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1 Motivation
I have been studying distance-regular graphs since 1990. Distance-regular graphs are
also known as $P$-polynomial association schemes as there is a natural correspondence be-
tween them. Distance-regular graphs are defined to satisfy ideal regularity conditions, and
there are lots of excellent researches using the combinatorial regularity. (See for example
[10, 11, 17, 21].) Moreover, these developments in the study of combinatorial aspect of
distance-regular graphs have been successfully applied to develop the theory of association
schemes which are not necessarily $P$-polynomial ([12, 24, 25, 26]). On the other hand,
association schemes have both combinatorial and algebraic structures, it is natural to use
algebraic properties of the association scheme associated to each distance-regular graph.
However, besides the use of the integrality condition of multiplicities of eigenvalues of the
adjacency matrix, the only analysis successfully applied using the algebraic structures is
made under extra algebraic condition such as $Q$-polynomial property. I strongly feel the
need of the development of the study on the algebraic properties of association schemes
and their representation theory. As the combinatorial theory is developing with the com-
binatorial analysis of $P$-polynomial association scheme, which has the ideal combinatorial
structure among association schemes, I feel that it should be very important to study al-
gebraic properties and their representation theory of association schemes which have ideal
algebraic condition. $Q$-polynomial association schemes and balanced conditions which de-
fine $Q$-polynomial property of distance-regular graphs seem to be the structure we should
study first ([18, 19]).

In $1970’ \mathrm{s},$ $Q$-polynomial association schemes were defined as schemes ‘dual’ in a sense
to $P$-polynomial association schemes by P. Delsarte and they were studied in connection
with the design theory and the tight condition ([4]). In $1980’ \mathrm{s}$ , P. Terwilliger introduced
balanced conditions in order to describe the $Q$-polynomial properties of distance-regular
graphs ([22, 23]). He defined balanced condition and strongly balanced condition. He
showed that a distance-regular graph satisfies the balanced condition if and only if the
association scheme is $Q$-polynomial. In $1990’ \mathrm{s}$ , P. Terwilliger with the aid of his student
G. Dickie classified all distance-regular graphs with strongly balanced condition ([5, 6]).

These are all excellent results, but the general theory of $Q$-polynomial association
schemes and that of balanced conditions have not been much studied. For example,
we do not have many examples of $Q$-polynomial association schemes, which are not P-
polynomial. (Most of the classical $P$-polynomial association schemes are Q-polynomial
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as well.) We know neither a primitive $Q$-polynomial association scheme, which is not P-
polynomial, nor a class of $Q$-polynomial association schemes with unbounded diameter,
which is not $P$-polynomial. Moreover, though $Q$-polynomial association schemes satisfy
balanced condition but we have very few examples of association schemes with balanced
condition which are not $Q$-polynomial ([13]).

Balanced conditions can be defined for any finite set on the real Euclidean sphere. But
all examples we have are associated with association schemes. Is this always the case?

Finally, balanced conditions are originally defined on the real Euclidean sphere or they
are defined using a real primitive idempotent of a commutative association scheme. Is
it possible to $\mathrm{d}\mathrm{e}\mathrm{f}\mathrm{i}\mathrm{n}\mathrm{e}\backslash$ such a condition for Hernitian space or using a non-real primitive
idempotent. This is also connected to the problem to define the dual of distance-regular
digraphs. Distance-regular digraphs were studied in $1980’ \mathrm{s}$ and it was shown that besides
the coclique extension of a directed cycle, there is an upper bound of the number of classes
of the corresponding association schemes ([3, 14]). We may be able to define a little wider
class containing distance-regular digraphs, if we can successfully define nonsymmetric
balanced conditions.

I hope that this note serves to give a startpoint to study one of the problems listed
above.

2 Balanced Conditions
We start with a definition of representation diagrams.

Definition 1 Let X $=(X, \{\mathrm{B}\}_{0\leq i\leq d})$ be a commutative association scheme, and let
$E_{0},$ $E_{1},$

$\ldots,$
$E_{d}$ be its primitive idempotents. Let $q_{i,j}^{h}$ be the Krein parameters defined by:

$E_{i} \mathrm{o}E_{j}=\frac{1}{|X|}\sum^{d}q_{i,h}^{h}jEh=0^{\cdot}$

1. The representation diagram $D^{*}=D^{*}(\mathcal{X}, E)$ of $\mathcal{X}$ with respect to $E=E_{h}$ , is a
diagram with $\{0,1, \ldots, d\}$ as the vertex $\mathrm{s}\mathrm{e}\mathrm{t}_{\mathrm{S}}.\mathrm{u}\mathrm{C}\mathrm{h}$ that the adjacency is defined as
follows.

$i\sim j\Leftrightarrow E(^{t}E_{i^{\mathrm{O}}j}E)\neq O\Leftrightarrow q_{h,i}^{j}\neq 0$.
The adjacent pair $(i,j)$ is said to be an arc if $i\neq j$ and a loop if $i=j$ .

2. A representation diagram is said to be a representation graph if we do not consider
the directions of arcs nor loops.

Let $\mathcal{X}=(X, \{R_{i}\}_{0\leq i\leq d})$ be a finite set $X$ in a complex Hermitian space $C^{m}$ with the
inner product $<x,$ $y>=t\overline{x}y$ together with some relations on it:

$\emptyset\neq R_{i}\subset X\cross X,$ $i=0,1,$ $\ldots,$
$d$ .

We assume the following conditions.
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1. $\mathrm{S}_{\mathrm{P}^{\mathrm{a}\mathrm{n}}}(x)=C^{m}$ .

2. $R_{0}=\{(X, x)|X\in X\}$ .

3. $X\cross X=R_{0}\cup R_{1}\cup\cdots\cup R_{d}$ , (disjoint union).

4. ${}^{t}R=R_{i’}$ for some $i’\in\{0,1, \ldots, d\}$ , where $t\hslash=\{(x, y)|(y, x)\in R_{i}\}$ .

5. For $x,$ $y\in X$ , the inner product $<x,$ $y>=\gamma(i)$ depends only on $i$ such that
$(x, y)\in R_{i}$ .

Let $A_{i}\in Mat_{X}(C)$ defined by

$(A_{i})_{xy}=\{$
1 $(x, y)\in R$

$0$ otherwise.

$A_{i}’ \mathrm{s}$ are called adjacency matrices of the configuration $\mathcal{X}=(X, \{R_{i}\}_{0}\leq i\leq d)$ .

For $x,$ $y\in X,$ $0\leq i,j\leq d$ , let

$P_{i,j}(x, y)$ $=$ $\{z\in X|(x, z)\in R, (z, y)\in Rj\}$ ,
$P_{i,j}\overline{(x},y)$

$= \sum_{z\in P_{i,j}(x,y)}z=z\in x,()\in\sum_{x,zR_{i},(z,y)\in Rj}Z\in C^{m}$
.

The configuration $\mathcal{X}=(X, \{R_{i}\}_{0\leq i\leq d})$ (with $X\subset C^{m}$ ) is said to be real if $X\subset R^{m}$ .
Since $<x,$ $x>=\gamma(\mathrm{O}),$ $X$ can be embedded as a subset of the unit sphere $S^{m-1}$ , in this

case. Conversely if a finite subset $S$ is given in $S^{m-1}\subset R^{m}$ and

$\triangle=\{<x,y>|x, y\in X\}=\{1=\gamma(0\rangle,\gamma(1), \ldots, \gamma(d)\}$,

then $X$ together with $R_{i}=\{(x, y)|<x, y>=\gamma(i)\}$ with $i=0,1,$ $\ldots$ , $d$ define a configu-
ration $\mathcal{X}=(X, \{R\}_{0\leq i}\leq d)$ satisfying the conditions 1\sim 5 above. In this case, ${}^{t}R_{i}=R$

for every $i$ .

Definition 2 Let $\mathcal{X}=(X, \{R\}_{0\leq i}\leq d)$ be as above with $X\subset R^{m},$ $\mathrm{i}.\mathrm{e}$ , real.

1. $\mathcal{X}$ is balanced, if the following are satisfied.

(a) For every $0\leq i\leq d$ and $x\in X$ , there exists a constant $\alpha_{i}(x)\in R$ such that

$P_{i,i’}\overline{(_{X}},$ $X)=\alpha_{i}(X)x$ .

(b) For all $0\leq h,$ $i,j\leq d$ and $(x, y)\in R_{h}$ , there exists a constant $\alpha_{i,j}^{h}(x, y)\in R$

such that
$P_{i,j}\overline{(x},y)-Pj)\overline{(ix},$ $y)=\alpha_{i,j}^{h}(_{X},y)(x-y)$ .
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2. $\mathcal{X}$ is strongly bdanced, if for all $0\leq h,$ $i,j\leq d$ and $(x, y)\in R_{h}$ , there exist constants
$\beta_{i,j}^{h}(x, y),$ $\gamma_{i,j}^{h}(x, y)\in C$ such that

$P_{i,j}\overline{(X},$ $y)=\beta_{i}^{h}\dot{d}(X, y)X+\gamma_{i}^{h},j(x, y)y$ .

3. A balanced [resp. strongly balanced] set is said to be homogeneous if $\alpha_{i}(x)$ and
$\alpha_{i,j}^{h}(x, y)$ [resp. $\beta_{i,j}^{h}(x,$ $y)$ , and $\gamma_{i,j}^{h}(X,$ $y)$ ] can be chosen so that they depend only on
$i,j$ and $h$ .

Let $\mathcal{X}=(X, \{R\}_{0\leq i}\leq d)$ be a commutative association scheme, $V=CX$ and $E=E_{h}$

be a primitive idempotent. Then $E$ defines a projection on $V$ . If

$E=E_{h}= \frac{1}{|X|}i=0\sum dq_{h}(i)\mathrm{A}i$ ,

then the map $x\vdasharrow Ex$ is an injection if and only if $q_{h}(i)\neq q_{h}(0)$ for every $i\neq 0$ . Moreover,

$<Ex,$ $Ey>= \overline{(Ex)}Ey=E_{x,y}=\frac{1}{|X|}q_{h}(i)$ ,

whenever $(x, y)\in\underline{R_{i}}$ . Hence if we set $\hat{R}_{i}=\{(\hat{X}_{)}\hat{y})|(x, y)\in R\}$ for $i=0,1,$ $\ldots$ , $d$ , then
the configuration X $=(\tilde{X}, \{\tilde{R}_{t}\}_{0\leq i\leq d})$ satisfies the conditions above, where $\tilde{X}=\{Ex|$

$x\in X\}$ .
Moreover, if $E={}^{t}E=\overline{E}$ , then $\tilde{X}$ can be regarded as a subset of $ERX\subset RX$ . Hence

this configuration becomes real in this case. In particular, $\tilde{X}$ is a subset of a sphere of
radius $\sqrt{q_{h}(\mathrm{O})/|x|}=\sqrt{m/|X|}$, where $m$ is the dimension of the space $ERX$ .

In this way the configuration we defined above is naturally associated with the eigenspaces
of commutative association schemes.

Let Mat$x(C)$ denote the set of square matrices of size $|X|$ , whose rows and columns
are indexed by the elements of $X$ . For a matrix $M\in \mathrm{M}\mathrm{a}\mathrm{t}_{X}(c)$ and $x\in X,$ $x_{M}$ denotes
a diagonal matrix defined by $(x_{M})_{y,y}=M_{x_{)}y}$ .

P. Terwilliger obtained a beautiful theorem for the case when balanced set is defined
on the eigenspace of a commutative association scheme.

Theorem 1 (P. Terwilliger [22, 23]) Let $\mathcal{X}=(X, \{R\}_{0\leq i\leq}d)$ be a commutative asso-
ciation scheme and let

$E=E_{h}= \frac{1}{|X|}\sum_{0i=}^{d}qh(i)\mathrm{A}_{i}$

be a primitive idempotent of the Bose-Mesner algebra. Suppose $E={}^{t}E=\overline{E},$ $i.e,$. real.
Let $\hat{x}=Ex$ and $\hat{X}=\{\hat{x}|x\in X\}$ . Let $\hat{R}=\{(\hat{x},\hat{y})|(x, y)\in R_{i}\}$ for $i=0,1,$ $\ldots$ , $d.$ If
$q_{h}(i)\neq q_{h}(0)$ for all $i>0$ , then the following hold.

(1) The following are equivalent.
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(i) $\hat{\mathcal{X}}=(\hat{X}, \{\hat{R}_{t}\}_{0\leq i\leq d})$ is balanced.

(ii) $\hat{\mathcal{X}}=(\hat{X}, \{\hat{R}\}_{\mathrm{o}i\leq d}\leq)$ is balanced and homogeneous.

(iii) For some $x\in X$ , there exist constants $\alpha_{i,j}^{l}(x)\in Rsati\mathit{8}fying$ :

$A_{i}x_{E}A_{j}-Aj^{X}EAi= \sum_{0l=}^{d}\alpha_{i}l,j(x)(x_{E}Al-A_{l}x_{E})$ .

(iv) For every $x\in X$ , there $exi\mathit{8}t_{C}onStant\mathit{8}\alpha_{i,j}(lx)\in R\mathit{8}ati\mathit{8}fying$:

$\mathrm{A}_{i}x_{E}A_{j}-A_{j}x_{Ei}A=\sum_{l=0}d\alpha_{i}^{l},j(X)(XEAl-\mathrm{A}lxE)$ .

(v) The $repre\mathit{8}entati_{on}$ graph $D^{*}(\mathcal{X}, E)i\mathit{8}$ a tree.

(2) The following are equivalent.

(i) $\hat{\mathcal{X}}=(\hat{X}, \{\hat{R}_{i}\}_{0\leq i}\leq d)i\mathit{8}\mathit{8}trongly$ balanced.

(ii) $\hat{\mathcal{X}}=(\hat{X}, \{\hat{R}_{i}\}_{0\leq i}\leq d)$ is $homogeneou\mathit{8}ly_{\mathit{8}tly}rong$ balanced.

(iii) For some $x\in X$ , there exist $con\mathit{8}tant_{\mathit{8}}\beta^{l}i,j(X),$ $\gamma_{i,j}^{l}(X)\in R\mathit{8}atiSfying$ :

$A_{i}X_{E}A_{j}= \sum_{0l=}^{d}(\beta il,j(X)x_{E}A_{l}+\gamma_{i,j}^{l}(X)AlxE)$ .

(iv) For every $x\in X$ , there exist constants $\beta_{i\mathrm{j}}^{l}(X),$ $\gamma_{i,j}(lX)\in R\mathit{8}atiSfying$:

$A_{i}x_{E}A_{j}= \sum_{0l=}^{d}(\beta_{i}^{l},j(x)X_{E}A_{l}+\gamma_{i,j}^{l}(X)A_{l^{X_{E})}}$ .

(v) The representation graph $D^{*}=D^{*}(\mathcal{X}, E)i_{\mathit{8}}$ a tree and the diagram $ha\mathit{8}$ at $mo\mathit{8}t$

one loop.

(3) If X $i\mathit{8}strongly$ balanced, then it is balanced.

Remarks.

1. Let $\mathcal{X}=(X, \{R_{i}\}_{0\leq i\leq d})$ be a $P$-polynomial association scheme with balanced con-
dition with respect to a primitive idempotent $E=E_{h}$ . P. Terwilliger showed
that in this case the representation graph $D^{*}(\mathcal{X}, E)$ becomes a path. Hence X $=$

(X, $\{R\}_{0\leq i\leq}d$) is a $Q$-polynomial association scheme in this case ([22]).

2. Let $\mathcal{X}=(X, \{\kappa\}_{0\leq i}\leq d)$ be a $P$-polynomial association scheme with strongly bal-
anced condition with respect to a primitive idempotent $E=E_{h}$ . G. Dickie and P.
Terwilliger classified such association schemes with $d\geq 7([5,6])$ .
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3 Examples of Balanced Sets
In this section, we give lists of (real) balanced sets.

Example 1 Suppose $X\subset S^{1}\subset R^{2}$ , i.e., $m=2$. Then it is easy to see that the fo’llowing
are equivalent.

(i) $X$ is the set of vertices of a regular $n$-gon with $n\geq 3$ .

(ii) $X$ is balanced.

(iii) $X$ is strongly balanced.

(iv) For every $x\in X,$ $P_{i,i}\overline{\prime(X},$
$X$ ) $\in \mathrm{s}_{\mathrm{p}\mathrm{a}\mathrm{n}}(X)$ .

As the example above shows, the first non-trivial case is when $m=3$ .
Suppose $X\subset S^{2}\subset R^{3}$ . Since

$P_{i,j}(x, y)=\{_{Z}\in x|(_{X,Z})\in R_{i}, (_{Z}, y)\in R_{j}\}\subset\{z\in s2|<x, Z>=\gamma(i), <z, y>=\gamma(j)\}$,

the set $P_{i,j}(x, y)$ consists of at most two elements if $x$ and $y$ are linearly independent.
Hence a balanced [resp. strongly balanced] set $X$ is invariant by the action of certain
reflections. More precisely, let

$S=\{x-y|x,y\in X, \dim \mathrm{S}\mathrm{p}\mathrm{a}\mathrm{n}(x, y)=2\},$ $T=\{x\mathrm{x}y|x, y\in X, \dim \mathrm{s}_{\mathrm{P}}\mathrm{a}\mathrm{n}(x, y)=2\}$ ,

where $x\cross y$ denotes the outer product of three dimensional vectors. For a nonzero vector
$a$ let $\sigma_{a}$ denote the reflection with respect to the hyperplane orthogonal to the vector $a$ .
Then we have the following.

$\bullet$ If $X$ is balanced, then the group $\Sigma(S)=<\{\sigma_{s}|s\in S\}>\mathrm{a}\mathrm{c}\mathrm{t}\mathrm{s}$ transitively on $X$ .
$\bullet$ If $X$ is strongly balanced, then the group $\Sigma(T)=<\{\sigma_{t}|t\in T\}>\mathrm{a}\mathrm{c}\mathrm{t}\mathrm{s}$ transitively

on $X$ .

Since finite groups generated b.y reflections are well-known, by inspection, we have the
following.

Proposition 2 Let $X\subset S^{2}\subset R^{3}$ be a finite set. Then the following are equivalent.

(i) $Xi\mathit{8}$ the vertex set of the tetrahedron, the $cube_{f}$ the octahedron or the icosahedron.

(ii) $Xi\mathit{8}$ balanced.

(iii) $X$ is strongly balanced.
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Remarks. The connection with the finite reflection groups in the case of $m=3$ was
first observed by T. Ito. K. Goto, his student, studied balanced sets on which finite
reflection groups act transitively, and obtained some partial results.

Let $W$ be
$\mathrm{a}.\cdot$

finite reflection group with the root system $\Phi\subset V=R^{m}$ , the simple
system $\Delta$ . It $1\mathrm{S}$ well-known that the association scheme defined on the orbit of $W$ , is
isomorphic to the left cosets representation of $W$ on $W/W(\Pi)$ for some subset II $\subset\Delta$ ,
where $W(\Pi)$ denotes the corresponding reflection group. Moreover, the association scheme
is isomorphic to the Hecke algebra. The list of commutative Hecke algebras corresponding
to the maximal parabolic subgroups, i.e., $|\Pi|=|\triangle|-1$ , is given in [2, Theorem 10.4.11].
The corresponding list for Chevalley groups is also given in [2, Proposition 10.9.2]. As for
the case of exceptional type, the character tables of the Hecke algebras, which are nothing
but the first eigenmatrices of the corresponding association schemes, have been computed
by Y. Gomi $[7, 8]$ , we can check the balanced condition using Theorem 1.

Commutative Hecke Algebras of Exceptional Type

Remarks.

1. The second column of the table above shows the name in the book [2].

2. Using the intersection numbers, we can define the distribution diagrams $D(\mathcal{X}, A_{h})$

similar to the representation diagrams. The vertex set is $\{0,1, \ldots, d\}$ and $i\sim j\Leftrightarrow$

$p_{h,j}^{i}\neq 0$ . We can consider the condition when the diagram becomes a tree. When
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it becomes a path, it is $P$-polynomial. The fifth and the seventh columns give
whether the scheme satisfies this condition. The table above shows that all cases
which satisfy tree condition are P-polynomial.

3. ‘no’ above shows that it does not satisfy the respective tree condition.

4. There are four schemes which are not $P$-polynomial but $Q$-polynomial, and there
are no examples of the similar schemes in the thick case. In the following we list
the information of the each case. Here

$b_{i}^{*}=q_{1,i+}^{i}1’ a_{i}^{*}=q_{1,i}^{i},$ $c_{i^{--}}^{*}q_{1}^{i},i-1$
’ and $v=|X|$ .

(a) The root system of $E_{6}$ with $v=72$ .

$=$.

(b) The root system of $E_{7}$ with $v=126$ .

$=$.

(c) The root system of $E_{8}$ with $v=240$ .

$=$.

(d) Short or long roots of the system of $F_{4}$ with $v=24$.

$=$.

5. The all examples above are dual bipartite, which is antipodal, i.e., $X=-X$ .
J. $\mathrm{M}\mathrm{c}\mathrm{K}\mathrm{a}\mathrm{y}$ observed that the representation graph of the group association scheme of

a group is a tree if it has a faithful irreducible self-dual representation of dimension 2.
Moreover the representation graphs appear there are the Dynkin diagrams of the affine
root systems ([9, 16]).

The following result gives a classification of $Q$-polynomial group association schemes.
For more detail, see the original paper.

Theorem 3 ([13]) Let $G$ be a finite group. If the symmetrization of its group association
$\mathit{8}cheme$ is $Q$ -polynomial, then one of the following $hold_{\mathit{8}}$ .
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(i) $G\simeq Z_{n}$ , the cyclic group of order $n$ .

(ii) $G\simeq S_{3}$ , the $\mathit{8}ymmetric$ group of degree 3.

(iii) $G\simeq A_{4}$ , the alternating group of degree 4.

(iv) $G\simeq SL(2,3)$ , the two $dimen\mathit{8}ional$ special tinear group over the field with three
elements.

(v) $G\simeq F_{21}$ , the $Frobeniu\mathit{8}$ group of order 21.

4 Nonsymmetric Balanced Conditions
In this section, we consider nonsymmetric case. We first give a definition for the nonsym-
metric case.

Definition 3 Let $\mathcal{X}=(X, \{R\}_{0\leq i}\leq d)$ be a configuration in the first section satisfying
the conditions 1-5.

(1) X is balanced, if the following are satisfied.
$(a)$ For every $0\leq i\leq d$ and $x\in X$ , there exists a constant $\alpha_{i}(x)\in C$ such that

$P_{i,i’}\overline{(_{X}},$ $x)=\alpha_{i(_{X}})_{X}$ .

$(b)$ For all $0\leq h,$ $i,j\leq d$ and $(x, y)\in R_{h}$ , there exists a constant $\alpha_{i,j}^{h}(X, y)\in C$ such
that

$P_{i,j}\overline{(x},$ $y)-P_{j,i}\overline{(_{X}},$ $y)=\alpha i,jh(x, y)X-\overline{\alpha_{i,j}^{h}(x,y)}y$ .

(2) $\mathcal{X}$ is $\mathit{8}t_{\Gamma ong}ly$ balanced, if for all $0\leq h,$ $i,j\leq d$ and $(x, y)\in R_{h}$ , there exist constants
$\beta_{i,j}^{h}(x, y),$ $\gamma_{i,j}^{h}(x, y)\in C$ such that

$P_{i,j}\overline{(x},$ $y)=\beta_{i,j}h(X, y)X+\gamma_{i}^{h},j(x, y)y$ .

(3) A balanced [resp. strongly balanced] set is said to be $homogeneou\mathit{8}$ if $\alpha_{i}(x)$ and
$\alpha_{i,j}^{h}(x, y)$ [resp. $\beta_{i,j}^{h}(x,$ $y)$ , and $\gamma_{i,j}^{h}(x,$ $y)$ ] can be chosen so that they do not depend on $x,$ $y$ .

For a fixed primitive idempotent $E$ of the Bose-Mesner algebra of a commutative
association scheme $\mathcal{X}=(X, \{R_{i}\}_{0\leq i}\leq d)$ and $x\in X$ , we define the following subspaces of
Mat$x(C)$ .

$\mathcal{L}(x)$ $=$ $\mathrm{S}_{\mathrm{P}^{\mathrm{a}\mathrm{n}}}(\mathrm{A}iXEAj|0\leq i<j\leq d)$

$N(x)$ $=$ $\mathrm{S}_{\mathrm{P}^{\mathrm{a}}}\mathrm{n}(x_{E}Ai, AiXE|0\leq i\leq d)$
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Theorem 4 Let $\mathcal{X}=(X, \{R_{i}\}_{0\leq i\leq d})$ be a commutative $a\mathit{8}\mathit{8}OCiation\mathit{8}Cheme$ and let

$E=E_{h}= \frac{1}{|X|}\sum_{0i=}^{d}qh(i)A_{i}$

be a primitive idempotent of the $BM$-algebra. Let $\hat{x}=Ex$ and $\hat{X}=\{\hat{x}|x\in X\}$ . Let
$\hat{R}_{i}=\{(\hat{x},\hat{y})|(x, y)\in R_{i}\}$ for $i=0,1,$ $\ldots d$

} $.$ If $q_{h}(i)\neq q_{h}(0)$ for all $i>0$ , then the
following hold.

(1) The following are equivalent.
(i) $\hat{\mathcal{X}}=(\hat{X}, \{\hat{R}_{i}\}_{0\leq i}\leq d)i\mathit{8}$ balanced.
(ii) $\hat{\mathcal{X}}=(\hat{X}, \{\hat{R}_{\iota}\}_{0}\leq i\leq d)$ is balanced and homogeneous.
(iii) For every $x\in X$ , there $exi\mathit{8}tConStant_{\mathit{8}}\alpha_{i},(lxj)\in C\mathit{8}ati_{\mathit{8}}fying$ the following.

$A_{i}x_{E}A_{j}-A_{j^{X_{E}\mathrm{A}_{i}}}= \sum_{l=0}^{d}\alpha_{i}l,j(X)_{XA_{\iota-}}E\overline{\alpha_{i}l,j(x)}\mathrm{A}_{lE}x$ .

(2) The following are equivalent.
(i) $\hat{\mathcal{X}}=(\hat{X}, \{\hat{R}\}_{0\leq i\leq d})$ is $\mathit{8}trongly$ balanced.
(ii) $\hat{\mathcal{X}}=(\hat{X}, \{\hat{R}_{i}\}_{0\leq i}\leq d)$ is $homogeneou\mathit{8}ly$ strongly balanced.
(iii) $L(x)=N(x)$ for every $x\in X$ .
(iv) $L(x)=N(x)$ for some $x\in X$ .
(v) The $repre\mathit{8}entati_{\mathit{0}n}$ graph $D^{*}=D^{*}(\mathcal{X}, E)sati\mathit{8}fie\mathit{8}$ the following:

$2d+1-\mathrm{d}\mathrm{e}\mathrm{f}\mathrm{e}\mathrm{c}\mathrm{t}=\mathrm{a}\mathrm{r}\mathrm{c}(D^{*})+1\mathrm{o}\mathrm{o}_{\mathrm{P}}(D^{*})$

(3) If $\mathcal{X}$ is $\mathit{8}trongly$ balanced, then it is balanced.

The defect of $\mathcal{X}$ denoted by defect $(\mathcal{X})$ is defined by the number one less than the
number of relations with valency 1, i.e., defect $:=|\{i|k_{i}=1, i=1,2, \ldots , d\}!$ .

Remarks.

1. The interpretation of the balanced condition using the representation diagram is
missing, thus the condition (v) is missing in Theorem 4 (1).

2. Is this the right generalization? There should be many ways to consider similar
condition in the nonsymmetric case.

3. The directed cycle is strongly balanced. Moreover, if $\mathcal{X}=(X, \{R\}_{\mathrm{o}i\leq d}\leq)$ is strongly
balanced, then the clique extension of it is also strongly balanced. See [15].

4. Classify the case $m=2$ .
5. Study the dual. Does it include the distance regular di-graphs?

6. Construct non-homogeneous (strongly) balanced sets.

7. Classify group schemes which has a (strongly) balanced embedding.
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