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1 Introduction

This note is based on the author’s paper [11]. So the details and the proofs are in [11].
It is a natural problem to characterize (or classify) association scllenles by a given

set of intersection numbers. There are many contributions to this problem for P- and
$Q$-polynomial association schemes. (See [3, Section 9], for example.) We are interested in
the following problem.

Problem 1.1 Characterize the group association scheme $\mathcal{X}(G)$ of a given finite group $G$

by its intersection numbers among $\underline{all}$ association schemes.

Problem 1.1 has been solved for several groups $G$ : the $\mathrm{a}1_{J}^{l}\sim \mathrm{e}\mathrm{r}\mathrm{n}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{n}\mathrm{g}$ group $A_{5}$ and the
special linear group $SL(2,5)$ in [9], the projective special linear group $PSL(2,7)$ in [10],
the symmetric group $S_{n}$ of degree $n$ for every $n$ with $n\neq 4$ in [12] and [13]. In each
cases $\mathcal{X}(G)$ is characterized by its intersection numbers. The first step to characterize
$\mathcal{X}(G)$ was characterizing the local structure of $\chi(G)$ , and next step was cllaracterizing tlle
whole structure of $\mathcal{X}(G)$ . Hence, to prove Problem 1.1 $\mathrm{f}\mathrm{o}1^{\cdot}$ other groups, it is important
to determine the local structures.

We are particularly interested in simple groups. Because, $C_{\mathrm{Y}}$ is $\mathrm{s}\mathrm{i}_{\mathrm{l}\mathrm{n}\mathrm{p}}1\mathrm{e}$ if and only if
$\mathcal{X}(G)$ is prilnitive, and primitive association schemes play an $\mathrm{i}\mathrm{m}\mathrm{p}\mathrm{o}\mathrm{l}\cdot \mathrm{t}\mathrm{a}\mathrm{n}\mathrm{t}$ role in commuta-
tive association schemes, similar to the role simple groups play in finite groups. (See [2,
Section II.9], [7], or [8].) The groups $A_{5}$ and $PSL(2,7)$ are the smallest and the second
slnallest nonabelian simple groups. We also interested in infinite falnilies of groups.

We focus on the local structures of the group association schemes of 3-transposition
groups. The symmetric group $S_{n}$ is a standard example of 3-transposition groups.

In [12] N. Yamazaki and the author assumed a certain configuration of four vertices
does not exist and considered an association sclleme $\mathcal{X}$ having the same intersection
numbers as those of $\mathcal{X}(S_{n})$ . First, by using a character of $S_{n}$ , they showed the local
structure of $\mathcal{X}$ is a strongly regular graph with certain parameters. Next, by using the
classification of such graphs, they uniquely deterlnined the local structure of $\mathcal{X}$ . (See [12,
Lemlna 5.4].) Finally, they uniquely determined the whole structure of X, and hence tlley
characterized $\mathcal{X}(S_{n})$ .

In this note, without using characters, we shall generalize [12, Lemlna 5.4]. (See
Theorems 2.1 and 2.2.) As a corollary, under the non-existence assunlption of a certRilu
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configuration of four vertices, the local structures of the group association schemes of
the Weyl groups $W(E_{6}),$ $W(E7),$ $W(E_{8}))$ the symmetric group $S_{n}$ , the symplectic group
$Sp_{n}(2)$ over the field of order 2, and an orthogonal group $O_{n}^{\epsilon}(2)$ over the field of order 2.
(See Corollary 2.5.) We note each symplectic group $S_{p_{n}}(2)$ is a simple group.

2 Definitions and Main Theorems
A commutative $associati_{on}$ scheme is a pair $\mathcal{X}=(X, \mathcal{G})$ of a finite set $X$ and the collection
$\mathcal{G}$ of subsets of $X\cross X$ such that

$(A1)1\in \mathcal{G}$ and $\emptyset\not\in \mathcal{G}$ , where $1=\{(\alpha, \alpha):\alpha\in X\}$ .
$(A2)X \cross X=\bigcup_{g\in \mathcal{G}}g$ and $f\cap g=\emptyset$ for every $f,$ $g\in \mathcal{G}$ with $g\neq h$ .
$(A3)g^{*}\in \mathcal{G}$ for every $g\in \mathcal{G}$ , where $g^{*}=\{(\alpha,\beta):(\beta, \alpha)\in g\}$ .
$(A4)|\{\gamma\in X : (\alpha, \gamma)\in g, (\gamma, \beta)\in h\}|=p_{gh}^{f}$ for every $f,g,$ $h\in \mathcal{G}$ and for every $(\alpha, \beta)\in f$ .
$(A5)p_{gh}^{j}=p_{hg}^{j}$ for every $f,g,$ $h\in \mathcal{G}$ .
The non-negative integers $\{p_{gh}^{!}\}_{f^{g,h\in Q}}$, are called the intersection numbers of $\mathcal{X}$ .

For every vertex $\alpha$ , for every relations $f,$ $g,$ $h\in \mathcal{G}$ , and for every subset $\{r_{1}, \ldots, r_{l}\}\subseteq \mathcal{G}$ ,
let

$\alpha g=$ $\{\beta\in x:(\alpha,\beta)\in g\}$ ,

$\alpha(\bigcup_{1i=}^{l}r_{i})$ $= \bigcup_{i=1}^{l}\alpha\Gamma_{i}$ , and

$( \bigcup_{i=1}^{l}ri)^{*}$ $= \bigcup_{i=1}r_{i}^{*}l$ .

In this note we assume the following hypothesis.

Hypothesis Let $\mathcal{X}=(X, \mathcal{G})$ be a commutative association scheme. $\mathcal{X}Contain\mathit{8}$ the
relations $e,$ $f,$ $g_{j}r_{i_{f}}s_{j;}t_{k}(1\leq i\leq l_{J}1\leq j\leq m_{j}1\leq k\leq n)$ which satisfy

(H1) The relations $e,$ $f_{J}$ and $g$ are $symmetriC_{)}i.e.,$ $e^{*}=e,$ $f^{*}=f$ , and $g^{*}=g$ .
(H2) The sums $\tilde{r}=\bigcup_{i=1}^{l}r_{i},\tilde{s}=\bigcup_{jj}^{m}=1^{\mathit{8}}j$ and $t= \sim\bigcup_{k=1}^{n}t_{k}$ of relations are $symmetri_{C_{2}}i.e.$ ,

$\tilde{r}^{*}=\tilde{r}_{J}\tilde{s}^{*}=\tilde{s}$ , and $t^{*}\sim=t\sim$.

The intersection numbers of $\mathcal{X}sati\mathit{8}fy$

(H3) $p_{ee}^{j}=2,$ $p_{ee}^{g}\geq 2$ and $p_{ee}^{h}=0$ if $h\neq 1,$ $f,$ $g$ . In particular $p_{ee}^{e}=0$ .
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(H4) $p_{f\mathrm{e}ge\prime}^{jf}\geq 0,$$p=0$
$p_{feP_{g}e}^{g}=0g\geq:\mathrm{o}$ ,
$p_{f\mathrm{e}}^{r}.\geq 1,$ $p_{g^{i}}^{r}\mathrm{e}=^{\mathrm{o}}(1\leq i\leq l)$ ,
$p_{J}^{s_{j}}\mathrm{e}\geq 1,$ $p^{S}ge=1j(1\leq j\leq m)_{l}$

$p_{j\mathrm{e}}^{t_{k}}\geq 0_{J}p_{ge}t_{k}\geq 2(1\leq k\leq n)$ , and
$p_{Je}^{h}=p^{h}ge=0$ if $h\neq e,$ $f,g,$ $r_{i,\mathrm{j}}\mathit{8},$ $t_{k}(1\leq i\leq l_{f}1\leq j\leq m_{j}1\leq k\leq n)$ .

In the following, for every $h,$ $h’\in \mathcal{G}$ , let

$p \frac{h}{f}h’$ $=$ $\sum_{i=1}^{l}p^{h}\Gamma.\cdot h’$

’

$p_{\overline{s}h}^{h}$ , $= \sum_{j=1}^{m}p^{h}Sjh$” and

$p_{h’}^{\frac{h}{t}}$ $=$ $\sum_{k=1}^{n}p_{t_{k}}^{h}h’$ .

We consider the graph $\Gamma=(X, e)$ with vertex set $X$ and edge set $e$ .
Take any quadrangle $\{\alpha_{1}, \alpha_{2,3,4}\alpha\alpha\}$ in $\Gamma$ . Then $(\alpha_{1}, \alpha_{3}),$ $(\alpha_{2}, \alpha_{4})\in f\cup g$ . A quad-

rangle $\{\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha 4\}$ is called a skew-quadrangle when $(\alpha_{1}, \alpha_{3})\in f$ and $(\alpha_{2}, \alpha_{4})\in g$ .
Now consider the local structure of the graph $\Gamma$ . For every vertex $\alpha$ , the set of the

neighbors of $\alpha$ is $\alpha e$ . Take any two distinct vertices $\beta,$ $\gamma\in\alpha e$ . Then $(\beta,\gamma)\in f\cup g$ . So
we can construct two graphs $(\alpha e, f)$ and $(\alpha e,g)$ with vertex sets $\alpha e$ such that the edge
set of $(\alpha e, f)$ is $f\cap(\alpha e\cross\alpha e)$ and that of $(\alpha e,g)$ is $g\cap(\alpha e\cross\alpha e)$ .

Theorem 2.1 Let $\mathcal{X}=(X, \mathcal{G})$ be a commutative association scheme with above hypoth-
esis. Suppose that

(H5) $\mathcal{X}$ has no skew-quadrangle.

(H6) The following equation $hold_{\mathit{8}}$ .
$p^{e}!e+_{P_{\mathrm{e}}} \frac{f}{t}=p+\mathrm{e}p_{f}^{f}e+p_{\tilde{r}}^{!}e+1ge$ .

Then, for every vertex $\alpha_{l}$ the graph $(\alpha e, f)$ is a connected, coconnected strongly regular
graph with parameters $(p_{\mathrm{e}e}^{1},p_{Je}^{e},p^{f}Je+p_{\overline{\Gamma}G}^{j},p \frac{g}{s}e)$ .

About the general theory of a strongly regular graph and related terminology, the author
referred to [3, Section 1], for example.

The next theorem is a generalization of [12, Lemma 5.4].

Theorem 2.2 Let $\mathcal{X}=(X, \mathcal{G})$ be a commutative association scheme with above hypoth-
esis. Suppose that

(H5) $\mathcal{X}$ has no $\mathit{8}k\mathrm{e}$w-quadrangle.
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(H6) The following equation holds.
$p_{f\mathrm{e}}^{e}+p_{\overline{t}\mathrm{e}}=p_{\mathit{9}^{e}}^{e}+p_{f_{6e}}^{f}+p \frac{j}{f}f+1$ .

(H7) The following two equations hold.
$p_{ee}^{g}=3$ and $p_{ee}^{1}+2p_{e} \frac{g}{s}-3p_{fe}-3=\mathrm{o}e$ .

For every vertex $\alpha$ , let $P=\alpha e$ and $\mathcal{L}=\{\alpha e\cap\beta e;\beta\in\alpha g\}$ . Then $(P, L)$ is a connected,
$coConneCted_{y}$ reduced Fischer space such that the subspace generated by any pair of distinct
intersecting lines is a dual affine plane of order 2.

$Moreover_{J}$ the collinearity graph of $(P, \mathcal{L})$ is $(\alpha e,g)$ .

About the general theory of a Fischer space and related terminology, the reader is referred
to [1, Section 18], for example.

Let $G$ be a finite group. A set of 3-transpositions of $G$ is a set $D$ of involutions of $G$

such that $D$ is the union of conjugacy classes of $G,$ $D$ generates $G$ , and for all $\alpha,\beta\in D$ ,
the order of the product $\alpha\beta$ is 1, 2, or 3. In [6] B. Fischer classified the almost simple
groups generated by 3-transpositions. We state his theorem as a form of [1, p.1, Fischer’s
Theorem].

Theorem 2.3 (B. Fischer [6, Theorem.]) Let $D$ be a conjugacy class of $3- tran\mathit{8}p\sigma si-$

tions of the finite group G. Assume the center of $G$ is trivial and the derived subgroup of
$G$ is simpfe. Then one of the following holds.

(a) $G\simeq S_{n}$ is the symmetric group of degree $n$ and $D$ is the set of $t_{\Gamma anS}po\mathit{8}itionS$ of $G$ .
(b) $G\simeq Sp_{n}(2)$ is the symplectic group of dimension $n$ over the field of order 2 and $D$

is the set of $tran\mathit{8}veCti_{\mathit{0}}ns$ .

(c) $G\simeq U_{n}(2)$ is the projective unitary group of dimension $n$ over the field of order 4
and $D$ is the set of transvections.

(d) $G\simeq O_{n}^{\epsilon}(2)$ is an orthogonal group of dimension $n$ over the field of order 2 and $D$ is
the set of transvections.

(e) $G\simeq PO_{n}^{\mu,\pi}(3)$ is the subgroup of an $n$ -dimensional projective orthogonal group over
the field of order 3 generated by a conjugacy class $D$ of refiections.

(f) $G$ is a Fischer group of type $M(22),$ $M(23)$ , or $M(24)$ , determined up to isomor-
phism, and $D$ is a uniquely determined class of involutions in $G$ .

Let $G$ be a finite group and $C_{1}=\{\mathrm{i}\mathrm{d}\},$ $C_{f},$
$\ldots,$

$C_{g}$ the conjugacy classes of $G$ . Define
the relation $f$ on $G$ by $f=\{(x, y) : yx^{-1}\in C_{f}\}$ and let $\mathcal{G}=\{1, f, \ldots,g\}$ . Then
$\mathcal{X}(G)=(G, \mathcal{G})$ is a commutative association scheme called the group $as\mathit{8}\mathit{0}Ciation$ scheme
of G. (See [2, Example $11.2.1(2)].$ )
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Consider the group association scheme $\mathcal{X}(G)$ of a 3-transposition group $G$ in Fischer’s
Theorem. Let $e$ be the relation with respect to a conjugacy class of 3-transpositions $D$ of
$G$. Then $\mathcal{X}(G)$ satisfies the assumption of Theorem 2.1. (See [11, Section 5].) Moreover,
if we construct a partial linear space $(P, L)$ as in Theorem 2.2, then $(\mathcal{P}, \mathcal{L})$ is a reduced,
connected, coconnected Fischer space. In [4] and [5] H. Cuypers and J. Hall showed
that a reduced, connected, coconnected Fischer space $(P, \mathcal{L})$ is one of the Fischer spaces
constructed above from the 3-transposition groups in Fischer’s Theorem. (See also [1,
Theorem 20.2].)

Corollary 2.4 If an $a\mathit{8}SOCiation$ scheme $\mathcal{X}$ has the same intersection numbers of the
group $as\mathit{8}\mathit{0}Ciation$ scheme $\mathcal{X}(G)$ of a 3-transposition group $G$ in Fischer’s $Theorem_{J}$ then
the local structure of $\mathcal{X}$ is a strongly regular graph under the non-existence assumption of
a skew-quadrangle. The parameters of two strongly regular graphs in the local structures
of X and $\mathcal{X}(G)$ are the same.

If $G$ is one of (a), (b), or (d) in Fischer’s Theorem, then $\mathcal{X}(G)$ satisfies the assumption
of Theorem 2.2. (See [11, Section 5].) We also note that $\mathcal{X}(G)$ satisfies the assumption
of Theorem 2.2 if $G$ is one of the Weyl groups of type $E_{6},$ $E_{7}$ , or $E_{8}$ .

Corollary 2.5 If $G$ is one of the Weyl groups of type $E_{6_{J}}E_{7},$ $E_{8_{l}}$ the symmetric groups,
the symplectic groups over the field of order 2, or the orthogonal groups over the field of
order 2, then the local structure of the group association scheme $\mathcal{X}(G)$ is characterized by
its $inier\mathit{8}eCti_{on}number\mathit{8}$ under the non-existence assumption of a skew-quadrangle.

If $G$ is one of (c), (e), or (f) in Fischer’s Theorem, then $\mathcal{X}(G)$ does not satisfy the
second equality in (H7). In fact, in the Fischer space in the local structure of $\mathcal{X}(G)$ , the
subspace generated by some pair of distinct intersecting lines is the affine plane of order 3.

3 Remarks

Remarks (1) When $G$ is one of (c), (e), and (f), can we characterize the local structure
$(\mathcal{P}, \mathcal{L})$ of $\mathcal{X}(G)$ ? More generally, by changing the condition (H7), can we prove the similar
theorem which can apply to all 3-transposition groups in the Fischer’s Theorem?
(2) Can we generalize the characterization for $S_{n}$ to the characterization of other 3-
transposition groups? When $G$ is one of the Weyl groups $W(E_{6}),$ $W(E_{7})$ , and $W(E_{8})$ , we
can characterize the local structure of $\mathcal{X}(s_{n})$ by Corollary 2.5. Moreover, $G$ has a similar
character to the character of $S_{n}$ which is useful to characterize $\mathcal{X}(S_{n})$ . So there is a good
chance to characterize $\mathcal{X}(G)$ .
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