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Introduction

The study and classification of colored symmetrical patterns continues to be of interest

in color symmetry today. A meaningful analysis of colored symmetrical patterns involves the

symmetry group $G$ of the uncolored pattern as well as the symmetry group $K$ of the pattern

when it is colored. In certain instances, not all elements of $G$ permute the colors and we also

consider the subgroup $H$ of elements of $G$ which effect color permutations. This subgroup $H$

contains $K$ as a normal subgroup of elements of $H$ which fix the colors.

A coloring of a $\mathrm{s}\mathrm{y}\dot{\mathrm{m}}$mmetrical pattern may be perfect or non-perfect. Perfect colorings occur

whenever all the elements of $G$ permute the colors that is, $H=G$; otherwise we have non-

perfect colorings.

Perfect colorings have been studied extensively before in [9]. The problem however lies on

how to study non-perfect colorings systematicaUy. In the paper “A Ramework for Coloring

Symmetrical Patterns” by De Las $\mathrm{P}\mathrm{e}\tilde{\mathrm{n}}\mathrm{a}\mathrm{s}$ , Felix and $\mathrm{Q}\mathrm{u}\mathrm{i}\mathrm{l}\mathrm{i}\mathrm{n}\mathrm{g}\mathrm{u}\mathrm{i}\mathrm{n}[1]$, a framework was presented for

analyzing both perfect and non-perfect colorings. Moreover, using the framework, $\mathrm{a}\mathrm{U}$ colorings

of a symmetrical pattern were determined for which the elements of a given subgroup $H$ of the

$\mathrm{s}\mathrm{y}_{\mathrm{I}}\overline{\mathrm{n}}\mathrm{m}\mathrm{e}\mathrm{t}\mathrm{r}\mathrm{y}$ group $G$ of the uncolored pattern permute the colors and the elements of a given

subgroup $K$ of $G$ fix the colors. In this paper, we shed more light to the study of perfect and

non-perfect colorings by giving an alternative proof of this result. For the colorings obtained

using the framework, we also find the subgroup $H^{*}$ consisting of elements of $G$ permuting the

colors and the subgroup $K^{*}$ consisting of elements of $G$ fixing the colors. In [1], the case where

the index of $H$ in $G$ is a prime $p$ was considered. In this paper, we present an ad&tional

situation where the index of $H$ in $G$ is not prime. Specifically we look at the case where the

index of $H$ in $G$ is the smallest composite 4.

Setting for Coloring Symmetrical Patterns

We first explain the setting in which we $\mathrm{w}\mathrm{i}\mathrm{U}$ color symmetrical patterns. Consider $G$ to

be the symmetry group of an uncolored pattern. We start with a fundamental domain for $G$
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and a subset $R$ of this fundamental domain. The set $\{g(R) : g\in G\}\mathrm{w}\mathrm{i}\mathbb{I}$ be referred to as the
$G$-orbit of $R$ . We $\mathrm{a}\epsilon \mathrm{s}\mathrm{u}\mathrm{m}\mathrm{e}$ that the given pattern can be obtained as the $G$-orbit of some subset
$R$ of a fundamental domain for $G$. Then the assignment $grightarrow g(R)$ defines a one-to-one

cor.respondence between the group $G$ and the $G$-orbit of $R$ . We then can label the set $g(R)$

by $g$ and by giving a color to each $g\in G$ , we give a color to each set $g(R)$ . This assignment

of colors is what we will call a coloring of the pattern. Since this results in a partition of $G$

wherein the elements assigned the same color form one set in the partition, a coloring may be

treated as simply a partition of the group $G$ or a decomposition of $G$ into non-empty disjoint

subsets. $\mathrm{H}\mathrm{e}\mathrm{n}\mathrm{c}\mathrm{e}_{)}$ a coloring of a pattern $\mathrm{w}\mathrm{i}\mathrm{t}\dot{\mathrm{h}}$ symmetry group $G$ will be equivalent to a partition

of $G$ or a decomposition of $G$ .
We give an example which $\mathrm{w}\mathrm{i}\mathrm{U}\mathrm{i}\mathrm{U}\mathrm{u}\mathrm{s}\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{t}\mathrm{e}$the above concepts. Consider the uncolored pattern

in Figure 1.1 which has symmetry group $G=D_{6}=$ { $e,$ $a,$ $a^{2},$ $a^{3},$ $a^{4},$ $a^{5},$ $b$ , ab, $a^{2}b,$ $a^{3}b,$ $a^{4}b,$ $a^{5}b$ }
where $a$ is a $60^{\mathrm{o}}$-counterclockwise rotation about the center of the hexagon and $b$ is a reflection
in the horizontal line through the center of the hexagon. If $R$ is the triangular region labeled “

$e$
”

in Figure 1.2, then for each $g\in G$ , the triangular region $g(R)$ is labeled “
$g$”. Let us partition

$G$ into the sets { $e,$ $a^{2},$ $a^{4}$ , ab, $a^{3}b,$ $a^{5}b$}, and $\{a, a^{3}, a^{5}, b, a^{2}b,a^{4}b\}$ , and assign white and black
to the first and second sets respectively. Consequently, we obtain the coloring in Figure 1.3.

In the analysis of a coloring) three groups play a significant role. These groups are:
$G=\mathrm{s}\mathrm{y}\mathrm{m}\mathrm{m}\mathrm{e}\mathrm{t}\mathrm{r}\mathrm{y}$ group of the uncolored pattern
$H=\mathrm{s}\mathrm{u}\mathrm{b}\mathrm{g}\mathrm{r}\mathrm{o}\mathrm{u}\mathrm{p}$ of elements of $G$ which permut$e$ the colors
$K=\mathrm{s}\mathrm{u}\mathrm{b}\mathrm{g}\mathrm{r}\mathrm{o}\mathrm{u}\mathrm{p}$ of elements of $G$ which ffi the colors

We will refer to $H$ as the subgroup of color transformations and $K$ as the symmetry group
of the colored pattern. The groups $G,$ $H,$ $K$ are such that $K\leq H\leq G$ . Given a color, its
stabilizer in $G$ will lie between $H$ and $K$. Since $H$ acts on the set $C$ of colors of the pattern,
this action induces a homomorphism $f$ : $Harrow A(C)$ , where $A(C\rangle$ is the group of permutations

of the set $C$ of colors of the pattern. For $h\in H,$ $f(h)$ is the permutation of the colors that $h$

induces. An element $h$ is in the kernel of $f$ if and only if $f(h)$ is the identity permutation, that

is, $h$ fixes all the colors. Thus the kernel of $f$ is $K$ and the resulting group of color permutations

$f(h)$ is isomorphic to $H/K$. Consequently, $K$ is a normal subgroup of $H$.

153



Enumerating Colorings of Symmetrical Patterns

In this part of the paper, we determine $\mathrm{a}\mathrm{U}$ colorings of an uncolored pattern with symmetry

group $G$ such that the elements of a given subgroup $H$ of $G$ permute the colors and the elements

of a given subgroup $K$ of $G$ fix the colors where $K\leq H\leq N_{G}(K)$ .

The assumptions we are to consider in determining the colorings will be as follows. Let $G$ be

a group and $H$ a subgroup of $G$ . Let $P$ be a partition of $G$ . Since a partition of $G$ corresponds

to a coloring, we refer to the set $P$ as the set of colors.

Deflnition 1 Let $G$ be a $\mathit{9}^{\Gamma oup_{J}}H\leq G,$ $Y$ a complete set of $\sqrt ght$ coset repoesentatives of
$H$ in $G, \bigcup_{i\in I}Y_{i}$ a decomposition of $Y$ and for each $i\in I,$ $J_{i}\leq H.$ Then the coloring or

decomposition $G= \bigcup_{i\in I}\bigcup_{h\in H}hJ_{i}Y_{i}$ or the partition of $G,$ $P=\{hJ_{i}\mathrm{Y}_{i} : i\in I, h\in H\}$ is called a

$(Y_{i}, J_{i})- H$ coloring.

Lemma 2 $A(Y_{i}, J_{i})-H$ coloring defines an $H$-invariant partition of $G$ .

Proof. If $G= \bigcup_{i\in I}^{t}\bigcup_{h\in H}hJ_{i}Y_{i}$ is a $(Y_{i}, J_{i})- H$ coloring, then it defines an $H$-invariant partition

since for $h’\in H,$ $h’G= \bigcup_{i\in I}\bigcup_{h\in H}h’hJ_{i}Y_{i}=\bigcup_{i\in I}\bigcup_{h\in H}hJ_{i}Y_{i}$ since premultiplication by $h’\in H$ simply

permutes the elements of H. $\blacksquare$

Also, if $K\leq G$ such that $H\leq N_{G}(K)$ and $K\leq J_{i}$ for each $i$ , then the elements of $K$ fix

each of the sets $hJ_{i}Y_{i}$ because if $k\in K$ then $khJ_{i}Y_{i}=hk’J_{i}Y_{i}=hJ_{i}Y_{i}$.

Lemma 3 If $P=\{P_{i} : i\in I\}$ is a $G$-invariant partition of the group $G$, then $P$ is the partition

of $G$ wnsisting of lefl cosets of some subgmup $S$ of G. This subgroup is the set in the partition

containing e.Moreover, the subg$m$up of elentents of $G$ fixing $P=\{P_{i} : i\in I\}$ is $core_{G}S$ .

Proof. Let $e\in P_{1}$ and $P_{i}$ an arbitrary element of $P$ . If $g\in P_{i}$ , then $g-1g\in g^{-1}P_{i}$ and $e\in$

$g^{-1}P_{i}$ . Thus, $g^{-1}P_{i}=P_{1}$ or $P_{i}=gP_{1}$ . This means that any element of $P,$ $P_{i}$ , can be expressed

as $gP_{1}$ for some $g\in P_{i}$ . If we can show that $P_{1}$ is a subgroup of $G$ , then we are done.Now,

$g\in G_{P_{1}}$ , the stabilizer of $P_{1}$ under left multiplication by elements of $G\Leftrightarrow gP_{1}=P_{1}\Leftrightarrow g\in P_{1}$

because $e\in P_{1}$ . Thus, $P_{1}$ is the stabilizer of $P_{1}$ and $P_{1}$ is a subgroup of $G$ .

If we consider $a\in G$ , and take any $P_{i}$ of $P$ where $P_{i}=gP_{1}$ for some $g\in P_{i},$ $a$ fixes $P_{i}=gP_{1}$

or $a(gP_{1})=g(P_{1})$ if and only if $(g^{-1}ag)P_{1}=P_{1}$ so that $g^{-1}ag\in P_{1}$ and $a\in gP_{1\mathit{9}^{-1}}$ . Thus the

subgroup of elements of $G$ fixing the colors in $core_{G}P_{1}$ . $\blacksquare$
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Lemma 4 Let $G$ be a $group_{f}X$ a non-empty subset of $G$ and $K$ a subgroup of G. Then

$kX=X$ for all $k$ in $K$ if and only if $X$ is a union of right cosets of $K$ in $G$ .

$\mathrm{P}\mathrm{r}o$of. Assume $kX=X$ for all $k$ in $K$ . Then $X= \bigcup_{x\in X}\{x\}$ is contained in $\bigcup_{\varpi\in X}I\mathrm{f}x$ . Now

$a \in\bigcup_{x\in X}Kx$ implies $a=kx$ for some $k\in K$ and $x\in X$ . But $kx\in kX=X$ . Therefore $a\in X$ .
Hence $X= \bigcup_{x\in X}Kx$ .

On the other hand, if $X$ is a union of right cosets of $K$ in $G$ , say $X= \bigcup_{g\in A}I\mathrm{f}g$ , where $A$ is a

subset of $G$, then $kX= \bigcup_{g\in A}kKg=\bigcup_{g\in A}Kg=X$. $\blacksquare$

Theorem 5 Let $G$ be a group and $H$ a subgroup of G. If $P$ is an $H$-invariant partition of $G$,
then $P$ corresponds to a decomposition of $G$ in the $fomG= \bigcup_{i\in Ih}\bigcup_{\in H}hJ_{i}Y_{i}$ where $\bigcup_{i\in I}Y_{i}=Y$ is a

complete set of right coset representatives of $H$ in $G$ and $J_{i}\leq H$ for every $i\in I$ . If in addition
$K\leq H$ and $K$ fixes the elements of $P_{f}$ then $K\leq J_{i}$ for every $i\in I$ .

Proof. Since $P$ is an $H$-invariant partition of $G,$ $H$ acts on $P$ by left multiplication. Consider

the orbits under the action of $H$. Let $C_{i}$ be a color in the $i\mathrm{t}\mathrm{h}$ orbit. Moreover, let $J_{i}$ be

the stabilizer in $H$ of $C_{i}$ so that $J_{i}C_{i}=C_{i}$ . By Lemma 4, $C_{i}$ is a union of right cosets of
$J_{i}$ , say $C_{i}=J_{i}Y_{i}$ where $Y_{i}$ is a set consisting of one representative for each right coset of $J_{i}$

contained in $C_{i}$ . Hence the $i$th orbit is the set $\{hJ_{i}Y_{i} : h\in H\}$ . So $G= \bigcup_{i\in Ih}\bigcup_{\in H}hJ_{i}Y_{i}$ . Note that

$\bigcup_{h\in H}hJ_{i}\mathrm{Y}_{i}=(\bigcup_{h\in H}hJ_{i})\mathrm{Y}_{i}=H\mathrm{Y}_{i}$ so that $G= \bigcup_{i\in I}HY_{i}$ . This implies that $Y= \bigcup_{i\in I}Y_{i}$ is a complete

set of right coset representatives of $H$ in $G$ . If $K\leq H$ and $K$ fixes all elements of $P$ then $K$

fixes $C_{i}$ . This means that $K\leq J_{i}$ . $\blacksquare$

The above theorem characterizes all partition\S of a group $G$ which are invariant under

multiplication on the left by elements of a subgr$o\mathrm{u}\mathrm{p}H$ of $G$ and whose elements are left fixed

by multiplication on the left by elements of a subgroup $K$ of $H$. It should be mentioned that

distinct complete sets of coset representatives of $H$ in $G$ may give rise to the same partition.

This situation is addressed in [1].

The Subgroup $\mathrm{H}^{*}$ Permuting the Colors and the Subgroup $\mathrm{K}^{*}$ Fixing the Colors

Based on the previous theorem, we have determined all colorings of an uncolored pattern

with symmetry group $G$ such that the elements of a subgroup $H$ of $G$ permute the colors and the
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elements of a subgroup $K$ of $G$ fix the colors. The next step is to actually determine for thes$e$

colorings the subgroup $H^{*}$ consisting of elements of $G$ permuting the colors and the subgroup

$K^{*}$ of elements of $G$ fixing the colors. At this point, all we can say is that $H$ is contained in

$H^{*}$ and $K$ is $\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{t}\mathrm{a}\mathrm{i}\mathrm{n}\dot{\mathrm{e}}\mathrm{d}$ in $K^{*}$ .
$\mathrm{f}\mathrm{n}$ the next theorem, given a $(Y_{i}, J_{i})-H$ coloring, we establish the condition for determining

when a coloring is perfect, that is, $H^{*}=G$ and for the special case where $[G:H]=p$ we

compute for $K^{*}$ .

1. The subgroup $\mathrm{H}^{*}$ permuting the colors.

Theorem 6 Let $G$ be a gmup, $H\leq G,$ $Y$ a complete set of $r\dot{\tau}ght$ coset representatives of $H$

in $G_{f} \bigcup_{i\in I}Y_{i}$ a decomp.osition of $Y$ and for each $i\in I,$ $J_{i}\leq H$ . If $G= \bigcup_{\dot{\iota}\in Ih}\bigcup_{\in H}hJ_{i}Y_{i}$ is a given

$(\mathrm{Y}_{i}, J_{i})arrow H$ coloring, then this $colo\sqrt ng$ is perfect if and only if $J_{1}Y_{1}$ is a subgroup of $G$ and for
each $i,$ $i\in I$ there is a $y_{\dot{\mathrm{t}}}\in Y_{i}$ such that $y_{i}J_{1}Y_{1}=J_{i}Y_{i}$ .

Proof. Assume the coloring is perfect.. Then each set $hJ_{i}\mathrm{Y}_{i}$ is a left coset of some subgroup

of $G$ . This subgroup is the set $hJ_{i}Y_{i}$ containing $e$ which is $J_{1}Y_{1}$ . Therefore, $J_{1}Y_{1}$ is a subgroup

of $G$ . Let $y_{i}\in Y_{i}$ . Then $y_{i}J_{1}Y_{1}$ is one of the sets $hJ_{i}Y_{i}$ since the coloring is perfect. This set

is $J_{i}Y_{i}$ since $y_{i}$ is in this set. Hence $y_{i}J_{1}Y_{1}=J_{i}Y_{i}$ . Conversely, assume $J_{1}\mathrm{Y}_{1}$ is a group of $G$

and for each $i\in I$ there is a $y_{i}\in Y_{i}$ such that $y_{i}J_{1}\mathrm{Y}_{1}=J_{i}Y_{i}$ . Then $hJ_{i}Y_{i}=hy_{i}J_{1}Y_{1}$ is a left

coset of the subgroup $J_{1}Y_{1}$ . Hence the coloring is perfect since $\mathrm{a}\mathrm{U}$ elements of $G$ permute the

left cosets. $\blacksquare$

The next theorem looks at $H^{*}$ when there is only one orbit of colors under the action of $H$.

$\mathrm{T}\mathrm{h}\mathrm{e}\mathrm{o}\mathrm{I}^{\cdot}\mathrm{e}\mathrm{m}7$ Let $G$ be a group, $H\leq G,$ $Y$ a complete set of right coset representatives of $H$

in $G,$ $e\in \mathrm{Y}$, and $J\leq H.$ Let $P=\{hJY:h\in H\}$ be a colo$7\dot{\mathrm{t}}ng$ and $H^{*}$ the subgmup of $G$

coruisting of all elements of $G$ which pennute the colors. Let $Y’\subseteq Y$.
(i) If $H^{*}=HY^{l}$ then $y’JY=JY$ for all $y’\in Y’$ .

(ii) If $y’\in N_{G}(H)$ and $y’JY=JY$ for all $y’\in Y’$ then $HY’\subseteq H^{*}$ .

Proof. (i) Assume $H^{*}=HY’$ . Since $y’\in Y^{l}\subseteq HY’$ , then $y’$ permutes the sets in $P$ and $y’JY$

is the set in $P$ containing $y’$ . This set is $JY$, hence $y’JY=JY$.

156



(ii) Assume $y’\in N_{G}(H)$ and $y’JY=JY$ for all $y’\in Y’$ . We show $y’$ permutes the sets in
$P$. Now, $y’\in N_{G}(H)$ implies that if $h\in H$, there is an $h’\in H$ such that $y’h=h^{l}y^{l}$ . Hence

$y’hJY=h’y’JY=h’JY$. Thus for all $y’\in Y’,$ $y’$ permutes the elements in $P$. Since $H$ permutes

the elements in $P$, so does $HY’$ . Therefore, $HY’\subseteq H$. $\blacksquare$

$\mathrm{r}_{\mathrm{n}}$ the following corollary, we specialize Theorem 7 to the case where the index of $H$ in $G$ is
4.

Corollary 8 Let $G$ be a group, $H\leq G$ such that $[G : H]=4,$ $\mathrm{Y}=\{y_{1}=e_{)}y_{2}, y_{3}, y_{4}\}a$

complete set of right coset repoesentatives of $H$ in $G$ and $J\leq H$. Suppose $P=\{hJY : h\in H\}$

is the given coloring or $part_{t}’tion$ .
(i) The colo$r\dot{\mathrm{v}}ng$ is perfect if and only if $JY$ is subgmup of $G$ .
(ii) If $H^{*}\neq G$ then for $i=2,3,4,$ $H^{*}=H\cup Hy_{i}$ if and only if $H\cup Hy_{i}$ is a subgroup of

$G$ and $y_{i}JY=JY$. Otherwise $H^{*}=H$ .

Proof. (i) This is a consequenoe of Theorem 6 where $JY=J_{1}Y_{1}$ .
(ii) This $\mathrm{f}\mathrm{o}\mathbb{I}\mathrm{o}\mathrm{w}\mathrm{s}\mathrm{f}\mathrm{i}:\mathrm{o}\mathrm{m}$ Theorem 7 since $H$ is a normal subgroup of $H\cup Hy_{i}=H\{e,y_{i}\}$ when

$H\cup Hy_{i}$ is a subgroup of G. $\blacksquare$

2. The subgroup $\mathrm{K}^{*}$ flxing the colors

Now that we have established for certain cases the condition for determining $H^{*}$ , the sub-
group of $G$ consisting of elements of $G$ that permute the colors of the corresponding colored
pattern, we can give for these cases the formulas for $K^{*}$ , the subgroup of $G$ consisting of the
elements of $G$ fixing the colors. Notice that $I\mathrm{f}^{*}$ is a subgroup of $H^{*}$ so that in $\mathrm{d}\mathrm{e}\mathrm{t}\mathrm{e}\mathrm{r}\mathrm{m}\mathrm{i}_{\mathrm{I}1}\mathrm{i}\mathrm{n}\mathrm{g}K^{*}$

we consider only the elements of $H^{*}$ .

Theorem 9 Let $G$ be a group, $H\leq G$ such that $[G:H]=p$ where $p$ is prime, $Y$ a complete set

of right coset representatives of $H$ in $G, \bigcup_{i=1}^{t}Y_{i}$ a decomposition $ofY$ and for each $i\in\{1,2, \ldots., t\}$ ,
$J_{i}\leq H$ . Suppose $G= \bigcup_{i=1}^{t}\bigcup_{h\in H}hJ_{i}Y_{i}$ is a given $(Y_{i}, J_{i})- H$ colonng.

(i) If the $colol\dot{\tau}ng$ is perfect then $K^{*}=core_{G}(J_{1}Y_{1})$ .
(ii) If the colo$?^{\backslash }ing$ is non-perfect then $K^{*}= \bigcap_{i\in I}core_{H}(J_{i})$ .

Proof. (i) If the coloring is perfect, then the given ( $Y_{i}J_{i}\ranglearrow H$ coloring partitions $G$ into the sets

of left cosets of $J_{1}Y_{1}$ in $G$ . It follows that $K^{*}=core_{G}(J_{1}\mathrm{Y}_{1})$ .
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(ii) On the other hand, if the coloring is non-perfect, then the subgroup $H^{*}$ permuting

the set of colors is $H$ since $[G:H]=p$ and $H\leq H^{*}\leq G$ implies $H^{*}=H$ or $H^{*}=G$ .
$\mathrm{T}\mathrm{h}\mathrm{u}\mathrm{s}_{)}$ in determining $K^{*}$ we consider only elements of $H$ . Let $a\in K^{*}$ . Then $ahJ_{i}Y_{i}=$

$hJ_{i}Y_{i}$ for $h\in H$ , for all $i\in\{1,2, \ldots, t\}$ . This implies that if $Y_{i}=\{y_{i_{1}},y_{i_{2}}, \ldots,y_{i_{f}}\}$ , then

$ahJ_{\dot{\iota}}y_{i_{1}}\cup ahJ_{1}.y_{i_{2}}\cup\ldots ahJ_{i}y_{\dot{\iota}_{\mathrm{r}}}=hJ_{iy_{i_{1}}}\cup hJ_{iy_{i_{2}}}\cup\ldots hJ_{i}y_{i_{f}}$ . Now $a\in H$ so that $ahJ_{\dot{\iota}}y_{i_{1}}\subseteq Hy_{i_{1}}$ ,

$ahJ_{iy_{i_{2}}}\underline{\subseteq}Hy_{i_{2}},$
$\ldots,$

$ahJ_{iy_{i_{r}}}\subseteq Hy;_{\tau}$ . Since $a$ fixes every color, then $a$ takes $hJ_{i}y_{i_{1}}$ to itself in

$Hy_{i_{1}},$ $hJ_{i}y_{i_{2}}$ to itself in $Hy_{i_{2}}$ and so on. Thus for $a\in K^{*}$ , we have $ahJ_{iy_{i_{\dot{f}}}}=hJ_{i}y_{i_{\mathrm{j}}}$ for $\mathrm{a}\mathrm{U}$

$i\in\{1,2, \ldots, t\},$ $j\in\{1,2, \ldots,r\}$ . But $ahJ_{iy_{i_{j}}}=hJ_{i}y_{i_{j}}$ implies $ah\in hJ_{i}$ or $a\in hJ_{i}h^{-1}$ for $h\in H$ .

That is, $a \in\bigcap_{h\in H}hJ_{i}h^{-1}=core_{H}J_{i}$ . Therefore $K^{*}\subseteq core_{H}(J_{i})$ . The proof of the inclusion

$\bigcap_{i\in I}core_{H}(J_{i})\subseteq K^{*}$ is straightforward. $\blacksquare$

Theorem 10 Let $G$ be a group, $J\leq H\leq G,$ $Y$ a complete set of righi coset representatives of
$H$ in $G$ containing $e$ and $Y’$ a subset of $Y$ containing $e$ . Let $P=\{hJY : h\in H\}$ be a partition

of G. If $H^{*}=HY’$ then $K^{*}=co7^{\cdot}e_{HY’}(JY’)$ .

Proof. Since $H^{*}=HY’$ , we limit our attention to $H^{*}$ . Now $H^{*}\cap JY=JY’$ and the partition

$P$ induces the partition $P^{*}=\{hJY’ : h\in H\}$ on $H^{*}$ . Since $P$ is $H^{*}$-invariant, it follows that

$P^{*}$ is $H^{*}$-invariant. Hence the induced coloring $P^{*}$ is a perfect coloring and $JY’$ is a subgroup

of $H^{*}$ . Correspondingly, the subgroup of $H^{*}$ fixing all the sets or colors in $P^{*}$ is $core_{H}\cdot(JY’)$ .

Consequently, this is also the subgroup of elements of $H^{*}$ which fix the sets in $P$, that is,

$K^{*}=core_{HY’}(JY’)$ . $\blacksquare$

Corollary 11 Let $G$ be a gmup, $H\leq G$ such that $[G : H]=4,$ $Y=\{y_{1}=e,y_{2},y_{3},y_{4}\}a$

compfete set of right coset repoesentatives of $H$ in $G$ and $J\leq H$. Suppose $P=\{hJY : h\in H\}$

is the given coloring or partition.

(i) If the coloring is perfect then $K^{*}=core_{G}(JY)$ .

(ii) If $H^{*}=H$ then $K^{*}=\omega re_{H}J$.

(iii) If $H^{*}=H\cup Hy_{i}$ then $K^{*}=core_{H\cup Hy}(:J\cup Jy_{i})$ for $i=2,3,4$.

Proof. We obtain (i), (ii) and (iii) by taking $Y’=Y,$ $\{e\}$ and $\{e,y_{i}\}$ in Theorem 10 respectively. $\blacksquare$

We conclude the section by looking at the following examples. An illustration of Corollary

11 is given below.
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Example 12 Let $G=D_{6}=$ { $e,$ $a,$ $a^{2},$ $a^{3},$ $a^{4},$ $a^{5},$ $b$ , ab, $a^{2}b,$ $a^{3}b,$ $a^{4}b,$ $a^{5}b$} and $H,$ $K$ subgroups of
$G$ given by $H=\{e,a^{2}, a^{4}\},$ $K=\{e\}$ .

Now $G=H\cup Hb\cup Ha\cup Hab$

$G=\{e, a^{2}, a^{4}\}\cup\{b, a^{2}b, a^{4}b\}\cup\{a, a^{3}, a^{5}\}\cup\{ab, a^{3}b, a^{5}b\}$ Among the possible $\mathrm{Y}’s$ are
$\{e, a^{3}, b, a^{3}b\}$ , { $e,$ $a$ , ab, $a^{4}b$ } , $\{e, a^{5}, a^{2}b, a^{3}b\}$ and $\{e, a, a^{4}b, a^{5}b\}$ .
We give some colorings $P=\{hJY:h\in H\}$ of the hexagon in Figuoe 2 such that the

elements of $H$ permute the colors and the elements of $K=\{e\}$ fix the colors. In the table

below, we give $H^{*}$ and $K^{*}$ as well as the $Y$ wed for each of the colorings. Note that for all

colorings $J=\{e\}$ so that $JY=Y$. We use the following notation: $w$ for white, $s$ for striped and
$b$ for black.

Example 13 Consider the colored pattems in Figures 3, 4, 5, $\theta_{J}7,\mathit{8}$ which $a7\epsilon$ assumed to

repeat over the entire plane. For all the $colo\Gamma ed$ pattems, the symmetry group $G$ of the pattems

with the colors disregarded is a hexagonal plane crystallographic group of type $p6m$ generated

by a, $b,$ $x$ and $y$ where $a$ is a $60^{\mathrm{o}}$ - counte$r\mathrm{c}$ lockwise rotation about the indicated point $P,$ $b$ is a

reflection in a horizontal line thmugh $P$ and $x,$ $y$ are tmnslations as indicated. These colored

patterns have been obtained by choosing the subgroups $H=<a,x,y>and$ $K=<a^{2},$ $x,\dot{y}>of$
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G. $H$ and $K$ are hexagonal plane crystallographic groups of types $p6$ and $p3$ respectively. $K$

is normal in $G$ so that $G=N_{G}(K)$ . Observe that the $color\cdot ings$ in Figuoe 7 and Figuoe 8 aoe

the only non-perfect colorings, that is, $H^{*}=H$ . Moreover, for these colonngs, $K^{*}=K$ . All

the other colo$7\dot{\mathrm{v}}ngs$ are $perfect_{f}$ so that $H^{*}=G$ , For the perfect colorings in Figuoes 3, 4, $\mathit{5}_{f}\theta$,

$K^{*}=H,$ $<a^{2},$ $b,x,y>,$ $<a^{2}$ , ab, $x,$ $y>and$ $K$ respectively. $<a^{2},$ $b,x,y>and$ $<a^{2}$ , ab, $x,y>$

are hexagonal plane crystallogmphic gmups of types $p31m$ and $p3m1$ respectively..
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