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1. Introduction
In [22], Voiculescu began studying the operator algebra free products from the

$\mathrm{p}\mathrm{r}\mathrm{o}\mathrm{b}\mathrm{a}\mathrm{b}\mathrm{i}\mathrm{l}\mathrm{i}\mathrm{S}\mathrm{t}\mathrm{i}\mathrm{C}$ point of view. His idea is to look at free products as an analogue
of tensor products and to develop a corresponding highly noncommutative proba-
bilistic framework, where freeness is given as the notion of independence (see [21]).
It has been introduced in [23] the operation of the additive free convolution as
analogue of the usual convolution. In order to compute it, it was also introduced
the R-transform which linearlizes the additive free convolution. Thus it is the free
analogue of the logarithm of the Fourier transform of a probability distribution or
the free cumulants. An alternative, combinatorial approach to the R-transform was
found by Speicher in [19]. The most important advantages of this combinatorial
approach is that it can be generalized in a straightforward way to multi-dimensional
situations as in [16]. The machinery of the $R$-transform was found independently
and simultaneously by Woess in [25], by Soardi in [18], and by Cartwright and
Soardi in [6] and [7], from the studies of the random walks on free product groups
to obtain the walk generating function or the Plancherel measures.

The spectral theory of the infinite graphs such as the homogeneous tree or the
infinite distance regular graphs, has been studied in [4], [11], [13], and [15], for
example. The survey on the spectra of infinite graphs is now available in [16].
Especially, many authors have contributed to spectral theory and to harmonic
analysis for the homogeneous tree $T_{m}$ . If $m$ is even, then $T_{m}$ is the Cayley graph
of a free group, and many papers have dealt with this structure. The ancestor is
Kesten in [14], who calculated the closed walk generating function of the transition
operator. In [24], Voiculescu has also treated it by using the $R$-transform, which is
called generally free harmonic analysis.

In this note, we calculate the probability measures associated to the linear combi-
nations of the above free families of projections, explicitly, by using the R-transform
and the Stieltjes inversion formula. Some applications to the spectral theory for the
infinite distance regular graphs, and to the Plancherel measures of the free products
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of two cyclic groups as in [6], are also discussed. Then we find the recursion formula

for the orthogonal polynomials of the measures obtained in above.

2. The linear combinations of a free family of projections
Let $\{p_{i}\}_{i=1}^{n}$ be a free family of projections with $\phi(p_{i})=\alpha_{i}$ for each $i$ . We consider

the linear combination, $\ell=\sum_{i=1}^{n}\lambda_{ip_{i}}$ of these proj $e$ctions, where $\lambda_{i}$ is assumed to

be positive. Using the properties of the $R$-transform (see [21]), it can be given for

the element $\ell$ that

$R \ell(z)=\sum_{1i=}^{n}\frac{1}{2z}\{(\lambda_{i}z-1)+\sqrt{(\lambda_{i^{Z}}-1)2+4\alpha i\lambda_{i^{Z}}}\}$ , (2.1)

which implies

$I \acute{\backslash }\ell(z)=-(\frac{n-2}{2z})+\frac{1}{2z}\sum_{i=1}^{n}\{\lambda_{i^{Z}}+\sqrt{(\lambda_{i^{Z}}-1)2+4\alpha_{i}\lambda_{i^{\mathcal{Z}}}}\}$ . (2.2)

If we solve the equation $\zeta=K_{\ell}(\mathcal{Z})$ in $z$ then we can have the $G$-series, $G_{l}(\zeta)$ , the

Cauchy transform of the compactly supported probability measure on $\mathbb{R}$ associated
with the self-adjoint element $\ell$ . It is immediately seen that $G_{\mathit{1}}(\zeta)$ is an algebraic,
but in general case, it can not be solved in radicals. However, this can be done,

for instance, in the cases where at most two different square roots will appear in
the right hand side of the equation (2.2). That is, in the cases where the family
$\{(\alpha_{i}, \lambda_{i})\}_{i1}^{n}=$ is constituted from at most two different pairs. From now on, we
will concentrate our attention upon the following typical two cases and find the
probability measure of the random variable $\ell$ in each case:
Case 1) $(\alpha_{i}, \lambda_{i})=(\alpha, \lambda)$ for $i=1,2,$ $\ldots,$

$n$ , with $n\geq 2,0<\alpha<1,$ $\lambda>0$ ,
Case 2) $n=2$ and $\{(\alpha_{i}, \lambda_{i})\}i=1,2$ with $0<\alpha_{i}<1,$ $\lambda_{i}>0$ .

First we shall investigate Case 1). In this case, the equation $\zeta=K_{l}(z)$ yields
the quadratic equation in $z$ that

$\zeta(\zeta-n\lambda)z^{2}+((n-2)\zeta+n\lambda(1-n\alpha))_{Z}+(1-n)=0$ , (2.3)

and the $G$-series of the element $\ell$ can be obtained as

$G_{l}( \zeta)=\frac{-\{(n-2)\zeta+n\lambda(1-n\alpha)\}+n\sqrt{(\zeta-\gamma_{+})(\zeta-\gamma_{-})}}{2\zeta((-n\lambda)}$ , (2.4)

where $\gamma\pm=\lambda\{(n-2)\alpha+1\}\pm 2\lambda\sqrt{(n-1)\alpha(1-\alpha)}$ and it holds the inequalities
that $0\leq\gamma_{-}<\gamma+\leq n\lambda$ . Here the branch of the analytic square root in (2.4) should
be determined by the condition

${\rm Im}\zeta>0$ $\Rightarrow$ ${\rm Im} G(\zeta)\leq 0$ . (2.5)
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We shall determine the probability measure $\nu$ of $\ell$ by using the Stieltjes inversion
formula on $G_{l}(\zeta)$ . It says that $\nu$ has point masses where $G_{f}(\zeta)$ has poles on $\mathbb{R}$ and
the mass equals the residue there, and $\nu$ is absolutely continuous with resp$e$ct to
Lebesgue measure where $G_{f}(\zeta)$ has non-zero imaginary part on the real axis with
the density

$-^{\underline{1}} \lim{\rm Im} G_{l}(t+i\epsilon)$ . (2.6)
$\pi\inarrow+0$

In our case, it is easily seen that $\nu$ is absolutely continuous on the interval $[\gamma_{-}, \gamma_{+}]$

with the density

$f(t)= \frac{-n\sqrt{-(t-\gamma+)(t-\gamma_{-})}}{2\pi t(t-n\lambda)}$ . (2.7)

Concerning with the poles, we have that $\zeta=0$ is removable singularity if $1-n\alpha\leq 0$

and it is a simple pole with residue 1 $-n\alpha$ if 1 $-n\alpha>0$ . Similarly, $\zeta=n\lambda$

is removable singularity if $1-n(1-\alpha)\leq 0$ and it is a simple pole with residue
$1-n(1-\alpha)$ if $1-n(1-\alpha)>0$ . From the above observations, we have the measure
as follows:

Theorem 2.1. Let $\{p_{i}\}_{i=1}^{n}$ be a free family of projections with $\phi(p_{i})=\alpha$ for all
$i$ . Then the distribution $\nu$ for the element $l= \lambda\sum_{i=1}^{n}p_{i}$ where $\lambda>0_{f}$ is given by

$d \nu=\frac{-n\sqrt{-(t-\gamma_{+})(t-\gamma_{-})}}{2\pi t(t-n\lambda)}\chi_{[\gamma-,\gamma+}]dt$

$+ \max(\mathrm{O}, 1-n\alpha)\delta_{0+}\max(\mathrm{o}, 1-n(1-\alpha))\mathit{5}_{n\lambda}$ , (2.8)

where $dt$ denotes the Lebesgue measure, $\delta_{t}$ is the Dirac unit mass at $t$ , and $\chi_{I}$ means
the characteristic function for the interval $I$ .

Next we shall consider Case 2). That is $\ell=\lambda p+\mu q$ where $p$ and $q$ are free
projections with $\phi(p)=\alpha$ and $\phi(q)=\beta$ , and $\lambda$ and $\mu$ are positive scalars. In this
case, the $e$quation $\zeta=I\mathrm{f}_{l}(z)$ becomes

$\zeta=\frac{1}{2z}\{(\lambda+\mu)z+\sqrt{(\lambda z-1)^{2}+4\alpha\lambda z}+\sqrt{(\mu z-1)^{2}+4\beta}\overline{\mu z}\}$ . (2.9)

After some more tedious calculation, we can see that the equation (2.9) will be
reduced to the quadratic equation $Az^{2}+Bz+C=0$ , where

$A=((\zeta-\lambda)(\zeta-\mu)(\zeta-\lambda-\mu)$ ,

$B=\{\lambda(1-2\alpha)+\mu(1-2\beta)\}\zeta(\zeta-\lambda-\mu)+\lambda\mu(\lambda+\mu)(1-\alpha-\beta)$, (2.10)
$C=-\{(\zeta-\mu)-(\lambda\alpha-\mu\beta)\}\{(\zeta-\lambda)+(\lambda\alpha-\mu\beta)\}$ .

If we put $D=B^{2}-4AC$ then it follows by direct calculation that

$D=(2\zeta-\lambda-\mu)^{2}(\zeta-\gamma 1)(\zeta-\gamma 2)(\zeta-\gamma_{3})(\zeta-\gamma 4)$, (2.11)
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(2.12)

Swap $p$ and $q$ , and replace $p$ by $1-p$ or $q$ by $1-q_{1}\mathrm{f}$ necessary, we may assume
that $\lambda\geq\mu$ and $\alpha\leq\beta\leq\frac{1}{2}$ without any loss of generality. First we shall pay our

attention upon the case where strictly $\lambda>\mu$ . It can be seen the inequalities

$0\leq\gamma_{1}\leq\gamma_{2}\leq\mu<\lambda\leq\gamma_{3}\leq\gamma_{4}\leq\lambda+\mu$, (2.13)

and that $G_{l}(\zeta)$ can be given as

$G_{\ell}( \zeta)=.\frac{1}{2[(_{C}-\lambda)\mathrm{r}c_{-u})(\mathrm{C}-\lambda-u)}\cross$

where the branch of the analytic square root should be determined by the same
condition as in (2.5). If $\alpha<\beta$ , it is the most generic case $\mathrm{w}\mathrm{h}e$re $G_{l}(\zeta)$ has two
removable singularities and two simple poles. Taking care of the choices of the
branch of the analytic square root in $G_{\ell}(\zeta)$ , it follows that $G_{l}(\zeta)$ has simple poles
at $0$ and $\lambda$ with the residues Res(O) $=1-\alpha-\beta$ and ${\rm Res}(\lambda)=\beta-\alpha$ . Note that

$z=\mu$ and $z=\lambda+\mu$ are removable singularities. By the Stieltjes inversion formula,
it follows that $\nu$ is absolutely continuous with respect to the Lebesgue measure on

the intervals $[\gamma_{1}, \gamma_{2}]$ and $[\gamma_{3},\gamma_{4}]$ with the densities for $t\in[\gamma_{1}, \gamma_{2}]$ ,

$f_{1}(t)= \frac{(t-\frac{\lambda+}{2}\mathrm{A})\sqrt{-(t-\gamma 1)(t-\gamma 2)(t-\gamma_{3})(t-\gamma 4)}}{\pi t(t-\lambda)(t-\mu)(t-\lambda-\mu)}$ , (2.15)

and for $t\in[\gamma_{3}, \gamma_{4}]$ ,

$f_{2}(t)= \frac{-(t-\frac{\lambda+\mu}{2})\sqrt{-(t-\gamma 1)(t-\gamma 2)(t-\gamma_{3})(t-\gamma 4)}}{\pi t(t-\lambda)(t-\mu)(t-\lambda-\mu)}$ . (2.16)

Hence, we have the probability measure as

$d\nu=f_{1}(t)\chi[\gamma 1,\gamma_{2}]dt+f_{2}(t)x[\gamma 3,\gamma 4]^{d}t+(1-\alpha-\beta)\delta 0+(\beta-\alpha)\delta_{\lambda}$ . (2.17)

For the other cases, we can also find the probability measure without much diffi-
culties via the similar arguments and finally we have the following results:
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Theorem 2.2. Let $\{p, q\}$ be a free pair of projections with $\phi(p)=\alpha$ and $\phi(q)=$

$\beta$ , and let $\lambda$ and $\mu$ are positive scalars. Then the distribution $\nu$ for the element
$\ell=\lambda p+\mu q$ is given in the following:

(I) $\lambda>\mu$ ;
(i) $\alpha<\beta$ ,

$d \nu=\frac{-|t-\frac{\lambda+\mu}{2}|\sqrt{-(t-\gamma 1)(t-\gamma_{2})(t-\gamma 3)(t-\gamma_{4})}}{\pi t(t-\lambda)(t-\mu)(t-\lambda-.\mu)}\chi[\gamma_{1},\gamma 2]\cup[\gamma \mathrm{s},\gamma 4]td$

$+(1-\alpha-\beta)\delta_{0}+(\beta-\alpha)\mathit{5}_{\lambda}$ , (2.18)

(ii) $\alpha=\beta\neq\frac{1}{2}$ ,

(2.19)

(iii) $\alpha=\beta=\frac{1}{2}$ ,

$d \nu=\frac{|t-\underline{\lambda}+\ovalbox{\tt\small REJECT}|2}{\pi\sqrt{-t(t-\lambda)(t-\mu)(t-\lambda-\mu)}}x_{[]\cup[\mu}0,\mu\lambda,\lambda+]dt$, (2.20)

(II) $\lambda=\mu_{f}$.

(i) $\alpha<\beta_{f}$

$d \nu=\frac{\sqrt{-(t-\gamma_{1})(t-\gamma_{2})(t-\gamma \mathrm{s})(t-\gamma_{4})}}{\pi|t(t-\lambda)(t-2\lambda)|}\chi[\gamma_{1},\gamma 2]\cup[\gamma_{3},\gamma 4]dt$

$+(1-\alpha-\beta)\delta_{0}+(\beta-\alpha)\mathit{5}_{\lambda}$ , (2.21)

(ii) $\alpha=\beta\neq\frac{1}{2}$ ;

$d \nu=\frac{\sqrt{-(t-\gamma_{1})(t-\gamma 4)}}{-\pi t(t-2\lambda)}x_{[\gamma 1,\gamma_{4}}]dt+(1-2\alpha)\delta_{0}$, (2.22)

(iii) $\alpha=\beta=\frac{1}{2}f$

(2.23)

where $\gamma_{i}’ s$ are given by (2.12).

Of course, the last two cases in are included in the case of $n=2$ of Theorem 2.1
and the last one is nothing but the $\arcsin$ law on the interval $[0,2\lambda]$ .

3. Some applications
The special cases of the measures which we have given in the previous section,
have been obtained as the $\mathrm{s}\mathrm{p}e$ctral measures of the adjacency operators of some
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infinite graphs and the Plancherel measures for some infinite discret $e$ groups. In

this section, we shall show how they connect to our measures.

Definition 3.1. Let $\mathcal{G}=(V, E)$ be an unoriented infinite graphs with the set

of vertices $V$ and one of edges $E$ . One consider the Hilbert space $\ell^{2}(V)$ of all

the square summable functions on $V$ . Suppose $\mathcal{G}$ is uniformly locally finite, that
is, $\deg(\mathcal{G})=\sup\{\deg(u) : u\in V\}<\infty$ , where $\deg(u)$ is the number of edges
emanating from $u$ . Then the bounded self-adjoint operator $A$ on $l^{2}(V)$ , called the

adjacency operator of $\mathcal{G}$ , is defined by

(A$f$ ) $(u)= \sum f(u|v)(v)$
$f\in\ell^{2}(V)$ , (3.1)

where $(u, v)$ forms an edge.

Concerning with the measures in Theorem 2.1, the spectral measures of the
adjacency operators of the infinite distance-regular graphs can be obtained as its
special case.

Definition 3.2. A connected graph $\mathcal{G}$ is called distance-regular if there exists a
function $f$ : $(\mathrm{N}_{0})^{3}arrow \mathrm{N}_{0}$ such that for all $u,$ $v\in V(\mathcal{G})$ and $j,$ $k\in \mathrm{N}_{0}$ ,

$\#\{w\in V(\mathcal{G}) : d(u, w)=j, d(v, w)=k\}=f(j, k, d(u, v))$ , (3.2)

where $V(\mathcal{G})$ is the set of all vertices of the graph $\mathcal{G}$ and, as usual, $d(u, v)$ is the
distance between $u$ and $v$ , the length of the shortest walk from $u$ to $v$ .

The infinite distance-regular graphs have been completely characterized in [10].
They are tree-like graphs and parameterized by two integers $m,$ $s\geq 2$ . The infinite
distance-regular graph $D_{m,s}$ can be obtained from the biregular tree $T_{m,s}$ . Here,
the biregular tree $T_{m,s}$ is an infinite tree where the vertex degree is constant on
each of the two bipartite classes, with values $m$ and $s$ , respectively. The set of
vertices of the infinite distance-regular graph $D_{m,s}$ is the bipartite block of degree
$m$ , and two vertices constitute an edge if and only if their distance in $T_{m,s}$ is two.
Hence, each vertex of $D_{m,s}$ lies in the intersection of exactly $m$ copies of the finite
complete graph $K_{s}$ , in particular, $D_{m,2}$ is nothing but the $m$-homogeneous tree $T_{m}$ .

We consider the free product group
$G=\vee^{*\mathbb{Z}}\mathbb{Z}s*\mathbb{Z}s*m\ldots s$

and the reduced group

$C^{*}$ -algebra $C_{r}^{*}(G)$ . Let $u_{i}(i=1,2, \ldots, m)$ be the unitary generator of each cyclic
group in $C_{r}^{*}(G)$ . Then it is easy to see that, for all $i,$ $p_{i}= \frac{1}{s}\sum_{j=1}^{s}(u_{i})j$ is a
projection with $\tau_{G}(p_{i})=1/s$ . Furthermore, $\{p_{i}\}_{i=1}^{m}$ is a free family of projections
in a $C^{*}$ -probability space $(C_{r}^{*}(G), \tau c)$ , where $\tau c(\cdot)=\langle\cdot\delta_{e}|\delta_{\mathrm{e}}\rangle$ is the canonical
faithful tracial state by the characteristic function $\delta_{e}$ at the identity $e$ .
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From the definitions of the free product and of the infinite distance-regular graph,
it is clear that there exists a bijection between the set of vertices of the graph $D_{m,s}$

and the group $G$ , Furthermore the adjacency operator $A$ can be represented as

$A= \sum_{i=1}^{m}(_{j=1}^{S-1}\sum(ui)^{i})=\sum_{i=1}^{m}(sp_{i}-1)=s\sum_{=i1}mpi-m\cdot 1$ (3.3)

in $C_{r}^{*}(G)$ . Now Theorem 2.1 is applicable with $n=m,$ $\lambda=s$ , and $\alpha=1/s$ . Making
$m$-shift, we have the spectral measure $\nu_{m,s}$ for the adjacency operator of $D_{m,s}$ in
the following: We put the interval as

$I_{m,s}=[s-2-2\sqrt{(m-1)(s-1)}, S-2+2\sqrt{(m-1)(_{S}-1)}]$ (3.4)

and the function

$f_{m,s}(t)= \frac{-m_{\sqrt{}^{-(\overline{t-}}}s+2)2+4(m-1)(s-1)}{2\pi(t+m)(t-m(s-1))}$ , (3.5)

then we obatain the measure

$d\nu_{m,s}=\{$
$f_{m,S}(t)xI_{m,s}dt$ if $m\geq s$ ,

(3.6)
$f_{m,S}(t) \chi I_{m},s+dt(1-\frac{m}{s})\delta_{-m}$ if $m<s$ .

Remark 3.3. The measures that we obtained in Theorem 2.1 can be also found
in [5] and [8]. Especially in [8], they calculated the measure for which a sequence
of polynomials generated from a constant recursion formula, is orthogonal.

Let us state an application of the measures in Theorem 2.2. In [6], Cartwright
and Soardi considered the free product group $G=\mathbb{Z}_{r}*\mathbb{Z}_{s}$ , where $r>s\geq 2$ and the
length for the elements of $G$ was defined. They studied the convolution $C^{*}$ -algebra
generated by the characteristic function $\chi_{1}$ on the elements of the length 1 and
obtain the associated Plancherel measure. This measure can be regarded as the
special case of ours as follows :

Let $u_{1}$ and $u_{2}$ be the unitary generators of the cyclic groups for $\mathbb{Z}_{r}$ and $\mathbb{Z}_{s}$ in
the reduced $C^{*}$ -algebra $C_{r}^{*}(G)$ , respectively. Then the convolution operator $\tau_{x1}$

associated to the characteristic function $\chi_{1}$ is in the form

$T_{\chi_{1}}= \sum(u1)^{i}+r-1S\sum(-1u2)^{j}$ . (3.7)
$i=1$ $j=1$

As we mentioned before, $\sum_{i1}^{r-1}=(u_{1})^{i}$ can be written as $rp_{1}-1$ with a projection $p_{1}$

of trace $1/r$ . Similarly, we have $\sum_{j=1}^{s-1}(u_{2})^{j}=sp_{2}-1$ where $p_{2}$ is a projection of
trace $1/s$ . Hence it follows that

$T_{\chi_{1}}=rp_{1}+Sp_{2}-2$ (3.8)
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and $\{p_{1},p_{2}\}$ is a free pair of projections. Now it is clear that the Plancherel measure

can be obtained as the special case of Theorem 2.2, see also [7].

As we mentioned at the beginning of Section 2, if the family $\{(\alpha_{i}, \lambda_{i})\}_{i=1}^{n}$ is

constituted $\mathrm{f}..\mathrm{r}$om at most two different pairs then we can find the $G$-series explicitly.

Thus, for instance, we can also obtain the Plancherel measure for the group of the

free product of $k$ copies of $\mathbb{Z}_{r}$ and $m$ copies of $\mathbb{Z}_{s}$ .

4. The orthogonal polynomials for a simple sum of n-projections
In this section, we will give the orthogonal polynomials with respect to the proba-

bility measures obtained in Theorem 2.1. As we mentioned in Remark 3.3, Cohen

and Trenholme considered in [8] the the sequence of polynomials determined by the

following constant recursion formula:

$P_{0}(X)=c$ , $P_{1}(X)=^{x-\alpha_{0}}$ ,

$P_{m+1}(X)=(X-a)Pm(X)-bP_{m-}1(X)$ $(m\geq 1)$ , (4.1)

where $\alpha_{0}$ and $a$ are arbitrary real numbers, and $b$ and $c$ are positive numbers.
Furthermore, they calculated the measure $\nu$ , explicitly, for which the sequence of

polynomials $\{P_{m}(X)\}$ is orthogonal. Their normalization for the measure, however,

is not one for the probability measure in general. Here we should note that there is

a typological error in [8] that we have to multiplicate by $c$ on the continuous part

or divide by $c$ on the discrete part in their original result (Thorem 3 in [8]).

We consider the element

$x=\lambda(p_{1}+p2+\cdots+pn)-\lambda n\alpha\cdot 1$

$=\lambda(p_{1}-\alpha\cdot 1)+\lambda(p2-\alpha\cdot 1)+\cdots+\lambda(pn-\alpha\cdot 1)$ , (4.2)

translated so as to be zero-expectation. The probability measure for this element
$x$ is the same as one in Theorem 2.1 but $\lambda n\alpha$ left shifted. We shall derive that
the orthogonal polynomials for the probability measur$e$ of $x$ can be given as the
constant $\mathrm{r}e$cursion formula (4.1) with paramet $e\mathrm{r}\mathrm{s}$

$a=\lambda(1-2\alpha)$ , $b=(n-1)\lambda^{2}\alpha(1-\alpha)$ , $c= \frac{n}{n-1}$ , $\alpha_{0}=0$ . (4.3)

from the combinatorial nature of the element $x$ . If we set $y_{i}=\lambda(p_{i}-\alpha 1)$ then
$\{y_{i}\}_{i=1}^{n}$ is a free family with $\phi(y_{i})=0$ and we have

$y_{i}^{2}=\lambda(1-2\alpha)yi+\lambda^{2}\alpha(1-\alpha)$ . (4.4)

We denote by $s_{m}$ , the sum of all $\mathrm{r}e$duced words (adjacently distinct product) of
$y_{i}’ \mathrm{s}$ , of length $m$ , that is,

$s_{m}= \sum_{ii_{t}\neq\ell+1}y_{i_{1}y_{i_{2}}\cdots y_{i}m}$
. (4.5)
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Proposition 4.1. The set $S=\{1, s_{m}|m\geq 1\}$ is an orthogonal system with
respect to the inner product $\langle x|y\rangle=\phi(y^{*}x)$ .

Proof. By the freeness of $y_{i}’ \mathrm{s}$ , it is $\mathrm{c}1e$ar that $\phi(s_{m})=0$ for all $m\geq 1$ . We also
note the following fact which follows from the freeness and the relation (4.4) by
induction: Let $w_{1}$ and $w_{2}$ be reduced words of $y_{i}’ \mathrm{s}$ such that

$w_{1}=y_{i_{1}}y_{i_{2}}\cdots y_{i}m$ $(i_{f}\neq i_{t+}1)$ , $w_{2}=y_{j_{1}}y_{j_{2}y_{jk}}\ldots$ $(j_{l}\neq j_{f+1})$ . (4.6)

Then we have

$\langle w_{1}|w_{2}\rangle=\phi((yj1y_{j_{2}y}\ldots jk)*(y_{i_{1}y\cdots y))}i_{2}i_{m}$

$=\delta_{m,k}\delta_{i_{1}},j1\delta i2,j_{2}\ldots\delta i_{m},j_{m}(\lambda^{2}\alpha(1-\alpha))^{m}$ , (4.7)

where 5 means Kronecker’s delta. Now it is $\mathrm{c}1e$ar that

$\langle s_{m}|s_{k}\rangle=\phi(S_{k^{S}n}*)=\{$

$0$ if $m\neq k$

$n(n-1)^{m-1}(\lambda^{2}\alpha(1-\alpha))m$ if $m=k$
(4.8)

since $s_{m}$ has $n(n-1)m-1$ terms. $\square$

Let $P_{m}(X)\in \mathbb{R}[X](m\geq 0)$ be the orthogonal polynomials with respect to the
probability measure $\nu$ of the element $x$ . For this sequence of the polynomials, we
make the self-adjoint elements $P_{m}(x)$ , where $P_{0}(x)$ should be regarded as scalar.
The relations (4.4) ensures by induction that the monomial $x^{m}=(y_{1}+y_{2}+\cdots+$

$y_{n})^{m}$ can be expanded as the linear combination of $\{1, s_{1,2,\ldots,m}ss\}$ . Hence, we
can write $P_{m}(x)$ in the form that

$P_{m}(x)= \gamma_{m},0^{\cdot}1+\sum_{j=1}^{\infty}\gamma_{m,j^{S_{j}}}$ $(m\geq 1)$ , (4.9)

where $\gamma_{m,j}=0$ for $j>m$ and $\gamma_{m,m}=1$ .

Proposition 4.2. For all $m\geq 1_{f}$ we have

$P_{m}(x)=s_{m}$ . (4.10)
Proof. Since the elements $P_{m}(x)$ $(m\geq 0)$ are self-adjoint and $\{P_{m}(X)\}$ is a
system of the orthogonal polynomials with $\mathrm{r}e$spect to the neasure $\nu$ , if $0\leq k<m$

then we obtain

$\int_{\mathrm{R}}P_{m}(t)P_{k}(t)d\nu(t)=\phi(P_{m}(x)P_{k(X))}=\langle P_{k}(x)|Pm(X)\rangle=0$ . (4.11)

Hence for $0\leq k<m$ we have

$\gamma m,0\gamma k,0+\sum_{j=1}^{\infty}\gamma m,j\gamma k,j||s_{j}||2=02$ (4.12)

by the orthogonality of the set $S=\{1, s_{j}|j\geq 1\}$ , where $||s_{j}||_{2}^{2}=\langle s_{j}|s_{j}\rangle$ . Setting
$k=0$ , we can see that $\gamma_{m,0}=0$ for all $m\geq 1$ . Take $k=1$ in (4.12) then we have
$\gamma_{1,1}\gamma_{m,1}||s_{1}||_{2}^{2}=0$ , thus $\gamma_{m,1}=0$ for $m\geq 2$ . Increasing $k$ , we can conclude that
$P_{m}(x)=s_{m}$ by induction.
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Proposition 4.3. For all $m\geq 2$ , we have the relation

$s_{m+1}=(x-\lambda(1-2\alpha))sm-(n-1)\lambda^{2}\alpha(1-\alpha)S_{m}-1$ . (4.13)

Proof. We denote by $s_{m}^{(j)}$ the sum of all reducced words of $y_{i}’ \mathrm{s}$ of length $m$ ,

starting not with $y_{j}$ , that is,

$s_{m}^{(j)}=i_{\ell} \neq i\sum_{:_{1\neq^{+1}}\mathrm{j}}y_{iy}t1i2\ldots y_{i}m$

’ $j=1,2,$ $\ldots,$
$n$ . (4.14)

Then it is easy to see that

$s_{m}=\mathit{8}_{m}(j)+yj^{S}m-1(j)$ , $s_{m}= \sum_{j=1}^{n}y_{j}s_{m}^{(i})-1$ ’ $\sum_{j=1}^{n}s_{m}(j)=(n-1)sm$ . (4.15)

Hence we obtain

$y_{j}s_{m}=yjs_{m}(j)+y^{2}j^{S}(m-1j)$

$=y_{j^{\mathit{8}}m}(j)+\lambda(1-2\alpha)y_{j}s^{(}m-j)1+\lambda^{2}\alpha(1-\alpha)s^{(j}m-1)$ . (4.16)

Taking the summation for $j$ , we have

$xs_{m}=s_{m+1}+\lambda(1-2\alpha)_{S+}m(n-1)\lambda 2\alpha(1-\alpha)sm-1$ . (4.17)

$\square$

Moreover it follows by the relation (4.4) that

$xs_{1}=(y_{1}+y2+ \cdots+y_{n})2\sum_{\neq}=yiyj+ij\sum y_{i}^{2}i$

$=s_{2}+ \lambda(1-2\alpha)\sum iyi+n\lambda^{2}\alpha(1-\alpha)$

$=s_{2}+ \lambda(1-2\alpha)_{\mathit{8}1}+(n-1)\lambda^{2}\alpha(1-\alpha)(\frac{n}{n-1})$ . (4.18)

Hence we obtain the orthogonal polynomials with the constant recursion parameters
(4.3) for the probability measure of the $\mathrm{e}1e$ment $x$ .

Comparing the measure in Theorem 2.1 with the renormalized result in [8], we
can also obtain the above parameters but the above method is constructive and
applicable for the case of semiradial (for the measures in Theorem 2.2) in later.

Example 4.4. (The free de Moivre-Laplace theorem) It is obvious that if we take
$\lambda=(n\alpha(1-\alpha))-1/2$ then the element $x$ is standardized to be of variance 1. In this
case, the recursion formula can be given by

$P_{0}(X)= \frac{n}{n-1’}$ $P_{1}(X)=X$ ,

$P_{m+1}(X)=(X- \frac{(1-2\alpha)}{\sqrt{n\alpha(1-\alpha)}}\mathrm{I}Pm(x)-\frac{n-1}{n}Pm-1(X).$

(4.19)
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Taking the limit as $narrow\infty$ , the relation will become one for the well-known Cheby-
chev polynomials, which are orthogonal with respect to the standard semicircle law,
$\frac{1}{2\pi}\sqrt{4-t^{2}}$ . It is nothing but the free analogue of de Moivre-Laplace theorem.

Example 4.5. (The free Poisson distribution) If we put the polynomial $Q_{m}(X)=$

$P_{m}(X-\lambda n\alpha)$ then $\{Q_{m}(X)\}$ satisfies the recursion formula

$Q_{0}(X)= \frac{n}{n-1}$ , $Q_{1}(X)=X-\lambda n\alpha$ ,

$Q_{m+1}(x)=(X-\lambda n\alpha-\lambda(1-2\alpha))Q_{m}(x)-(n-1)\lambda 2\alpha(1-\alpha)Q_{m}-1(x)$ ,
(4.20)

and it must be the orthogonal polynomials for the probability measure of the ele-
ment $\lambda(p_{1}+p_{2}+\cdots+p_{n})$ . The free Poisson distribution can be introduced as the
weak limit distribution that

$\lim_{narrow\infty}((1-\frac{\alpha}{n})\delta_{0}+\frac{\alpha}{n}\delta_{\lambda})\mathrm{f}\mathrm{f}\mathrm{l}n$ , (4.21)

where ffln means $n$-fold free convolution with itself (See, for instance, [21]). It is
obvious that the distribustion (4.21) is the same one for the scalar multiple of the
simple sum of free $n$-projections, $\lambda\sum_{i=1}^{n}p_{i}$ with $\phi(p_{i})=\frac{\alpha}{n}$ . Thus, substitute $\alpha$ in
(4.20) by $\frac{\alpha}{n}$ and take the limit as $narrow\infty$ , we have the recursive relation for the
free Poisson distribution (4.21) that

$Q_{0}(X)=1$ , $Q_{1}(X)=X-\lambda\alpha$ ,
$Q_{m+1}(x)=(X-\lambda(\alpha+1))Q_{m}(x)-\lambda^{2}\alpha Q_{m}-1(x)$. (4.22)

We can also give the orthogonal polynomials for the measures in Theorem 2.2 by
determining the Jacobi parameters for the (non-constant) recursive relation (See
[3] for detail).
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