筑波大学社会工学系 筑波大学社会工学研究科

藤原 良 (Ryoh Fuji-Hara) 篠原 聡 (Satoshi Shinohara)

Abstract

Let \mathcal{V} be a set of points and \mathcal{B} a collection of multi-subsets (called blocks) of \mathcal{V} each of size k. A balanced n-ary design is a pair $(\mathcal{V}, \mathcal{B})$ such that each pointt occurs at most n-1 times in any block, and each unordered pair of distinct points occurs λ times in the blocks of \mathcal{B} . Note that in the block $\{x, x, y\}$, the pair $\{x, y\}$ is counted twice in the block. We show here some constructions of balanced n-ary designs by using algebraic curves over finite fields.

1 Introduction

Let \mathcal{V} be a set of v points and \mathcal{B} a collection of multi-subsets, called blocks,

of \mathcal{V} . A balanced *n*-ary design is a pair $(\mathcal{V}, \mathcal{B})$ satisfying

(1) each block is of a constant size k,

(2) each point occurs at most n-1 times in any block $B \in \mathcal{B}$, and

(3) each unordered pair of distinct points occurs exactly λ times in the blocks

of \mathcal{B} .

Note that, for example, the block size of $B = \{x, x, x, y, y, z\}$ is 6 since the points x, y and z occur 3 times, twice and once, respectively. And in the

block B the pairs $\{x, y\}$, $\{y, z\}$ and $\{x, z\}$ are counted 6, 2 and 3 times, respectively.

Let $N = (n_{ij})$ be a $|\mathcal{V}| \times |\mathcal{B}|$ matrix, where n_{ij} is the number of occurrences of the *i*-th point in the *j*-th block. We consider N as the incidence matrix of a balanced *n*-ary design. Using the incidence matrix, the conditions in the definition of a balanced *n*-ary design can be rewitten as follows:

(1') $\sum_{i} n_{ij} = k$ for any j,

(2') $0 \le n_{ij} \le n-1$ for any i, j, and

(3') $\sum_{j} n_{ij} n_{i'j} = \lambda$ for any unordered pair $\{i, i'\}, i \neq i'$.

Example 1.1. Let $\mathcal{V} = \{a, b, c, d, e\}$ and \mathcal{B} be the collection of the following blocks:

$$\{a, b, b, d, d, e, e, e\}, \{a, a, c, c, c, d, e, e\}, \\\{b, b, b, c, c, d, d, e\}, \{a, a, b, c, c, d, d, d\}, \\\{a, a, a, b, b, c, e, e\}, \{a, c, c, d, d, d, e, e\}, \\\{a, a, b, b, b, c, d, d\}, \{b, b, c, c, d, e, e, e\}, \\\{a, a, b, b, c, c, c, e\}, \{a, a, a, b, d, d, e, e\}.$$

Then $(\mathcal{V}, \mathcal{B})$ is a balanced 4-ary (quaternary) design with 5 points, 10 blocks

and the block size is 8. The incidence matrix of the above balanced 4-ary

design is

	1	2	0	2	3	1	2	0 2 2 1	2	3	
	2	0	3	1	2	0	3	2	2	1	
	0	3	2	2	1	2	1	2	3	0	
The second se	2	1	2	3	0	3	2	1	0	2	
	3	2	1	0	2	2	0	3	1	2	

and for any pair $\{i, i'\}, i \neq i'$,

$$\sum_{j} n_{ij} n_{i'j} = 23 = \lambda.$$

Let $\rho_s^{(i)}$ be the number of blocks containing the *i*-th point exactly *s* times, i.e. the number of the entry *s* in the *i*-th row of the incidence matrix. If $\rho_s^{(i)} = \rho_s$ for all *i* then the design is said to be *regular*. If a balanced *n*-ary design is regular then the replication number R_i of the *i*-th point is a constant number R, since

$$R_{i} = \sum_{r=0}^{n-1} r \rho_{r}^{(i)} = \sum_{r} r \rho_{r} = R.$$

Balanced *n*-ary designs were first introduced by Tocher [3] in a statistical paper. The interested reader is referred to [1, 2] for their excellent surveys.

2 Algebraic curves

Let q be a prime power, and GF(q) a finite field of order q. A divisor D on a curve C is a formal sum $\sum_{P \in C} m_P P$, $m_P \in \mathbb{Z}$. The set of divisors on C is denoted by Div(D). The support of a divisor D, denoted by Supp(D), is the set of points satisfying $m_P \neq 0$. A divisor D is said to be efficient if $m_P \geq 0$ for all P, and denoted by $D \geq 0$. The degree of D is deg $D = \sum_P m_P$. Let $D = \sum_P m_P P$ and $E = \sum_P m'_P P$. Then $D + E = \sum_P (m_P + m'_P) P$.

Let $\operatorname{Rat}(C)$ be the set of rational functions over a curve C. The divisor of a rational function $f \in \operatorname{Rat}(C)$ is $\operatorname{div}(f) = \sum_{P \in C} m_P P$, where m_P is the order of f at P. For a divisor D, a divisor E is said to be *equivalent to* D, denoted by $E \sim D$, if there exists a rational function $f \in \operatorname{Rat}(C)$ satisfying $E = D + \operatorname{div}(f)$.

Let C be a curve defined by F = 0, where F is a polynomial over a finite field GF(q). The divisor of the curve C is the divisor of F. Note that $\operatorname{div}(C) = \operatorname{div}(F) \ge 0$. When the divisor of C is written as $\operatorname{div}(C) = \sum_p m_p p$, the *intersection multiplicity* of a point p on a curve C' with the curve C is the order of F at p, say m_p .

Let $L(D) = \{f \in \operatorname{Rat}(C) : \operatorname{div}(f) + D \ge 0\} \cup \{0\}$. It is well-known that L(D) is a linear space with a finite dimension over an extension field $GF(q^m)$ of GF(q).

3 Algebraic curves and balanced *n*-ary designs

Let C be an irreducible curve defined over GF(q) and $\mathcal{C} = \{C_1, \dots, C_b\}$ a set of b curves defined over an extension $GF(q^m)$ of GF(q). Let V_j be a set of intersection points of $C_j \in \mathcal{C}$ with C, and $\mathcal{V} = \bigcup_j V_j = \{p_1, \dots, p_v\}$.

Let n_{ij} denotes the intersection multiplicity of a point p_i with a curve C_j . We consider the $v \times b$ matrix (n_{ij}) as the incidence matrix. To satisfy the conditions of balanced *n*-ary designs, we have to choose suitable C, C and \mathcal{V} .

The first condition is required for the block size to be constant, i.e., $\sum_{i} n_{ij} = k$ for any curve $C_j \in C$. Let D be a divisor on C and $\mathcal{D} = \{\operatorname{div}(f) + D : f \in L(D) \setminus \{0\}\} = \{E_1, \cdots, E_b\}$. Note that each element of \mathcal{D} is the divisor of a curve.

Lemma 3.1. Let C be the set of curves such that their divisors are the elements of D. For any curve of C, the total number of multiplicities of its intersection points with C is a constant number k.

Proof. The set \mathcal{D} is the set of efficient divisors being equivalent to D, i.e.,

$$\mathcal{D} = \{ \operatorname{div}(f) + D : f \in L(D) \setminus \{0\} \}$$
$$= \{ E \in \operatorname{Div}(C) : E \ge 0, E \sim D \}.$$

It is well-known that if $E \sim D$ then deg $D = \deg E$. Hence for any j

$$\sum_{i} n_{ij} = \deg E_j = \deg D = k.$$

We assume here that we choose \mathcal{C} as above, and that the point set \mathcal{V} of a design is the set $\mathcal{V} = \bigcup_{E \in \mathcal{D}} \operatorname{Supp}(E)$. The second condition says that each point of the design occurs at most n-1 times. Since the intersection multiplicities of points on curves are always positive, this condition is automatically satisfied from Lemma 3.1.

Theorem 3.2. Let C be a curve defined over a finite field, D a divisor on $C, \mathcal{D} = \{ div(f) + D : f \in L(D) \setminus \{0\} \} = \{ E_1, \dots, E_b \}, \mathcal{V} = \bigcup_{E \in \mathcal{D}} Supp(E)$ $E_j = \sum n_{ij} P_i, P_i \in V.$ If deg $C \leq 2$ and $D \geq 0$ then (n_{ij}) is the incidence matrix of a balanced n-ary design $(\mathcal{V}, \mathcal{D}).$

Proof. We only have to check whether the third condition of balanced *n*-ary designs is satisfied. Let E_j be the *j*-th element of \mathcal{D} . Assume that D and E_j 's have the forms $D = \sum_i m_i P_i$ and $E_j = \operatorname{div}(f_j) + D$, respectively. Let $\operatorname{div}(f_j) = \sum_i e_{ij} P_i$. Then each entry n_{ij} of the incidence matrix (n_{ij}) is $m_i + e_{ij}$, since $\operatorname{div}(f_j) + D = \sum_i e_{ij} P_i + D = \sum_i (m_i + e_{ij}) P_i$. For any pair

 $\{i,i'\},$ we have

$$\begin{split} &\sum_{j} n_{ij} n_{i'j} \\ &= \sum_{j} (m_i + e_{ij}) (m_{i'} + e_{i'j}) \\ &= \sum_{j} (m_i m_{i'} + m_i e_{i'j} + m_{i'} e_{ij} + e_{ij} e_{i'j}) \\ &= b m_i m_{i'} + m_i \sum_{j} e_{i'j} + m_{i'} \sum_{j} e_{ij} + \sum_{j} e_{ij} e_{i'j} \end{split}$$

Let $\lambda(a, b)$ be the number of j satisfying $(e_{ij}, e_{i'j}) = (a, b)$. Then we have

$$\sum_{j} e_{ij} e_{i'j} = \sum_{(a,b)} ab\lambda(a,b).$$

When the degree of base curve C is less than or equal to 2, it can be easily seen that if a + b = c + d then $\lambda(a, b) = \lambda(c, d)$. Moreover we can see that

$$\sum_j e_{i'j} = \sum_j e_{ij} = \sum_a a\lambda(a),$$

where $\lambda(a)$ is the number of j satisfying $n_{ij} = a$. Since both of $\lambda(a, b)$ and $\lambda(a)$ are independent of $\{i, i'\}$ chosen, we have

$$\sum_{j} n_{ij} n_{i'j} = \lambda,$$

and we can conclude that the third condition in the definition of a balanced n-ary design is also satisfied.

References

- E. J. Billington, Balanced n-ary designs: combinatorial survey and some new results, Ars Combin. 17A (1984), 37 - 72.
- [2] E. J. Billington, Designs with repeated elements in blocks: a survey and some recent results, Congr. Numer. 68 (1989), 123 - 146.
- [3] K. D. Tocher, Design and analysis of block experiments, J. R. Statist.
 Soc. B14 (1952), 45 100.