mu$ . Then, there exists $j\in\{1, \cdots , n\}$ such that
some of the agents in $C\cap A_{j}$ strictly prefer $\mu$ to $\tau$ . Define a feasible stochastic transfer
$\theta$ to be identical with $\mu$ for agents in $C\cap A_{j}$ . (which is possible as the decomposition is
perfect), and $\theta$ to be $0$ outside $C\cap A_{j}$ . Then, $\tau$ becomes $C\cap A_{j}$-subcompetitive under
$\theta$ , contradicting the fact that $\tau$ is $A_{j}$ -totally competitive. Therefore, $\tau$ must be totally
competitive. I
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The proposition 4 shows that when a transfer network economy is decomposed into
independent parts, the competitiveness of the entire part simply reduces to the com-
petitiveness of each independent part. This simple result motivates us to investigate
circumstances under which the competitiveness of each part is equivalent to that of the
entire economy even when the entire graph cannot be decomposed in a perfect manner.
Intuitively, one would expect this to happen when the linkage between the decomposed
parts is ‘narrow’ in an appropriate sense.

Given a directed graph $(A,\mathcal{T})$ , a subset $C$ is a path from $a_{1}$ to $a_{n}$ if $C=\{a_{1},a_{2}, \cdots , a_{n}\}$

with $(a_{i}, a_{i+1})\in \mathcal{T}$ for $i=1,$ $\cdots$ , $n-1$ . If all $a_{1},$ $\cdots$ , $a_{n}$ are distinct, it is called a strict
path. A path $C$ from $a_{1}$ to $a_{n}$ is a cycle if $a_{1}=a_{n}$ and if $\{a_{1}, a_{2}, \cdots , a_{n-1}\}$ is a strict
path. In this case we also say that $C$ is a cycle into $a_{1}$ or $\mathit{0}_{n}$ . A path $C$ from $a_{1}$ to $a_{n}$ or a
cycle into $a_{1}=a_{n}$ is called unilateml if $(a_{i+1}, a_{i})\not\in \mathcal{T}$ for all $i=1,$ $\cdots,$ $n-1$ . It is called
bilateral or a barter if $(a_{i+1}, a_{i})\in \mathcal{T}$ for all $i=1,$ $\cdots$ , $n-1$ .

Let $\{(A_{i}, \mathcal{T}_{i})\}_{i=1,\cdots.n}$ be a decomposition of a directed graph $(A, \mathcal{T})$ . Define two subsets
$B_{ij}$ and $L_{ij}$ of $A_{i}$ for each $i=1,$ $\cdots,$ $n$ .

$L_{ij}\equiv\{a\in A_{i}|(\exists b\in A_{j}) (a, b)\in \mathcal{T}_{ij}\}$ ,
$B_{ij}\equiv\{a\in A_{i}|(\exists b\in A_{j}) (a, b)\in \mathcal{T}_{ij}\cap \mathcal{T}_{ij}^{-1}\}$.

An element a in $L_{ij}$ will be called a transfer linkage of $A_{i}$ with respect to $A_{j}$ . Similarly,
an element $a$ in $B_{ij}$ will be called a $ba\hslash er$ linkage of $A_{i}$ with respect to $A_{j}$ . If, for any
given $i,j=1,$ $\cdots$ , $j,$ $a\in A_{i},$ $b\in A_{j}$ , there always exists a path from $a$ to $b$ , then the
directed graph is said to be $i7\mathrm{v}’ educible$ .

We would like to extend proposition 4 to the case of a transfer network with an
irreducible directed graph. This will be done in a manner corresponding to proposition 3
where the directed graph is decomposed into two parts that has a narrow barter linkage.
We now state a proposition which extends both proposition 3 and proposition 4 when the
directed graph is decomposed into two parts.

Proposition 5 Let $\mathcal{E}=\{(A, \mathcal{T}), e, (u_{a})_{a\in A\sigma},, P\}$ be a transfer network economy and
$\{(A_{i}, \mathcal{T}_{i})\}_{i=1,2}$ be a decomposition of $(A, \mathcal{T})$ . Assume each agent’s utility function $u_{a},$ $a\in$

$A_{j}$ be locally nonsatiated. Let $\tau$ be a feasible stochastic transfer. Then, $\tau$ is totally competi-
tive if and only if the followin9 conditions hold: $\tau$ is totally efficient, $A_{i}$ -totally competitive
for each $i=1,2$ and $B_{12}\cup B_{21}$ -competitive, provided that each $A_{i},$ $i=1,2$ , is a unilateral
cyde and each barter linkage is singleton.

Proof Assume $\tau$ is totally competitive. Then, it must satisfy the conditions by defini-
tion and proposition 2.

Conversely, suppose that the decomposition $\{(A_{i}, \mathcal{T}_{i})\}_{i=1,2}$ is such that each $A_{i}$ is a
unilateral cycle and each barter linkage is singleton. Let $B_{12}=\{a^{*}\}$ and $B_{21}=\{b^{*}\}$ .
Assume $\tau$ is totally efficient, $A_{\mathrm{i}}$-totally competitive for each $i=1,2$ and $B_{12}\cup B_{21^{-}}$

competitive. Suppose there existed another feasible stochastic transfer $\mu$ for which $\tau$ were
$C$-subcompetitive for some nonempty $C\subset A$ .

Since $\tau$ is $A_{1}$ -and $A_{2}$-totally competitive, by proposition 4 one must have $\{a^{*}, b^{*}\}\subset C$

and $C\cap A_{i}\neq\emptyset$ for each $i$ .

$\bullet$ Case 1: $C\cap A_{2}=\{b^{*}\}$
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Put $C_{1}=C\cap A_{1}$ . As $\tau$ is totally efficient, we must have $C_{1}\neq A_{1}$ . Since $A_{1}$ is
a unilateral cycle, $C_{1}$ is not a cycle and hence, there is $a”$ who cannot receive any
commodities from other agents under the transfer $\mu$ . Thus, under $\mu$ , no agents in
$C_{1}\backslash \{a^{*}\}$ can transfer endowment goods to other agents. This means that only agents
who would strictly prefer $\mu$ over $\tau$ are $a^{*}$ or $b^{*}$ . Since agents in $C_{1}\backslash \{a^{*}\}$ just consume
their own endowment goods, it follows that $\tau$ is $\{a^{*},b^{*}\}=B_{12}\cup B_{21}$ -subcompetitive
with respect to $\mu$ , contradicting to the hypothesis.

$\bullet$ Case 2: $\#(C\cap A_{2})\geq 2$

Put $C_{i}=C\cap A_{i}$ for $i=1,2$. As $\tau$ is totally efficient, we must have $C_{1}\neq A_{1}$ or
$C_{2}\neq A_{2}$ . Since both $A_{i}’ \mathrm{s}$ are unilateral cycles, $\mathrm{i}\mathrm{f}C_{i}\neq A_{i}$ , then the agents in $C_{i}\backslash \{a_{i}\}$ ,
where $a_{1}=a^{*}$ and $a_{2}=b^{*}$ , must consume only their endowments goods under the
transfer $\mu$ since $\tau$ is $A_{i}$-totally competitive. Without loss of generality, assume
$C_{2}\neq A_{2}$ . Then, since agents other than $a_{2}=b^{*}$ consume only their endowment
goods, arguments essentially reduces to the one in Case 1.

We thus proved that $\tau$ must be totally competitive. 1

The above proposition 5 essentially shows that even when the entire graph cannot be
decomposed in a perfect manner, when a transfer network economy is decomposed into
parts, the competitiveness of the entire part simply reduces to the competitiveness of
each ‘almost’ independent part provided that the linkage between the decomposed parts
is ‘narrow’ in an appropriate sense.

4 Competitive Stochastic bansfers in the Wicksell
biangle plus a Simple Barter

4.1 A further specification

Given a transfer network economy $\mathcal{E}=\{(A, \mathcal{T}), e, (u_{a})_{a\in A}, \sigma,P\}$ , we are interested in
giving a more specific characterization of totally competitive stochastic transfers. For
this purpose, we shall go back to a very specific model of the Wicksell $\mathrm{t}\mathrm{r}\mathrm{i}\mathrm{a}\mathrm{n}_{\mathrm{o}}\sigma 1\mathrm{e}$ plus a
simple barter which was presented in the subsection 3.4. Thus, throughout this section
we take the directed $0\sigma \mathrm{r}\mathrm{a}\mathrm{p}\mathrm{h}$ to be given by the following $(A,\mathcal{T})$ :

$\bullet A=\{a_{1},a_{2}, a_{3}, a_{4}\}$

$\bullet$ $\mathcal{T}=\{(a_{1}, a_{2}), (a_{2}, a_{3}), (a_{3}, a_{1}), (a_{3}, a_{4}), (a_{4}, a_{3}), (a_{1}, a_{1}), (a_{2}, a_{2}), (a_{3}, a_{3}), (a_{4}, a_{4})\}$

The transfer network economy $\mathcal{E}=\{(A, T))e, (u_{a})_{a\in A}, \sigma,P\}$ is further specified by let-
ting:

$\bullet a_{i}=i$ , $i=1,$ $\ldots)4$

$\bullet L=R^{5}$

$\bullet e(i)=(0, \ldots, 1i, \ldots, 0)$

$\bullet$ $P_{1}=\{\Omega\},$ $P_{2}=\{S, F\},$ $Pr(S)=\overline{\sigma}$
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$\bullet$ bansfer technology $\sigma=(\sigma_{1}, \sigma_{2})$ is given by:

-For $t=(2,3)$ , $(\forall\omega\in\Omega)\sigma_{1}(\omega,t)=\chi_{S}(\omega)$ .
-For all other $t\in \mathrm{T},$ $(\forall\omega\in\Omega)\sigma_{1}(\omega,t)=1$ .
-For all $t\in \mathrm{T},$ $(\forall\omega\in\Omega)\sigma_{2}(\omega,t)=\rho$.
$-1> \overline{\sigma}>\rho\geq\frac{1}{2}$

$\bullet$ We $\mathrm{s}\mathrm{p}\mathrm{e}\mathrm{c}\mathrm{i}6^{r}$ the agents’ utilities as follows.

$u_{1}(x)$ $=$ $\ln(x_{1}+\beta x_{3})$

$u_{2}(x)$ $=$ $\ln(x_{2}+\beta x_{1})$

$u_{3}(x)$ $=$ $\ln(x_{3}+\beta x_{2}+\psi x_{4})$

(4.3)
$u_{4}(x)$ $=$ $\ln(x_{4}+\varphi x_{5})$

with $\beta>\max\{\overline{\sigma},\rho^{-1}\}\iota,$ $0<\varphi\psi<1$ .

Here, goods received in trade are “better” substitutes for endowment goods for essential
participants 1,2,3. Agent 4 considers agent $3’ \mathrm{s}$ good to be a “worse” substitute for his
own endowment good, and agent 3 c.onsiders $4’ \mathrm{s}$ good to be a “worse” substitute for agent
$2’ \mathrm{s}$ good or even for his own endowment good.

4.2 Interpretation
Motivation of $\mathrm{i}\mathrm{n}\mathrm{t}\mathrm{r}\mathrm{o}\mathrm{d}\mathrm{u}\mathrm{c}\mathrm{i}\mathrm{n}_{\mathrm{o}}\sigma$ a model described in the previous subsection 4.1 is discussed
in [2] or [3]. Here, let us $0\sigma \mathrm{i}\mathrm{v}\mathrm{e}$ a brief description of an interpretation of the model in an
economic context.

It is a model of a network or an arrangement of transactions that involve a risky
transfer of assets. Transactions are generated endogenously. There is a risk in asset
transfers and one is concerned with the question of optimal risk management in such
a network. Assets may well be usual commodities and not limited to financial assets.
Some specific questions $\mathrm{r}\mathrm{e}_{\mathrm{o}}\sigma \mathrm{a}\mathrm{r}\mathrm{d}\mathrm{i}\mathrm{n}_{\mathrm{o}}\sigma$ risk management in a network of transactions are the
following. If there is some risk of failure in a transfer from one $\mathrm{p}\mathrm{a}\mathrm{I}\mathrm{t}\mathrm{y}$ to another, should the
transfer be done through that arrangement? If so, then what considerations are relevant
to determining whether third parties ought to share that risk? Are there conditions under
which the $0\sigma \mathrm{e}\mathrm{n}\mathrm{e}\mathrm{r}\mathrm{a}\mathrm{l}$ public or the government (in the case of a private arrangement) ought
to bear some risk and, if so, what level of compensation would it be appropriate for them
to receive? One can address these questions by analyzing a schematic, formal} model of a
stochastic transfer introduced above. The particular model of the Wicksell triangle plus
a simple barter has been motivated as a simplest model to analyze the questions posed.

Suppose that our task is to formulate a model of a transaction that involves a risky
asset transfer. The model should be rich $\mathrm{e}\mathrm{n}\mathrm{o}\mathrm{u}_{\mathrm{o}}\sigma \mathrm{h}$ to describe such a transaction $\mathrm{r}\mathrm{e}\mathrm{c}\mathrm{o}_{\mathrm{o}}^{\sigma}\mathrm{n}\mathrm{i}\mathrm{z}-$

ably, but simple enough to be analytically tractable. Consider what $\mathrm{s}\mathrm{o}\iota*\mathrm{o}\mathrm{f}$ model could
satisfy both the requirements of richness and simplicity. A transaction is a related set
of asset transfers between agents. An asset transfer involves two $\mathrm{a}_{\mathrm{b}}\sigma \mathrm{e}\mathrm{n}\mathrm{t}\mathrm{s}$ , the donor and
the recipient, but a transaction can general.ly involve more than two $\mathrm{a}_{\mathrm{o}}\sigma \mathrm{e}\mathrm{n}\mathrm{t}\mathrm{s}$ . Therefore,
at the very least, a model of a transaction $\mathrm{i}\mathrm{n}\mathrm{v}\mathrm{o}\mathrm{l}\mathrm{v}\mathrm{i}\mathrm{n}_{\mathrm{o}}\sigma$ a risky transfer should include three
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$\mathrm{a}_{\mathrm{o}}\sigma \mathrm{e}\mathrm{n}\mathrm{t}\mathrm{s}$ , so that a distinction can be drawn between a participant in the broad transaction
and a participant (that is, the donor or the recipient) in the specific transfer where the
risk occurs. In order for the third-party participant in the transaction –that is, the
participant who is neither the donor nor the recipient of the risky transfer–to be essen-
tial to $\mathrm{m}\mathrm{a}\mathrm{k}\mathrm{i}\mathrm{n}_{\mathrm{o}}\sigma$ a mutually beneficial transaction, there should be no “double coincidence
of wants” between the donor and the receiver. This consideration suggests modeling the
three participants as a “Wicksell triangle.”

There is a distinction between two types of third party (or potential third party) that a
good model ought to capture. A $\mathrm{t}\prime \mathrm{h}\mathrm{i}\mathrm{r}\mathrm{d}$ party to risky transfer in a Wicksell triangle might
be intrinsically necessary in the sense that the donor and recipient of the risky transfer
would have no double coincidence of wants, even if the transfer did not involve risk. For
characterizing the differences between the roles of these two types of third parties, a four-
trader model (including both an intrinsic third party and a trader whose only involvement
would be to share risk) can be useful. On the basis of these considerations, one is lead
to the four-agents model of the Wicksell triangle plus a simple barter, where $\mathrm{a}_{\mathrm{o}}\sigma \mathrm{e}\mathrm{n}\mathrm{t}1$

is aesumed to be essential to a mutually beneficial transaction but that agent 2 is the
donor and $\mathrm{a}_{\mathrm{o}}\sigma \mathrm{e}\mathrm{n}\mathrm{t}3$ is the recipient of the risky transfer. The attributes of agent 4, who
constitutes to be the potential partner of the essential participants, is specified in such a
way that agent 4 can only participate in a risk-sharing capacity. This should be clearly
seen from the specification of the agents’ utilities in (4.3).

4.3 Some notation
Given a stochastic transfer $\tau$ , we shall write for convenience

$\tau^{1}(\omega, t_{1}, t_{2})$ $=$ $\{$

$\tau_{i}^{1},$ $i=i_{1}$ for $t_{1}=1,2,4$

$\tau_{3}^{1}$ for $t_{1}=3,$ $t_{2}=1$

$\tau_{5}^{1}$ for $t_{1}=3,$ $t_{2}=4$

for all $\omega\in\Omega$ ,

$\tau^{2}(\omega. ’ t_{1}, t_{2})$

$=$ $\{$

$\tau_{i}^{C},$ $i=t_{1}$ for $t_{1}=1,2,4$

$\tau_{5}^{C}\tau_{3}^{C}$

for $t_{1}=3,$ $t_{2}=1$

for $t_{1}=3,$ $t_{2}=4$

for $\omega\in C\in P_{2}$ .
When a stochastic transfer $\tau$ is clear from the context, we may write for simplicity

$C_{i}^{S}=$ $1-\tau_{i}^{1}-\tau_{i}^{S}+a_{i-1}(\tau_{i-1}^{1}+\rho\tau_{i1}^{S})$ ,
$C_{i}^{F}$ $=$ $1-\tau_{\mathfrak{i}}^{1}-\tau_{i}^{F}+a_{i-1}(\tau_{i-1}^{1}+\rho\tau_{i-1}^{F})$ (4.4)

for $i=1,2,4$ where $i-1=3$ for $i=1$ and $i-1=5$ for $i=4$, and $a_{i}=\beta$ for $i=1,2,3$ ,
$a_{4}=\gamma$ , and $a_{5}=\varphi$ . For $i=3$ , we have

$C_{3}^{S}=$ $1-\tau_{3}^{1}-\tau_{3}^{S}+\beta(\tau_{2}^{1}+\rho\tau_{2}^{S})-\tau_{\overline{\mathrm{Q}}}^{1}-\tau_{5}^{S}+\gamma(\tau_{4}^{1}+\rho\tau_{4}^{S})$ ,
$C_{3}^{F}$ $=$ $1-\tau_{3}^{1}-\tau_{3}^{F}+\beta\rho\tau_{2}^{F}-\tau_{5}^{1}-\tau_{5}^{F}+\gamma(\tau_{4}^{1}+\rho\tau_{4}^{F})$ . (4.5)
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$C_{i}^{E}$ is interpreted ae “real” consumption level of agent $i$ in event $E$ in the sense that it
directly determines $i’ \mathrm{s}$ utility level in event $E\in P_{2}$ .

Given a stochaetic transfer $\mu$ , a net transfer gap of agent $i$ is defined by:

$g_{i}( \mu)=1-\mu_{i}^{1}-\chi\langle 3\}\mu_{5}^{1}-\max\{\mu_{i}^{S}+\chi\{3\}\mu_{5}^{S},\mu_{i}^{F}+\chi_{\{3\}}\mu_{5}^{F}\}$ .

It represents the maximal amount that agent $i$ can further transfer to other agents.
We may view the Wi&sell triangle as a transfer system, in which case we may refer to

the agents belonging to the Wicksell triangle as essential participants to the system and
$\mathrm{a}_{\mathrm{o}}\sigma \mathrm{e}\mathrm{n}\mathrm{t}4$ as the inessential participant. Then, the amount $g_{i}(\mu)$ is the maximal amount
that agent $i$ can further transfer to other agents including the inessential participant.
Hence, if we define transfer gap $\overline{g}_{i}(\mu)$ by $\mathrm{s}\mathrm{e}\mathrm{t}\mathrm{t}\mathrm{i}\mathrm{n}_{\mathrm{o}}\sigma$

$\bullet$ $\overline{g}_{i}(\mu)=g_{i}(\mu)$ for $i=1,2$ , and

$\bullet\overline{g}_{3}(\mu)=1-\mu_{3}^{1}-\max\{\mu_{3}^{S},\mu_{3}^{F}\}$ ,

then $\overline{g}_{i}’ \mathrm{s}$ represent the maximal amount that agent $i$ can further transfer to other agents
among essential participants.

4.4 Assumption on parameter values
We shall require conditions which guarantee to generate nontrivial stochastic transfer
in the given transfer network economy $\mathcal{E}=\{(A, \mathcal{T}),e, (u_{a})_{a\in A}, \sigma,P\}$ . We assume the
following conditions on parameter values:

$\bullet$ $\varphi\gamma>(\frac{1-\overline{\sigma}}{\rho})\frac{1}{1-\rho}$ , and

$\bullet\beta\rho>\sqrt[3]{2},$ $\rho>\sqrt[3]{2}/2$ .

The first inequality is satisfied, if, for example, $\varphi\gamma>0.63$ when $\overline{\sigma}=0.9$ and $\rho=0.8$ .
It is also satisfied whenever $\varphi\gamma>r^{\overline{\sigma}\rho}$ where

$r^{\overline{\sigma}\rho} \equiv(\frac{1-\overline{\sigma}}{\overline{\sigma}})(\frac{\rho}{1-\rho})$

The second and the third inequalities are to ensure that second round transfers are
not too costly to make such transfers.

4.5 Specific results
Finally, let us present two specific results concerning the efficiency and optimality prop-
erties of stochastic transfers in the model of the present section which have been proved
elsewhere (see, e.g., [2]). These properties are stated in terms of total competitiveness of
transfers.
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Proposition 6 A totally competitive stochastic tmnsfer $\mu$ always specifies $state\sim$ contin-
gent tmnsfers. A typical totally competitive stochastic transfer $\mu$ satisfies:

$\mu_{i}^{1}>0$ for $i=1,2,3,5,$ $\mu_{4}^{1}=0$ ,
$\mu_{1}^{F}>0,\mu_{2}^{F}>0,\mu_{3}^{F}>0,\mu_{4}^{F}>0,\mu_{5}^{F}=0$ ,
$\mu_{1}^{S}=\mu_{3}^{S}=\mu_{4}^{S}=\mu_{5}^{S}=0,\mu_{2}^{S}>0$ ,

in which case we have:

$\frac{C_{2}^{F}}{C_{2}^{S}}$ $=$ $\frac{C_{3}^{F}}{C_{3}^{S}}=r^{\overline{\sigma}\rho}$

$\frac{C_{1}^{F}}{C_{1}^{S}}$ $\geq$ $( \frac{1-\overline{\sigma}}{\overline{\sigma}})\frac{1}{1-\rho}>r^{\overline{\sigma}\rho}$

vrith equality holding when $g_{1}(\mu)>0$

$\frac{C_{4}^{F}}{C_{4}^{S}}$ $=$ $\frac{1-\overline{\sigma}}{\overline{\sigma}}(\frac{1}{\varphi\gamma\rho(1-\rho)}-1)>(\frac{1-\overline{\sigma}}{\overline{\sigma}})\frac{1}{1-\rho}$

One may note the extent to which $\mathrm{a}_{\mathrm{o}}\sigma \mathrm{e}\mathrm{n}\mathrm{t}\mathrm{s}$

’ consumptions that a typicaJ totally compet-
itive stochastic transfer induces are state contingent. Given a typical totally competitive
stochastic transfer as in the $\mathrm{b}\mathrm{e}\mathrm{g}\mathrm{i}\mathrm{n}\mathrm{n}\mathrm{i}\mathrm{n}_{\mathrm{o}}\sigma$ of the statement of the proposition above, for
$\mathrm{a}_{\mathrm{o}}\sigma \mathrm{e}\mathrm{n}\mathrm{t}2$ and agent 3 the consumption level in event $F$ relative to that in event $S$ is $r^{\overline{\sigma}\rho}$ ,
which is less than 1 but approaches 1 as the value of $\rho$ becomes closer to $\overline{\sigma}$. This may be
interpreted to say that the failure of receipt by agent 3 is compensated by other agents
by the factor of $(\rho/(1-\rho))-1$ . $\mathrm{A}_{\mathrm{o}}\sigma \mathrm{e}\mathrm{n}\mathrm{t}2$ is as responsible as agent 3 for the loss as his
relative consumption level in event $F$ is reduced to the level of agent 3. Agent 1 in turn
compensates agent 2 but extent to which he joins in the compensation is less than that
of agent 2 so that his relative consumption in event $F$ exceeds $r^{\overline{\sigma}\rho}$ . It is very instructive
to note that agent 4 also participates in this compensation scheme but extent to which
he does compensate agent 3 is much less than those of other agents in the sense that his
relative consumption level in event $F$ is higher than those of all the essential participants.

Proposition 7 Let $\mu$ be a totally competitive stochastic tmnsfer. Then:

1. At least one essential participant must be sending all his endowment to other agents
in some event. That $is_{j}$

$(\exists i\in\{1,2,3\})g_{\mathfrak{i}}(\mu)=0$ .

2. Suppose that agent 3 is not sending all of his endowment to other essential panici-
pants so that $\overline{g}_{3}(\mu)>0$ . Then, $\mu$ is a totally competitive stochastic transfer if and
only if agent $S$ is making a transfer to agent 4 either by the amount of his transfer
gap or by the amount of ltfeasibility bound given by

$v( \varphi\gamma,\overline{\sigma}, \rho,\beta)=\frac{(1-\overline{\sigma})(1-\varphi\gamma\rho(1-\rho))}{\beta[\varphi\gamma\rho(1-\rho)-(1-\overline{\sigma})]}$ ,
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whichever is smdler, $i.e.$ ,

$\mu_{5}^{1}=\min\{\overline{g}_{3}(\mu))v(\varphi\gamma,\overline{\sigma},\rho,\beta)\}$,

and agent 4 in $tum$ is mahng a state contingent transfer in event $F$ at most the
amount given by

$\tau_{4}^{F}=(\frac{\varphi\gamma\rho(1-\rho)-(1-\overline{\sigma})}{\overline{\sigma}\varphi\gamma\rho(1-\rho)})(1+\beta\tau_{5}^{1})$ . (4.6)

The first part of the proposition 7 is due to our specification of preferences of essential
participants that they prefer the endowment of another agent to his own. The second part
results from two factors. One is that a totally competitive stochastic transfer in general
specifies positive second round transfers in both events $F$ and $S$ as well as a positive
first round state non-contingent transfer from agent 2 to agent 3. This ensures agent $3’ \mathrm{s}$

consumption in event $F$ relative to that in event $S,$ $C_{3}^{F}/C_{3}^{S}$ , to be given by $r^{\overline{\sigma}\rho}$ . Second
is that under this circumstance, the expected utility of both of the agents 3 and 4 can
be increased whenever first round state non-contingent transfer from 3 to 4 and second
round state contingent transfer in event $F$ from 4 to 3 can be increased. For a first round
state non-contingent transfer from 3 to 4, $\tau_{5}^{1}$ , the maximal amount that agent 4 would be
just willing to send to 3 is given by the amount shown in (4.6). For details, one is referred
to [2] and [3].
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