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Passing through degenerate points

Takashi NISHIMURA
RIS
Yokohama Natlonal University
(HEENLRF)

e-mail: takashi@edhs.ynu.ac.jp

Two C*™ map-germs are said to be C™ right-left equivalent if they coincide under germs
of appropriate C* co-ordinate systems of the source space and the target space.

Let fo : (R™,0) — (R?,0) (« € RY) be a family of C* map-germs. First, we suppose
that .

«:«Assumpﬁon 0.1 there exists a thin subset 3 of Rf such that f, is not C* right-left
equivalent to fu for any a € R* =X, o/ € X,

Next, let us assume that

Assumption 0.2 it seems that f, and fo are C* right-left equivalent for any o, o €
Rf — ¥ and we want to prove it. -

If a, o/ belong to the same connected component of R* — X, usually we prove it by using
Thom-Lenine criterion ([4]) or its refinements (for instance [7], [2]). However, what can
we use if o, o/ belongs to different connnected components of Rf — ¥ ? Namely, we want
to have a simple systematic method to answer the following problem:

Problem 0.1 Prove that f, and f. are C* right-left equivalent for any o, o’ belonging
to diffenrent connected components of R-27

Until very recently there have been no general methods to answer problem 0.1. The
purpose of this paper is to give a brief explanation of a general method to answer this
problem , which may be regarded as a partial introduction to the author’s paper [12].

In §1, we propose our method. In §2, we explain our strategy which is so constructive
that in some cases we can obtain concrete forms of co-ordinate transformations which give
right-left equivalence of given two map-germs (see §3). In §3, we give several examples.
Assertion 3.2 (2) is an example which answers the more difficult problem than our problem
0.1. The author hopes that §3 shows that our method is genaral and powerful.

1 A criterion

For a given C* map-germ f : (R™,0) — (R”,0), any C*° map-germ 9 : (R"xRk, (0,0)) —
(RP, 0) such that ®(z,0) = f(z) is called a C* deformation-germof f. A C* deformation-
germ @ : (R™ x R¥,(0,0)) — (R?,0) of f : (R",0) — (RP,0) is said to be C* trivial if
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there exist germs of C*° diffeomorphisms % : (R™ x R*,(0,0)) — (R™ x R, (0,0)) and
H: (R? x R*,(0,0)) — (R? x R¥,(0,0)) such that the following diagram (*) commutes,
where 7 : (R™ x R¥,(0,0)) — (R¥,0), n': (R? x R¥,(0,0)) — (R*,0), are canonical
projections.
(@:W) 7T' .
- (R*xR¥ (0,0)) — (R? xR (0,0)) —— (R*0)
() g (f:m) | - ”
(R* x R%,(0,0)) —— (R? xRk, (0,0)) —— (R*,0)
A C* deformation-germ @ : (R™ x R¥, (0,0)) — (R?,0) of f : (R, 0) — (R?,0) is said to
be transversely C* trivial if it is C* trivial and the germ (H ({0} x R¥),0) is transverse
to the germ ({0} x R¥,0), where H is the germ of C* diffeomorphism of (R? x R¥, 0)
given in the above commutative diagram (*).

Theorem 1.1 Let f,9: (R™0) — (R?,0) be C* map-germs. Suppose that there exist
a germ of C* diffeomorphism s : (R",0) — (R",0) and a C* map-germ M : (R",0) —
(GL(p,R), M(0)) such that

(1-2)  fla) = M(@)g(s(x),
(1-b) the C*° map-germ F : (R™ x R?,(0,0)) — (RP,0) given by
F(z,A) = f(z) — M(z)A
18- a transversely C* trivial deformation germ of f.
Then, f and g are C* right-left equivalent.
Therem 1.1 is proved in [12] by using the strategy of §2 below.

2 The strategy

In this section, we explain the strategy for proving theorem 1.1. Note that this strategy
is constructive.

Let f: (R",0) — (R?,0) be a C* map-germ and M : (R",0) — (GL(p,R), M(0))
be a C*° map-germ. We treat two kinds of p-dimensional Euclidean space R?. If we are
considering R? as the target space, then we denote it by RY. If we are considering R as
the parameter space, then we denote it by R%.

We suppose that the C*° deformation-germ F : (R" x R%,0) — (RE,0) of f given by

F(x,\) = f(z) — M(z)A

is C* trivial. Then, from the definition of C™ triviality, there exist germs of C* dif-
feomorphisms ~ : (R* x R, (0,0)) — (R" x R%,(0,0)) and H : (R2 x R}, (0,0)) —
(RE x R, (0,0)) such that the diagram (*) commutes, where m : (R" x R%, (0,0)) —
(RX,0), 7 : (R? x R, (0,0)) — (R%,0) are canonical projections.

(Fyma) 7 ~
(R x R, (0,0)) —— (RExR§,(0,0)) —— (R3,0)

(%) hl Hl o I

(fmr) )
(R* x R2,(0,0)) — (RExRZ(0,0) —— (RZ,0)
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From the commutativity of (**), we may put
h(.’l?, )‘) = (hl(ma >‘)v )‘)

and

H(@/) )‘) = (Hl(ya ’\)7 )‘)
Lemma 2.1 f(hi(z,9(s(2)))) = H1(0,9(s()))-

For the proof of lemma 2.1, see [12].
Lemma 2.2 If the map-germ from (R}, 0) to (RE,0) given by

(2.1) X — Hy(0, )

is a germ of C™ diffeomorphism, then the map-germ given by
(l‘, )‘) — (hl(x’ ’\)’ Hl(ov )‘))

maps the set-germ (F~1(0), (0,0)) onto the germ of graph of f at (0,0).

For the proof of lemma, 2.2, see [12].
Lemma 2. 3 If the map-germ from (R%,0) to (RE,0) given by
A Hp(0,))
is a germ of C* diffeomorphism, then the endomorphism-germ of (R™,0) given by

z = Iu(z, g(s(2))

is also a germ of C™ diffeomorphism.

For the proof of lemma 2.3, see [12].

By lemmata 2.1 and 2.3, we have

Lemma 2.4 Under the above situation, if the map-germ from (RX,0) to (RE,0) given
by
A— Hi(0,))

is a germ of C* diffeomorphism, then f and g are C*™ right-left equivalent.

Remark 2.0.1 |

(1)-  After composing the parallel translation (y, A) — (y—Hi(0, A), A) with H, the map-
‘germ (2.1) for the composed map-germ is the constant zero map-germ. Thus, the
map-germ (2.1) seems to be meaningless. However, before composing the parallel
translation, the map-germ (2.1) is meaningful.
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The essential point of the above strategy is to pay attention to the map-germ (2.1).
Our method differs from Martinet’s one ([5]) in this respect. Thanks to the map-
germ (2.1), we can treat C*° map-germs which are not necessarily C* stable. In
fact, careful observations of the map-germ (2.1) lead us to theorem 1.1.

We are considering only C'* right-left equivalence of very special type. Neverthe-
less, to our surprize, in almost all cases it seems to be enough to consider only such
C* right-left equivalence of very special type.

Our method works well even in topological cases (9], [10],[11], [13]).

Examples

In this section, we denote standard co-ordinates in the source space by lower case letters
z,Yy, z and standard co-ordinates in the target space by upper case letters X, Y, Z.

3.1

Let f, : (R3,0) — (R3,0) be given by

fa(z,y,2) = (z,2y + yz + 2%, azy + 3%,

where o € R. 7
Assertion 3.1 fa is C= right-left equivalent to fy if a # —4.
Remark 3.1. 1

(1)

(2)

(3)

By using ”Transversal” elaborated by N. Kirk ([3]), we see that codimension of
TA(f,) in J*(3,3) is 12 for a # —4 and codimension of T'A(f_4) in J*(3,3) is 17.
Thus, f, and f_4 are not C* right-left equivalent for o # —4.

Since (0,0,z%z) is not contained in T'A(f,) for any ¢ € N, f; is not finitely A-
determined by Mather’s characterization ([6]). By assertion 3.1, f, is not finitely
A-determined for any oo € R. However, by the geometric characterization ([1], [14])
fa is finitely K-determined for any o € R. Nevertheless, existence of degenerate

parameter value (o« = —4) prevents us from using Gaffney-du Plessis criterion ((1.23)
of [2]). .

As by-products of proving assertion 3.1 by our method, we can easily obtain simple
concrete forms of germs of C* diffeomorphisms . '
| Sarta : (R?,0) = (R?,0),

which give C* right-left equivalence of f, and f; for o # —4 (for details, see remark
3.1.2 (1)). ’



(4)

(5)
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In spite of remark 3.1.1 (2), by using Thom-Levine criterion ([4]) we can obtain
concrete forms of C* map-germs

Sarta : (R3,0) — (R?,0)

such that

(@)  3a,L, are germs of O diffeomorphisms if a > —4,
(b) foo§a=faofaifo_z>——4.

Furthermore, since s, and t, are concrete, we see directly -

(c)  Fa,t. are germs of C™ diffeomorphisms even if o < —4,
(d) foo3, =10 fsevenif a <—4.

Thus, assertion 3.1 can be proved also by using Thom-Levine criterion and obtaining
integral curves of vector fields explicitly (for details, see remark 3.1.2 (2)).

However, there are two merits of our method.

First, in our method, concrete forms of s, and t, are merely by-products. We
do not need such concrete forms to prove assertion 3.1. For our method, concrete
forms of constant terms of vector fields are sufficient. On the other hand, concrete
forms of 3, and t, are absolutely necessary if we want to prove assertion 3.1 by
the standard method. Without obtaining integral curves of vector fields explicitly
(without further makeshift calculations), we can not pass through a = —4 when
we use the standard method. In other words, our method is simpler and more
systematic than the standard method.

Second, even for calculations for concrete forms of germs of C* diffeomorphisms,
our method is much easier than the standard method.

Proof of assertion 3.1 We see that

1 0 0
fO(x)yaz) - 0 10 fa(m7yvz)-
—ay 0 1

Thus, the condition (1-a) of theorem 1.1 is satisfied.

We consider the C* deformation-germ of f given by

1 00 A
Fa(aj:yv'z))‘l,)‘?v)%) :fO(xayaz)— 0 1 0 )‘2
—ay 0 1 A3
It is.clear that
oF, 0 OF, 0

o oy 2 Ta, Toaz




Furthermore, we see that

1] 0
OF, 0
v 0}—5)‘5* 0}
—ay | —ay _
0
0 a0 o
= ax 2g M Tg |t
0 0 0
0 o 0 o o o
= —————(F)—=| 0 [ M+=|z|+=]2
0X 20y N 2 0 2 0
0 a O o 0 o 0
== W_EBZ(FO‘)_*—_Z—AIEZ_{—g(X—*—)\I)W
0
a 0 «
+Z‘5;(fo) 7 [g ]
0 a 0 ot 0 « 0
= BX-EBZ(Fa)+?)\1ﬁ+§(X+)\I)W )
a 0 a0 o 0
T78:) " 78,0 T 1ox
a o a0 o 0
= (_25:;—-2—_85+Z£)(Fa)
4+a) 0 «a 0 o 0
T ax TaE Mgy TNz
Put 5 9 9
«a a a
{10 = “46z 28y + 155 £262 =0, £&.=0
and
__+a 0 o N N <
Mo = 1 X 2(X+>\1)8Y 2)‘162’"2’““01/’ Mo = 57

Then, we have

oF, .
(311) _8>\ =£i,a(Fa) _ni,ao(FaaTr)\) (7' = 172,3)
and
_ (44+a) 0 0 0
(312) 771’&(0, 0) = — 4 6X7 7]2,(1(0, 0) - aY’ 773,0((]) O) - aZ
By (3.1.1), integrating germs of C* vector fields

0 0
i ay N ay = ) 2a
§z,a + 6)\1, 777,, + a)\z (7’ 1 3)
yields germs of C'* diffeomorphisms
' o (R*x R3,(0,0)) — (R® x R?,(0,0))
H' : (R®xR3(0,0)) — (R® x R3,(0,0))
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such that the following diagram commutes.

(R? x R3,(0,0)) —— (F-m) (R3xR3,(0,O)) -, (R3,0)

hat Ht |
(f7 T '
(R® x R?,(0,0)) —— (R®xR3,(0,0) — (R30)
Thﬁs, F, is C*™ trivial.
Since e g ,
W:nz,a+—é—5\; (7,:'—“1,2,3), ‘
by (3.1.2) we see if o # —4 then the germ (H;'({0} x R?),(0,0)) is transverse to the
germ ({0} x R3,(0,0)) and therefore (H,({0} x R?),(0,0)) is transverse to the germ
({0} x R?,(0,0)). Thus, F, is transversely C* trivial if a # —4. '
By theorem 1.1, f, is C* right-left equivalent to fo if o # —4. a

Remark 3.1. 2
(1)  Since vector fields
éi,aa o (2 = 1> 2: 3)

are concrete and simple, we can obtain concrete forms of germs of C* diffeomor-
phisms hZ! and H' (a # —4) by solving differential equations directly. Since our
method is constructive (see §2), we can obtain concrete forms of germs of C° diffeo-
morphisms s, and t, which give C* right-left equivalence of f; and f, for a # —4
as follows. '

Let Z; 4 : (R x R3,(0,0)) — (R?,0) be the germs of local flow for &, (i =1,2,3).
Then, we have

El,oz()‘l; E?,'a()‘% E3,a()\3; ($7 Y, Z))))
(8% (6] o
= ($ — Z/\l,y - 5)\1,2 + Z)\l)

Thus, we have

ha((.’l'},y, Z), ()‘1,)‘2)A3))
o o o
= ((z+ Z)\lay + ‘2“)\1, z— Z)\l)a (A1, A2, A3))

and therefore

ha((z, 9, 2), fa(x Y,2))

(((4+a) y+ 2'7; z————a:),fa(a:,y,z)).
Put i+ ) :
sa(zc,y,z)=(( 4ax,y+%m,z—%x).
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Next, let ©;, : (R x R3,(0,0)) — (R?0) be the germ of local flow for 7,
(t=1,2,3). Then, we have

91,(1()‘1; 82,a(>\2; @3,(1 ()\3a (Xa Ya Z))))
O1,0(A1;02,a(A2; (XY, Z — Ag)))
- @l,a()‘l; (X,Y - /\-2) Z - )\3))

_ (x- 4+ a)

2
IV 2
ALY =g = o X+ 16)\1,2 da = D).

Thus, by putting

4+ )

Hyo=Y + X+ = (X+ i

2

M)A — A%,

16

we have

Ha((Xv Y, Z)> ()‘11 )‘Qa )‘3))

= (422

02
Ay Hoo, Z + X3+ Z)\%), (A1, A2, A3))

and therefore

H ((0 O 0a0)>()‘17)\23 )\3))

14+ o 8a + o o
_ ((( 1 ))\1,)\2 (1—6))\%,)\34—2)\%),()\1;)\2’A3))‘
Put 4 8 2 2
n(xv,2) = (g + Bt 70 Sy

Then, we see |
fO © Sa(xa Y, Z) = ta © fa(xa Y, Z)
as desired (for details see §2).

We try to show assertion 3.1 by the standard method. We consider the one-
parameter family given by

éa(x,y;z,t) = (1—t)-fa+tfd
= (=, xy +yz + 22, (1—t)azy + ).

Then, by the similar calculations as in the proof of assertion 3.1, we see that

0 |
z, 0 0 0., .=,
LOJ = 15 7%y ~ 5.0

0
__(—+2X%+2aX(1—t)aaz) a(lzt){ 0 }
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Therefore, we have that for 4+ a(1 — ) # 0

ot
azxy

o 0 0 0., =
T U+all- t))<$ T 5z (Ce)
aX 0 0 ' 0
TATai=1) _t))(a—X +2X5? +2aX(1 "t)E—Z_)'

Thus, by Thom-Levine criterion ([4]), fo and fo are C*° right—le'ft equivalent if
a > —4.

Let o # 0,—4 and Z,, 0, : U x R* — R? be the flow of
ox 0 0 0

(3.1.3) m(% + 26_y — 5;),
(3.1.4) W%(% + 2)(5527 +2aX(1 - t)a%)

respectively, where U is the connected component of R — {(ﬁ;ﬂ} which contains
the origin. Then, by solving (3.1.3) and (3.1.4) explicitly, we have

Sy _ o @ta) I N
St (@v2) = (raao)®! Y Gra@=)>"  Gra@-9)"
_— _ (4+a) (8at + 207 — 0’t?)
Ba(t; (X,Y,2)) = (mX’Y+ (44 a(l —1))2 x5
(8a®t + 203t — 4at? — 20°%t?)
SR !

Note that these integral curves can be extended for any t € R — {142:—“)}
Taking t = 1, we put -

— 4+ a) o a
2\ - 2
L(X,Y,2) = (@%‘JX,Y+£8—9‘—£-‘—“—)X2,Z+%X2).

Note that s, and t, are germs of C* diffeomorphisms for any a # —4. By substi-
tuting, we have directly
o o 8u(,9,2) = Eu© ful2,9,2).
for any o # —4. Thus, we see that f, is C* right-left equivalent to fo by obtaining
integral curves of vector fields explicitly. 0O
Surprisingly, |
So =35, and tg=ta.

This fact might indicate the nature of our method.
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Let fa,g @ (R?0) — (R3,'0) be given by

f(a,ﬁ)(x, Y, Z) = (LU, zy + ayz + 2’2,,63}:1/ + y2)a

where o, 3 € R.

Assertion 3. 2

ey

fia,3) 15 C™ right-left equivalent to fo) if 4 + 28 # 0.

(2) f(a,_%) is C° right-left equivalent to fu 4y for any a # 0.
Remark 3.2. 1

(1)

(2)

(3)

(4)

By using ”Transversal” elaborated by N. Kirk ([3]), we see that codimension of
TA(fap) in J4(3,3) is 12 for a®8 + 4 # 0 and codimension of TA(f(a,-4,) in

J*(3,3) is 17 for a # 0. Thus, f(as) and fu,_4) are not C* right-left equwalent for
o?B+4+#0.

By remark 3.2.1 (2) and assertion 3.2 (1), we see that fg) is not finitely A—
determined for any o, 3 € R. However, by the geometric characterization ([1], [14])
f(a,p) is finitely /C-determined for any «, 5 € R. Nevertheless, non-connectedness of
the parameter space prevents us from using Gaffney-du Plessis criterion ((1.23) of
[2]) for either assertion.

For any «, 8 with a # 0, f(a,) is not C-equivalent to fig ). Thus, for our method

.we need to seek suitable co-ordinate transformations of the source space in advance.

For either assertion, as by-products of the proof by using our method, we can
easily obtain simple concrete forms of germs of C'* dlffeomorphlsms which give C*°
right-left equlvalence

Proof of assertion 8.2 (1)  We see that

1 0 0 1
a2 a2

fooley,z)=| =Py 1 ¢ | fap(@y,2 - Soy).
—pBy 0 1

Thus, the condition (1-a) of theorem 1.1 is satisfied.
We consider the C*° deformation-germ of f( ) given by

0 017
Flap(@,9,2,01, %, %) = fop(@,9,2) = | =22y 1 & || X2 |.
—By 0 1 A3

It is clear that

OFap 0 4 _OFap 0?0 9

)y oY O3 40Y ' 87
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Furthermore, we see that

. ‘
OFap | w9 | _ O _ 2[3 0 a’B d
- o\ - l: __éyy T 8X (f(OO)) | 4 (9X +

0
0 :i
—Py

a8 1+a%8) & B0 |
= “94—6%(1?(%@) +£‘j’40iﬁ—)5)? - g‘a—y(f(o,o)) +“§‘ [ z }

Qﬂ bl
= 7o) Ty

0
0 2
_é_(F(a,ﬂ)) -g [ ~&f

a3 8
= I (Flay8)) —

+§(Oé2,62)\1 + 4ﬂ(X + )\1))”‘~~

Put Qﬁ 9 ﬁ 5
£1)(a’ﬁ) = 4 81? 2 a ? 62 (a,ﬁ 07 537(0‘7[3) = 0

and .
(4+a?8) 0 1 o ﬁ2
Mo =~ gx ~ g @B M +BX + M) gy - Fhgs
0 a? 8 0
M2,(a,8) = oy’ M3 (a,8) = A A

8Z

Then, we have

‘ aFa ' .
(321) a(,\ 2 = &0 (Flap) = Miap © (Fag,m)  (i=1,2,3)
and
4+ a?B) 0
(3'2'2) nl:(anB) (0’ 0) - 4 5}7
0 o? 0 0
(3.2.3) N2,0,0)(0,0) = 8Y’ 13,(e,8) (0, 0) = Y AR

By (3.2.2), integrating germs of C* vector fields

0 )
Ei’wﬁ), + _6_>\;9 i (a, a)\z (7’ — 1,4

yields germs of C* diffeomorphisms |
hims : (R*x R (0, 0)) — (R?® x R3,(0,0))
Hil, :© (R*x R (0,0)) — (R® x R%,(0,0)
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such that the following diagram commutes.
(Fla,8):m) '

(R®* x R%,(0,0)) ——— (R®x R (0,0)) —— (R?,0)
R ) (Fo.0)m) Hi's) o I
(R®x R%,(0,0)) —— (R®xR3,(0,0)) —— (R3,0)

Thus, F, 5 is C* tr1v1a1
Since
OHap) _
| O\ )Y
by (3.2.2) and (3.2.3) we see if 4 + o3 # 0 then the germ (H@l’m({O} x R?),(0,0))
is transverse to the germ ({0} x R?,(0,0)) and therefore (H,p ({0} x R3),(0,0)) is

transverse to the germ ({0} xR?, (0,0)). Thus, F, s is transversely C* trivial if 4+ a2f3 5
0.

By theorem 1.1, fia,5) is C* right-left equivalent to fo if 4 + a8 # 0. O

(t=1,2,3),

Remark 3.2. 2

(1)  Since vector fields
. Siep) Mi(ap)  (1=1,2,3)
are concrete and simple, we can obtain concrete forms of germs of C* diffeomor-
phisms h(;l’ g and H (:ﬁ) (02B+4 # 0) by solving differential equations directly. Since
our method is constructive (see §2), we can obtain concrete forms of germs of C*

diffeomorphisms s(a,4) and ¢(a,s) which give C* right-left equivalence of f(,0)(z, y, z)
and f(a,0) (%, v, 2 — 5y) for o, 8 with o208+ 4 # 0 as follows.

Let E a6 : (R xR?(0,0)) — (R?,0) be the germs of local flow for &; () (i =
1,2,3). Then, we have '
E1,(0,8) (A5 E2,(e,8) (A25 B3, (0,8) (A3 (2,9, 2))))

2
o
(z — T/\hy — g)mz)-

Thus, we have

h(aﬁ)((x Y, 2), (A1, A2, A3))

= ((z+- 6)\1,y+ﬂ/\1, )()\1,)\2,.)\3))

and therefore

) (87
h(a,ﬁ)((_’ﬂ7 Y, Z)) f(a,ﬁ)(x, Y,z — —2-y))

4 2
= ((_(_—:I%@xay + gxa Z)7f(a1ﬂ)(x’y’ z— %y))

Put

| 4402 Jé;
S (7Y, 2) = ((——4-—@33, y+352,2).
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Next, let ©; ., : (R x R3,(0,0)) — (R?0) be the germ of local flow for 7; (.5
(¢ =1,2,3). Then, we have

010 (15 O, (a0) (N2 O 09 (N (X, Y 2))))
a2
= 01 (A1 O2(ap(Nai (XY = 725, Z = X))

2 B
a.
= Ouep(A (LY = —rAs =, 7 - A3))

4+ o? o? | 2
(X — E__.L_l__ﬁl,\l,Y — Z/\3 — X — gX)mZ — A3 — z‘/\%)*
Thus, by putting
. 2 4 2
H o =Y + Z)‘?’ thty e (_jLTa@)‘l))‘l’

we have

H(a,ﬂ)(<X7 Y, Z),(M, Ae, A3))
(4+ a2B)

2
1 M, Haap), Z + As + @4—)\%), (A1, Az, Az))

(X +

and therefore

H0,((0,0,0,0), (>\1,>\2,>\3))

_ latats) a?ﬂ) (48 + a28Y)

) A
A1, A2 +—)\ + 3 )\%’)\3—'_7[)\%)’(/\1,)\2,)\3))-

Put

2 2 232 2
tes) (X, Y, Z) = (MX’)/_}_ Yz MXQ,Z—i— _'6_X2).
' 4 4 8 4 _
Then, we see

-2y

f0,0) © 5(a,3)(%, ¥, 2) = tia,p) © f(ap) (T, Y, 2 5

as desired (for details see §2).

Proof of assertion 2.8 (2)  We see that

| 1 0 0 |
-1
f(l,——4)(1:7 Y, Z) = %(QZ - 1)y 1 i(Oﬁ - 1) f(a,—fg)(x’ya z— E(a - 1)y)
%=1y 0 1

Thus, the condition (1-a) of theorem 1.1 is satisfied.
We consider the C* deformation-germ of f(; -4y given by

1 0 0 A1
Fa(zayv‘za )‘1))‘27)\3) = f(l,—4)(x)y7 2) - | a_lZ‘(a2 - 1)y 1 %(az - 1) )‘2 .
| —5@®-1y 0 1 A3



It is clear that

_QEE —ﬁ_ and _aF"‘ —1(a2_1)_6_+,.a__

AN Y s 4 oy ' az

Furthermore, we see that .‘
1 .
OF, 1/ 2 _ 0 1, 4 o ,. 1, 5 0
o, | A } = ax tal@ " Vglu-0) - Hle-1a%
—S(a* =1y ‘ .
1., 0 1 0
= .012(0[ | 1)5:;(Fa)+;a—)(—
Thus, by putting ' 5
1
a0 = @(012 - 1)5:;, f2,a =0, 53,a =0
and
N S B PPN I

e = "2gx e T Tgyr BeT Ty oy oz’

we again obtain the equalities
oF, : .
(3:2.3) o = §ia(Fo) = Miao (Faym)  (1=1,2,3)
and
10 0 1., 0 0

(324)  me(0,0)= TI5X M2,2(0,0) = 3y M,a(0,0) = 4(0 1)5; s

Thus, again by integrating

E. _|___(?._ . +~_8._
2, 6)\i7n2,a aA

i

(1=1,2,3),

we see that F, is C trivial.
By (3.2.4), F, is transversely C* trivial if o # 0.
Therefore, by theorem 1.1, f, _ 4y is C right-left equivalent to f(; 4 if & # 0.

Remark 3.2. 3

(1)  Since vector fields
é-i,av o (Z = 1) 2a 3)
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are concrete and simple; we can obtain concrete forms of germs of O diffeomor-
phisms A and H;!' (a # 0) by solving differential equations directly. Since our
method is constructive (see §2), we can obtain concrete forms of germs of C- dif-
feomorphisms s, and t, which give C* right-left equivalence of f(;,_4)(2,y, z) and

fla-2y(@,y,2 — (= 1)y) for o # 0 as follows.

Let Z, : (R x R3,(0,0)) — (R3,0) be the germ of local flow for Ew (1=1,2,3).

Then, we have
El,a<)\1; E2,a()\2; Es,a)()\a; (z,v,2))))
1
= (1' + ?(az ﬁi)Al'ayaz)'
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Thus, we have

ha((l', Y, Z), ()\17 /\2: XB))

- (@- &}5(@2 — 10 0,2), O, ds M)

and therefore

h/a((x: Y, Z)a f(a,—fg)(x> Y,z — —;—(C\{ - 1)y))

1 1
% ((gjx7y7z_)7f(a,_,;%)(x7y,z - i(a — 1)’y)

Put

1
SQ(I, Y, Z) = (gjxa Y, Z).

Next, let ©;, : (R x R?,(0,0)) — (R?0) be the germs of local flow for 74
(i = 1,2,3). Then, we have o

@1,a()\1; @2,a()\2; @3,a(>\3; (X, Y, Z))))
1
= O14(A1;O20(A; (XY — Z(sz —1)A3,Z — A3)))

1
= el,a(Al; (X;Y — Z(az — 1))\3 — )\2, Z — )\3))
1

1
= (X - (—:ﬁAl,Y - Z(CY2 - 1))\3 - )\Q,Z — )\3)

Thus, we have
Ha((X1 Ya Z)> (/\17 A?a >\3))
1 1
= (X + 30 Y +3(0" = D+ X, 2+ Xg), (M, Ao, As))

o

and therefore
| Ha((0,0,0,0), (>\1a)‘21)‘3))
1 1
= ((@/\1; Ag + Z(Oﬁ —1)A3,A3), (A1, A2, As))

Put . ,
tap)(X,Y, 2) = (5 X,Y + 2(a* = 1)2, 2).
Then, we see

o 1
f(l,——4) © sa(m,y,z) =140 f(a,—o%)(ma Y,z — E(a —1)y>

as desired (for details see §2).
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