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Abstract

In this paper we consider Euclidean invariant three-point finite difference approxi-
mations of the curvature of a plane curve and study asymptotic properties of such
approximations. The paper reveals interesting relations between certain three-point
curvature approximations and mechanical and wooden splines.

Discrete approximations of the curvature

Consider a smooth function f(z). A well-known three-point finite difference approxima-
tion of the second derivative of the function and asymptotic expansion of the approxima-
tion have the following form
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The goal of this paper is to analyze asymptotic properties of various three-point fi-
nite difference approximations of the curvature. Since the curvature is a second-order
differential function, it turns out that asymptotic expansions of the three-point curvature
approximations unaffected by the rigid motions are similar to (1).

Let us consider a smooth curve r(s) parameterized by arc length s. Let 4, O, B be
three successive points on the curve. The distances a = |OA|, b = |OB| are assumed to be
small and, therefore, so is ¢ = |AB|. Below we introduce discrete analogs of the curvature
at the central point O based on three points approximations.

We study the approximations expanding them into Taylor series in a and b.
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Let
t=r, n=tt

be the Frenet basis at O. According to the Frenet formulas

t'=kn, n' =-kt.

Approximation via derivatives. The first derivative of r(s) at O can be approximated

as follows A
: r(B) —r(0)  r(0)—r(4) r(B)-r(4)
r=t= + —
, b a a+b
Expanding the right-hand side of of this formula into Taylor series expansion in a and b
and using the Frenet formulas we obtain
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See Appendix A of this paper for details.
The second derivative of r(s) at O can be approximated as follows
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Expanding the right-hand side of (3) into Taylor series with respect to a and b and using
the Frenet formulas we arrive at ‘
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See Appendix A for details. Since k = kn - t1, we can approximate the curvature at O
by
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Now (4), (2), and (5) yield
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It follows from (1) that
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Circle approximation. Let us use the circle passing through the points A, O, B as
an approximation to the osculating circle to the curve at O, see Fig. 1. Then the inverse

Figure 1:

value of the radius can serve as an approximation of the curvature at O. This curvature
approximation was considered in [5, 3, 2]. Let S denote the area of the triangle AOB.
- The discrete curvature at O is given by

_ 45
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Using Taylor series manipulations it can be shown that
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This expansion without the fourth order terms was obtained in [2][Theorem 2.4] (see also
[3] for details). Our derivation of the expansion is similar to that proposed in [2, 3]. It is
outlined in Appendix A of this paper.
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Angle approximation. Another idea to define the curvature of a polygonal line is
based on the definition of the curvature as the rate of change of the angle between the
tangent and the positive direction of the z-axis when we proceed along the curve. Let ¢
denote the turn angle at O (see Fig.1). Following [1, 6] let us define the discrete curvature
at O as

~ Z(p
- . 9
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Applying Taylor series expansions we get
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The derivation is outlined in Appendix A.

General three-point curvature approximation. Note a similarity between (6), (8),
(10). Let us consider a symmetric three-point curvature approximation and denote its
Taylor series expansion with respect to a and b by (x). Like (6), (8), (10) expansion (x)
must be scale invariant. It is clear that we can estimate the curvature using three curve
points but cannot estimate the curvature derivatives. Thus (*) must start from

b—a

K4....
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Similarly, if we set a = b then (x) starts from
Pl (k" +Ck*) +
0 e

where C is a constant.

We can conclude that approximating a smooth plane curve by a polygonal line with
equal links is preferable for accurate curvature estimation.

The nth term in (*) has the form

Po(a,b) k™ + Q,(a,b) k" Yk + ... 4+ Ry(a,b) k"1

where P,(a,b), Qn(a,b), ..., R,(a,b) are homogeneous polynomials of degree n in a and
b. They are symmetric with respect to a and b if n is even and antisymmetric if n is odd.
Since changing the orientation alters the signs in (), then @, (a,b) = 0.

The curvature is a second-order differential function which is unaffected by the rigid
motions. Therefore, any numerical approximation of the curvature requires six numbers,
for example, six coordinates of three points. Similarly, to estimate the nth derivative of
the curvature, £, one needs n + 6 numbers. Thus, £ cannot be estimated from r(A),
r(0), r(B) and k'(0), k"(0), k"(0), ..., k™ Y(0). Therefore, two different three-point
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curvature approximations have the same coeflicients P,(a, b) in their expansions in a and
b. From (6) it follows that

2 (bn-H _ (_a)n—{-l)

Fala,b) = (n+2)!(a +b) 1D

and we have proved the following theorem.

Theorem 1 Let A, O, B be three successive points on a smooth curve, with |AO| = a
and |OB| = b. Consider a symmetric three-point curvature approzimation unaffected by
the rigid motions. Then the following expansion is valid
b—a 2 (b + a®)
k+ K
3 4!(a +b)

) (bn+1 _ (_a)n-!-l)
(n+2)!(a + b)

k" + Ry(a,b) k3]+. . .+[ k™ .. |+0(a, b)),

where Ry(a,b) is a homogeneous symmetric quadratic polynomial in a and b.

Remark. Let ¢,(a) be the angle between the segment OA and the tangent at O and
¥ (b) be the angle between the segment OB and the tangent at O. If o(a, b) is the angle
between AO and OB, then ¢(a,b) = v, (a) + ¥, (b) and ¥, (a) = —1,(—a). Hence,

¢(a,b) = 1, (b) — 9, (—a). From this decomposition it follows that all homogeneous
polynomials in a and b occurring in the Taylor series expansion of (9) are given by (11).

Mechanical and wooden splines

There are interesting relations between curvature approximations (7) and (9) and the
mechanical and wooden splines which are important for CAGD purposes [4].
A mechanical spline called also an elastica curve minimizes the bending energy

%/k‘z ds,

where £ is the curvature and s is arclength. Along the mechanical splines

k3
E'+ — =0.
+ 2
A wooden spline called also a Cornu spiral, or Euler spiral, or clothoid is characterized
by the equation

k/l — 0’

that means the curvature varies linearly with respect to arclength along the spline.
The next theorem follows from (8) and (10).

Theorem 2 Consider an approzimation of a smooth plane curve by a polygonal line with
small equal-length links. '
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o Let us define the discrete curvature at a vertez of the polygonal line as the reciprocal
of the radius of the circle passing through the vertex and two its neighboring vertices.
Consider a polygonal approzimation of a wooden spline. The first error term in the
approzimation of the curve curvature by the discrete curvature is of fourth order
with respect to the length of the link.

e Let us define the discrete curvature at a vertez of the polygonal line as the ratio of the
turn angle at the vertex and length of the link. Consider a polygonal approzimation
of a mechanical spline. The first error term in the approwimation of the curve
curvature by the discrete curvature is of fourth order with respect to the length of
the link. :

This theorem indicates that the relations between the four-parametric families of me-

chanical and wooden splines and approximations (8) and (10) respectively are similar to
the relation between the four-parametric family of cubic polynomials and (1).
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Appendix A

Let r(s) be a plane curve parameterized by arclength parameter s. Consider three points
on the curve

A=r(s—a), O=1x(s), B=r(s+5)
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with distances a = |OA| and b = |OB| between them. Let r=t and n = t+ compose
the Frenet frame at O. Denote by ¢ the angle between AO and OB See Fig. 2.

According to the Frenet formulas
t'=kn, n'=-kt
we have

r =t,

I‘ tl =k n,
r” = (kn) = k'n — k%, |

= (k' th)' — (k" — k3)n — 3k k't,

Expanding r(s + () into the Taylor series with respect to 8 yields

s 2 3 4
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Inverting the Taylor series for b we obtain
B, b 5
B=b+ ok + o kk +0 (v°).
It gives
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Performing similar calculations we arrive at
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and finally
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We can define the discrete curvature at O as

2
a+b

k=

The Taylor series expansion of k with respect to a and b has the form

)

B b—a, (b—al+ab( , k3 5
=k e T B+ ) +0(a, ).

Next terms can be obtained with help of computer algebra systems like MAPLE and
MATHEMATICA.

Similar calculations can be done for E, the discrete curvature defined as the inverse
value of the radius of the circle passing through the points A, O, B.



