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A SURVEY ON SINGULARITIES OF SOLUTIONS FOR
FIRST ORDER PARTIAL DIFFERENTIAL EQUATIONS

SuHYUICHI IzuMivA (RE JE—) |

HokkiaDO UNIVERSITY (b#EE RZEKRFBEHZMIER )

1. INTRODUCTION

This is a survey article on recent results about the singularities of solutions for first order
partial differential equations. Firstly we consider the followmg two kinds of first order partial
differential equations:

Q) Z ai(z

(H) H(:Bl,...,

,y)=0

51/ oy \
.’L'n,aml,...,-a—zv—;)-—

where a;(z,y), b(z,y) and H(z,p) are C*°-functions. Here the equation (Q) is called a
quasilinear first order partial differential equation (briefly, a quasilinear equation ) and (H) is
* called a Hamilton-Jacobi equation. These equations are well studied in several articles ([2-9,
11-14, 19-22, 24-28], etc.). For the study of quasilinear equations, the theory of entropy
solutions has provided the right weak setting (see, for example [22]). For Hamilton-Jacobi
equations, the theory of viscosity solutions is appropriate one ([5-7]). However, these notions
of weak solutions have quite different features. Under the some assumptions, the entropy
solutions are discontinuous and the viscosity solutions are continuous.
We refer the following two typical examples of these equations.

Example 1.1. We consider the following equatibns.

Oy 8y
/ — =
Q) Fo: + 2y (9m2 0
Oy
! 2
(H') é)ml (8.1:2) =0.

We can explicitly solve these equations by the classical method of characteristics, when the
initial condition is y(0,z2) = sinz,. The pictures. of the graph of geometric (multi-valued)
solutions of these equations are given in Figure 1. These pictures are useful to understand
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the difference between these two equations. We can observe that the geometric solution for
(Q') is a smooth submanifold but for (H’) is not smooth in the (zy, z2, y)-space.

Q/ HI

Figure 1
We can easily choose the continuous branch of the multi valued solution for (H'). However,
we cannot choose the continuous branch of the multivaleud solutions for (Q’).

2. GEOMETRIC FRAMWORK FOR TIME-DEPENDENT HAMILTON-JACOBI EQUATIONS

In which we give a brief review of the geometric framework for the study of singularities
geometric solutions of the time-evolutional Hamilton-Jacobi equations ([14-17]):

9y 9y dy
—= t,Z1,... = =
(P/) ot +H( 1 L1, » T, 81131’ :amn

y(O,CEl, Tt amn) = (Zs(xl, ot )xn)a

)=0

We describe the theory for the general case here.

Let J'(R™ R) be the 1-jet bundle of functions of n-variables which may be considered
as R®™*1 with a natural coordinate system (z1,...,Zn, ¥, D1, ..., Dn), Where (Z1,...,2Zn) is a
coordinate system of R™. We also have a natural projection 7 : J}(R?,R) — R"™ x R given
by m(z,y,p) = (z,y).

An immersion germ ¢ : (Lo, ug) — J(R™,R) is said to be a Legendrian immersion germ
(i.e., Legendrian submanifold germ) if dimL = n and i*6 = 0, where § = dy — S ooy Di - dz;.
The image of m o7 is called the wave front set of ¢ and it is denoted by W (i). We also
consider the 1-jet bundle J'(R x R™ R) and the canonical 1-form © on that space. Let
(t,z1,...,2n) be a canonical coordinate system on R x R™ and (t,Z1,...,Tn, Y, $, D1, - - -, Pn)
the corresponding coordinate system on J'(R x R™, R). Then, the canonical 1-form is given
by @ =dy— 3" pi-dr;—s-dt=0—s-dt.
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We define the natural projection IT : J*(R x R",R) — (R x R™) x R by II(¢, z,y,s,p) =
(t, z,y). We call the above 1-jet bundle an unfolded 1-jet bundle.
A Hamilton-Jacobi equation is defined to be a hypersurface

(G-H-J) E(H)={(t,z,y,s,p) € J'(R xR*,R)|s + H(t,z,p) = 0}

in JH(R x R",R). A geometric (multi-valued) solution of E(H) is a Legendrian submanifold
Lin JY(R x R",R) lying in E(H). In this case the wave front set W (i) is “the graph” of the
geometric solution which is generally a hypersurface with singularities.

In order to study (P) we need the following framework: For any c € (R, 0), we define

E(H) = {(C,.’E,y, ~H(c,z,p),p)|(z,y,p) € Jl(anR)} .

Then, E(H), is a (2n+1)-dimensional submanifold of J*(R xR",R) and O, = O|E(H). =
dz — Y, pidz; gives a contact structure on E(H).. We define a mapping ¢ : J HR™, R) —
E(H), by t(z,y,p) = (¢c,z,y,—H(c,z,p), p). The mapping i, is a contact diffeomorphism
and the following diagram is commutative:

JYR™ R) —=— E(H).

| [

R™ x R R™ x R.

'We say that a geometric Cauchy problem (with initial condition L") associated with the
time parameter(GCPT) is given for an equation E(H) if there is given an n-dimensional
submanifold i : L' ¢ E(H) with i*© = 0 and (L") C E(H). for some ¢ € (R,0). Since
Xy ¢ TE(H),, we have Xy ¢ TL’, where Xp is the characteristic vector field given by

0 ”aHa —~ O8H _ a OH 8 0H 0
XH_EE—*_; (sz i _y____é?as Z@xiapi

By using the classical characteristic method, we can show that there exists a unique geometric
solutions around L.
We remark that Cauchy problem (P) is a GCPT. The initial submanifold is given by

L¢,o={(0,w,¢(w) —H(0,z ’a ) )| ER"}CE(H)O.

The problem of studying the singularities of the graph of the geometric solution is formu-
lated as follows:

Geometric Problem. Classify the generic bifurcations of wave fronts of

m|: LOE(H); — R" xR



81

with respect to the parameter t (i.e., the generic bifurcations of wave fronts of geometric .
solutions along the time parameter).

Following [16], in order to study the singularities of the geometric solution we identify geo-
metric solutions with one-parameter Legendrian unfoldings. Let R be an (n + 1)-dimensional
smooth manifold, 1 : (R, uo) — (R,%0) be a submersion germ and £ : (R, uo) — J(R", R) be
a smooth map germ. We say that the pair (u,£) is a Legendrian family if £, = p=t(t) is a
Legendrian immersion germ for any ¢ € (R, ¢y). Then there exist a unique element h € Cao(R)

such that £*0 = h - du, where CZ2(R) is the ring of smooth function germs at ug. Define a,
map germ L : (R, up) — J}(R x R*,R) by

L(w) = (u(w), z o &(u),y o £(u), h(u), p o £(u)).

We can easily show that £ is a Legendrian immersion germ. If we fix 1-forms © and 0, the
Legendrian immersion germ £ is uniquely determined by the Legendrian family (u,£). We
call £ a Legendrian unfolding associated with the Legendrian family (u, £).

We have to study how various branches of the multi-valued graph W; = ({t} x R” x R) N
W (i) intersecting at a point bifurcate in time for an arbitrary Hamiltonian H (t,z,p) in [17].
We classify the bifurcations of the branches of the graph by classifying the bifurcations of
singularities of multi-Legendrian unfoldings which are expressed in terms of multi-germs.

Let £; : (R,u0) — (JY(R x R",R),%) (i = 1,...,7) be Legendrian unfoldings with
H(z;) = 0 where 21,..., 2, are distinct. We call (Ly,...,L,) a multi-Legendrian unfold-
ing. Let (L1,...,L;) and (£,...,L]) be multi-Legendrian unfoldings. We say that these
are P(y-Legendrian equivalent if there exist contact diffeomorphism germs

Ki: (J' R xR™R),2) - (J*RxRY,R),2) (i=1,...,r)

of the form Kz(ta Ty, 3,]9) = (¢1 (t)a ¢2(t: Z, y)) ¢3(t7 T, y)7 ¢}L(t7 T,Y, Sap)7 ¢’g(t7 Y, $7p)) and
a diffeomorphism germ V¥ : (R,up) — (R,uf) such that K; 0 £; = L, o ¥ for any i =
1,...,7. It is clear that if two multi-Legendrian unfoldings are Py-Legendrian equivalent,
then there exists a diffeomorphism germ @ : (R x (R™ xR),0) — (R x (R” xR), 0) of the form
(2, y) = (1(t), pa(t, z,9), #3(t, z,y)) such that &(UI_, W (L;)) = Ur_,W(L;). Thus the
above equivalence describes how bifurcations of wavefronts (i.e. graphs of solutions) interact.
We can define the notion of stability with respect to the Py-Legendrian equivalence in
the same way as for the ordinary Legendrian stability (see [1,29]). Motivated by Arnol’d-
Zakalyukin’s theory ([1, 29]), we can construct multi-generating families of multi-Legendrian
unfoldings and give a classification of P(r)-Legendrian stable Legendrian unfoldings by using
the classification of multi-families of function germs in Zakalyukin [29]. We get a list of
classifications for n = 1,2,3 in [17]. However, we only present the list of classifications for
n = 1. For the case n = 2,3, see [17]. ‘

Theorem 2.1 [1]. Suppose that n = 1. Then a generic multi-Legendrian unfolding is P)-
Legendrian equivalent to one of the multi-Legendrian unfoldings in the following list :
r=1;
%4; : (t,4,0,0,0);
%4 : (t,3u?,2u®,0,u) ;
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43 ¢ (b, 4u® + 2ut, 3ut + u?t, —u?, u).

r=2,;

O(OAl OAl) : ((t’ u, —u, O: —1)’ (t’ U, U, 0> 1)) ;

1(04;°4;) : ((t,u,t £u?1,%2u),(t,4,0,0,0));

14,04, @ ((t, 3u® — t, 203, u, u), (t,u, —u,0,-1)).

r=3,;

04;%4:%4; : ((¢t,u,t —u,1,-1),(¢%,0,0,0), (,u,u,0, 1)).

When we consider the geometric solution, we can get rid of the germ 1(94; °A;) from the
above list because the geometric solution is a one-to-one immersions into the unfolded 1-jet
space. For the purpose, we need a kind of non-degeneracy condition on the Hamiltonian
function. We say that a Hamiltonian function H(t,x,p) is non-degenerate at (to, Zo,po) if

it %(to,xo,po) # 0 for some 1 < 4,7 < n. This condition is weaker than the condition

that H(t,x,p) is convex (or concave) with respect to (pi,...,pn)-variables at (to, Zo, po) for
n > 2. The following theorem is a realization theorem for generic singularities for a given
Hamilton-Jacobi equation. :

Theorem 2.2 ([17,18]). Let H(t,z,p) be a non-degenerate Hamiltonian function germ at
(to, To,po) and L : (R, ug) — (JYR x R™,R), (to, o, Yo, S0, Po)) be a P(1)-Legendrian stable
Legendrian unfolding associated with (p,£). Then there exists a Legendrian unfolding L'
which is a geometric solution of the Hamilton-Jacobi equation s 4 H (t,x,p) = 0 such that L
and L' are P(;)-Legendrian equivalent.

We remark that A3 singularity (even for general n) describes how the singularity appears
from a smooth solution. These are P(;)-Legendrian stable Legendrian unfoldings, so that these
can be realized as geometric solutions at the non-degenerated point for a given Hamilton-
Jacobi equation. We can asserts the detailed statement for the case that the Hamiltonian

function depends only on (p1, ..., Pn)-variables. In this case the Cauchy problem is given by
Ay Oy Oy
< H(—/—, ... y =) =

() ot Ve a0

y(oamlv e awn) = ¢(fE1, te 73771)7
where H and ¢ are C*-functiions. Then we have the following proposition.

Proposition 2.3. Let s + H(p) = 0 be a Hamilton-Jacobi equation. If a singularity of
geometric solution for the Cauchy problem (P') appears at a point (to,Zo,po), then H is
non-degenrated at (to, o, Do)

In this case the characteristic equation is given by

( dx; O0H ]
i api(p) (i=1,...,n),
@= (1=1,...,n),

()

N

dy = OH
&~ —H(p) + . - —(p), z,p € R™,
I (p) ;ﬂl Pi G (p), z,p

| 2(0) = u, p(0) = 22 (u), y(0) = $(u), u € R,



83

We can explicity solve the charcteristic equation as follows:

9¢ w) (i=1,...,n),
% L
au(u) (7’—17"-)”)7

2

( zi(t,u) = u; + gH

)  piltu) =

( N} +¢(U)

(e, w) = H{~H (32 () +2 L

\

3. VISCOSITY SOLUTIONS

The viscosity solutions for nonlinear equations of first order have been introduced by
Crandall and Lions [7]. Such solutions need not be differentiable everywhere, as the only
regularity required in the definition is that of continuity. The function y, € C(O) is a
viscosity solution of

Oy
ot

0y

(H-J) " By 8mn

+H(t, Yy =9

in the open domain @ C R* x R™ provided

9y

3¢
%I(t, CL'), .

%—f(t, z)+ H(t,z, (t r)) <0, (resp. > 0)

for any 1 € C*(O) for which y, — ¢ attains a local maximum (resp. local minimum) at the
point (t,z) € O. The function y, € C([0,00) x R") is a viscosity solution of the Cauchy
problem (P) if and only if it is a viscosity solution of (H-J) in the domain (0, 00) x R and
satisfies the initial condition lim;_,o+ ¥o(¢, ) = ¢(z). The above inequality will be referred as
the viscosity criterion at the point (¢, x). We next state the viscosity criterion in a form which
is more useful for the construction of the solution. To this end, assume that O C (0, 00) x R®
is open and that there is a smooth hypersurface I' of R* x R™, which divides O into two open
sets OF and O, O =T U OF UO~. Then we have the following theorem.

Theorem 3.1. Let y, € C(O) and y, = yg in OV UT,y, = y; in O~ UT where yT €
CY(O* UT). Then y, is a viscosity solution of (H-J) in © if and only if the following
conditions hold:

a) yT and y; are classical solutmns of (H-J) in OF and O respectivelx

b) If the vector 7} = (H(t, z, 690 ) H(t,z, %%) —(am1 69:1 yee s gg: — gi; )) points into
O™, then

+ -_—
H(t,m,(l—)\)agg +)\65;)—(1—)\)H(t,x,8 ) — AH(t, m,aa )<0

(resp. > 0), where X € [0, 1].
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In particular, the graph of H lies respectively below or above the line segment joining the
: dyg dyy dyy dyy
points | %=, H(t,z, 5>) ) and H(t,z, =) ).

oz oz ? 'y Bz

The proof of Theorem 3.1 is given in ([20, 21]) as a direct application of Theorem 1.3 in [5].
The condition b) will be referred in the sequel as the viscosity criterion. The hypersurface
T in the neighbourhood of which y, has the properties specified in the above theorem is the
shock surface. If the Hamiltonian is uniformly convex (or concave), we can automatically
construct viscosity solutions from our normal forms, so that we can easily draw the pictures
of shock surfaces for lower dimensional cases. In [4] Bogaevskii has shown that the potential
solution of the Burgers system with vanishing viscosity is given by the minimum function of a
certain family of smooth functions. It corresponds to the viscosity solution of the Hamilton-
Jacobi equation when the Hamiltonian is given by H(p1,...pn) = spi+---+ %pfb He has
drawn the pictures of shocks for this case. Our pictures are same as his pictures, so we do
not present these in here (see [4]).

On the other hand, Bogaevskii used Florin-Hopf-Cole method ([10, 12]) to detect the
solution for the Hamilton-Jacobi equation correspoding to the Burgers system. However,
his method works for geral Hamilton-Jacobi eqauations which are convex with respect to
(p1,...,Dn)-variables. In this case we apply Bardi-Evans’ result[2] to our situations in stead
of Florin-Hopf-Cole method. The geometric solution for (P’) is given by

(S) qu,t - {(ta w(t7 ’LL), y(ta u)7 _H(p(t’ U)),p(t, ’LL))|’LL € Rn} y
where

( 0H ,0¢
() = ut 5 (G W),

{ plt ) = 2 (w)

Lyt ) = {-H R @)+ < G2, G (Gow) >} + o).

We consider a family of functions F(t,z,p,q) = ¢(¢)+ < p,(x — q) > —H(p)t, where
(t,z,p,q) € R x R® x (R x R™) and <, > is the canonical inner product on R™. We have

0H ,0¢ ¢
= —_—— t. — n
2(F) = {(ta+ G0 (o)t 5o (@0l ) € R X B,
where X(F') is the set defined to be }% =0 and —SZ = 0. We now define a map &y : E(F) —

JYR x R, R) by ®r(t,z,p,q) = (t,z, F(t,z,p,q), %, %%). It follows that

Br(tya+ GG G 0.0) =
tra+ GG @) ~H G @+ < @), 5 (Go) > +6),

~H(E @), 5 )

This shows that the image of the map ®p is equal to Ly ;, namely, F is a global generating
family of Ly ;.
We refer the following result of Bardi-Evans [2].
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Theorem 3.2. Assume that the Hamiltonian H(p,...,p,) is convex, then
y(t,z) = infsup{d(g)+ < p, (¢~ ¢) > —H(p)t}
‘ P

is the unique viscosity solution of (P).
Then we have the following theorem as a corollary of the above theorem.

Theorem 3.3. Assume that H is uniformly convex and ¢ has the minimum. Let Ly be
the geometric solution (S) of the Cauchy problem ( rm P'). Then

y(t, x) = n:;}n{yl(ta T, y) S H(Lfﬁyt)}
is the unique viscosity solution of (P’).

However, for general (non-convex) Hamiltonian, situations are quite different.

4. NON CONVEX HAMILTONIANS IN ONE SPACE VARIABLE

In this section we stick to the Cauchy problem of Hamilton-Jacobi equation in one space
variable as follows:

Oy Oy,
®) 5 TH(2) =0

y(0,z) = ¢(z),

where H and ¢ are C*°-functions. Since H(p) is not assumed to be uniformly convex (or
concave), we cannot use Theorem 3.3, so that the situations should be quite complicated even
for the one space variables case.

In this case the geometric solution is given by

Ly = {(t,2(t,u), y(t, w), —H (p(t, w)), p(t, w))|u € R},

where
z(t,u) = u+tH'(¢'(u),
p(t,u) = ¢'(u)

| y(t,u) =t{—H(¢'(v)) + ¢' (W) H' (¢ (u))} + $(w).

Before the first critical time that characteristics cross in the (¢, z)-plane, W; is the graph
of the viscosity solution y,. After the characteristics cross, W; becomes singular. Theorem
2.1 describes the generic singularities of W;. The first singularity appears in the form of 145.
See Figure 2a, where we show the shape of the appearing singularity. By Proposition 2.3,
these appear at the convex or the concave points of the Hamiltonian function. Away from
the singularity, the viscosity solution is given by W;. In ([17], [18]) we have constructed the
unique viscosity solution past the first critical time by selecting a single-valued branch of W;.
Assume that the singularity of type As appears at the point (to, xo,po). After the critical
time ty, the wave front W; is three-valued on an interval (z(t), z2(t)); see Figure 2b. Let y;,
i = 1,2,3 be the three branches of W, where y; is defined on a neighborhood of z;(¢) and
Y2 on a neighborhood of z3(t). Then yi, y, intersect at one point x(t) € (z1(t), z2(t)), for

t > to. We define the viscosity solution past ¢y by selecting a continuous single-valued branch
of W; as follows:
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Theorem 4.1. There exists an ¢ > 0 such that the function y,(t, ), (t,z) € (to,t0 +€) X
(z1(2), .’Ziz(t)), defined by

y1(t,z), T < x(2)
y3(ta 'T)a z 2 X(t):

*) Yo(t,2) = {

is the viscosity solution of (P) in a neighborhood of o past the time to.

In view of Proposition 2.3 the viscosity criterion (see Section 3) is satisfied across x(t)
while y, defined by (*) is a classical solution away from x(t). Hence, by the uniqueness - of
the viscosity solution, (*) gives the viscosity solution of (P) past to.

By this construction, we have extended the viscosity solution beyond the first critical time

to.
x(t,u)
/NN X o
Ty(t) peenees ? { N

\—/ \/ \ i xl(t) vanw :...i ..... v

i4 | - : P U

“*3 Uy U2 U3 Ug

Figure 2a Figure 2b Figure 2¢

According to Theorem 2.5 the shock is generated in a convex or concave domains of H(p),
so the viscosity criterion is automatically satisfied. The graph of the viscosity solution past
the first critical time is depicted by a full line in Figure 2.c, where we assume that H is
convex in the neighborhood of the appearing singularity 145. The shock corresponds to the
intersection of the two branches and it is called a genuine shock. The genuine shock is defined
as the intersection of two incoming characteristics (or waves) and its speed is given by the
Rankine-Hugoniot condition

H(yg.2(t, x(1) = H(ys(t; X(2)))
ySL,m(t, X(t)) - yb_,z(t7 X(t))

X' (t) =

)

where yf’w = %’g— and x/(¢t) = -‘%(t). Therefore in order to follow the evolution of the shock
we have to study the following questions:

a) How different branches of the multi-valued graph of W; intersecting at one point bifur-
cate in time.

b) If the two branches initially defining the shock continue to cross, whether the viscosity
criterion is satisfied across the intersection.

If the viscosity criterion is satisfied at the time t, = to + €, we can choose the correct
branch of the graphs of the geometric solutions as viscosity solutions.
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We will now investigate how the viscosity criterion can be violated across the intersection of
two branches. Assume that a generated shock is defined by two intersecting branches y~ and
y*. We denote by y~ (resp. y*) the branch representing the viscosity solution for z < x(t)
(resp. z > x(t)). If the two branches remain intersected they evolve according to ©(°A; °4,).
We denote by x(¢) the intersection of the two branches. In the case when H(p) has only one
inflection point Kossioris [20] studied this problem and constructed the viscosity solutions.
We consider the general situation here. It is clear that for generic Hamiltonian function
H(p), H has only Morse type critical points and no tritangent lines. So we assume that the
Hamiltonian has the above properties. By Theorem 2.1, we have the following theorem.

Theorem 4.2. For a generic initial function ¢, if the viscosity criterion is violated at tas

then the only following 8 cases may occur: '

(1) The normal form is °(°A; °A;) and P+P~ is tangent to the graph of H(p) at only one of

the points PT, P~ and the line is not tangent to the graph at other points between these

points.

(2) The normal form is °(°A,°A;) and P+ P~ is not tangent to the graph of H(p) at each

point P*, P~ and there exists only one another point between these points at where the

above line is tangent to the graph.

(3) The normal form is 1A, °A; and P+P~ is tangent to the graph of H(p) at only one of the

points P, P~ and the line is not tangent to the graph at other points between these points.
We denote Pt P~ the line through P*, P~ in the (p, H(p))-plane, where

P+ = (yj(tm X(ta))7 H(y:(t(x’ X(ta)))’

P~ = (yz (ta, X(ta)), H(yz (ta x(ta))).

We can show that the case 3) cannot ocur if the viscosity criterion is satisfied before the
perestroika time t,. We can solve local Riemann problems and construct viscosity solutions
for each case in the above theorem. However, we only consider the cases (1) in this note. For
the deatiled consideration , please refere [16]

Case (1). We assume that the graph of the viscosity solution at the time ¢ < ¢, is depicted
as in Figure 3a. H(p)

A

Figure 3a . F igure 3b
Without the loss of generality, we may assume that P+ P~ is tangent to the graph of H(p)
at the point (y7 (ta, x(ta)), H (y7 (ta, X(t))) and

H"((yz (ta; x(ta))) < 0
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(see Figure 3b). As we already mentioned that the genuine shocks satisfies the Rankine-
Hugoniot condition. So we should construct new characteristics which satisfies both of the
Rankine-Hugoniot condition and the viscosity criterion. In this case we have

H (g (tao x(ta))) = H(yz (fas X(ta)) _

FIORICYETHOR ) B

CH'(y5 (ta, x(ta))) =

We now distinguish two cases as follows:
a) If
H(yf (t, x(¥)) — H(yz (6, x(#)))
yz (t, x(t)) — ya (£, x(t))

for to < t < to + € for sufficiently small € > 0, then we can easily show that the viscosity
criterion is satisfied for t < t,, + . So we can choose single valued continuous branches of the
geometric solution as the viscosity solution.

b) If

H'(y; (£ x(8))) 2

H(ys (8, x(1))) — H(yz (@, x(£)))
vz (t, x(t)) — ¥ (t, x(£))
for t, < t < ty + ¢ for sufficiently small ¢ > 0, then we can easily show that the viscosity

criterion is violated for t, < t < to + €, so that a new way to build the solution is required
(cf., Figure 4).

H'(yz (t,x(1))) <

H(p) H(p)

} A

3
+
o
!

FIGURE 4

In this case we can use the techniques in [20] to construct the contact discontinuity shock
H(p)-H(q)
P—q
around (go, po) With go # po, H'(q0) = 5%5%90—) and H”(qo) # 0. By the implicit function
theorem, there exists a smooth function 1 around po such that the above relation is equivalent
to g = 1(p). We will first construct the contact discontinuity as the solution of the following

initial value problem.

curve and then obtain new characteristics. Lets consider the relation H'(q) =

{x'c(t) = H' (Y (s (t, xc(t))));
Xc(ta) = X(ta)-
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The characteristic which is started at a point (7, x.(7)) should be satisfied the following:

x'(t) = H'(p(t)),
P{)=0
y'(t) = —H(p(t)) + p(t)H' (p(t)),

with the initial condition

(1) = Xe(7), Y(1) =y (7, xo(7)) and p(7) = Yy (1, xc(7))).
So the solution is exactly given as follows:
Z(t) =xe(T) + (t — ) H' (% (yz (1, xo(7)))),
B(t) =(yz (7, xe(7)))
§(t) =y (7, xe(r)) |
+(t = TH{=H @y (7, Xe(7)))) + (s (7, xe (M) H (b (5 (7, xe(T))))}.

By definition of the contact discontinuity, we have
" " 8¢ / 14 /
Xo(t)=H (¢(¢(u+(t))a—p(¢ (u (£))8" (ut (£))ul (2),

\ . 4 _H’
where x.(t) = u4(t) + tH'(¢(u4(t)). Since %’z—f = %@'&)(p—_gq)), we have

xi(t) = TG = T IO g, (s, o),

We also have
X' (t) =l ({1 + tH" (¢ (uy (1) " (uy (8))} + H'(¢' (ur ().
It follows that

o) — (@ (1) — H (@0 (. (1))))? ¢ (us (1))
; Pur@) =@ @) 1@ (w0 (1w (@)

Since
O (b (1) = 1+ EH" (¢ (s ()6 (1 (1),

we may assume that 1+ tH"(¢'(u4(t)))d" (us(t)) > 0. So xc(t) is convex if and only if
¢"(u4(t)) > 0. We suppose that ¢ (uy(t)) < 0 and denote x.(t) = uy(t) + tH' (¢p(us(t)) =
u—_(t) + tH' (¢(u—(t))), where u_(t) (resp. uy(t)) is the point corresponding to the charac-
teristic from the right (resp. left) side of (¢, x.(t)). We distinguish two cases as follows:
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b-1) If ¢”(u_(t)) > O, then ¢ is monotone. Since u’ (¢) < 0, ¢_(w(t)) moves to the left
direction, so that the viscosity criterion is satisfied across x.

b-2)If ¢"(u_(t)) < 0 and the viscosity criterion is violated across x for ¢ > fa, then 1 +
tH" (¢ (u—(t)))¢" (u—(t)) > 0 near to. Differentiate the equality xc(t) = u—(t) +tH' (¢(u—(t))
with respect to ¢, then we have

X' () — H' (¢ (u_(8))) = {1+ tH"(¢' (u—(1)))" (u-(2)) }ul (2)-
Since , ,
H(¢'(u+ (1)) — H(¢' (u-(¢)))
()~ (u()
we have u’_(t) > 0, so that u_(t) is increase, which is a contradiction.
Hence, if the viscosity criterion is violated for ¢t > to, the contact discontinuity curve

x is convex and the viscosity solution can be constructed. We draw the picture which is
illustrating the situations as follows :

X'(t) = > H'(¢'(u-(£))),

i

.
X
FIGURE 5
Then we can draw the picture of the graph of the viscosity solution for ¢ > ¢, and the
shock curve around %,. \ Y
. > /
A ’
\\ I'
N
\\’
I"
/ AY
’
4

FIGURE 6
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5. BiG RAY TRACING:THE BENAMOU’S PROJECT
Consider the following Helmholtz equation
Au(z, 2) + K*n*(2)u(z, 2) = 0,

where 7(2) is a piecewise smooth continuous function. This equation appears in the theorey
of underwateracoustics and seismology. The orresponding eikonal euation is

(%)) + (5t z>)2 —(z) =0.

Here, we consider the point source case. The source point is (zp,0) € R2. The classical

ray tracing is the integaration of the ray eaquation (i.e., characteristic equation) for the
Hamiltonian function

1
H(w,2p,9) = 5 {p + " —n*(2)}
which is an ordinary differential equation:

dx dz dp dq

— S— T ——— — ,
ar P g Te dr 0, dr n(z)n'(2)

with the initial data
z(0) =0, 2(0) = 29, p(0) = n(z0) cosh, q(0) = n(zp)sinb.
Therefore, we have the solution of the ray equation of the form
z(7,0) = n(20) cos 7, 2(7,0) = 2(7,0), p(1,6) = n(20) cos b, q(t,0) = q(r,6).

By allowing 6 to vary and computing a (necessarily finite) number of corresponding ray,
we want to cover the region as besta as possible (in order to compute the taravel time etc.)
In the classical results, an interpolation process has to be used. However, for hetrogeneous
media (i.e., 7(z) # constant), this process may be difficult by the following reason:

(a) zones where few rays enter appear (low density zone) (cf., Fig??)

(b) zones with complex multivalued travel tie fields appear (different rays cross) (cf., Fif??).

An alternative method for the ray tracing propsing by Benamou[3] is to solve the eikonal
equation directly by finite difference or finite element schees (i.e., the eikonal solver). These
scheme, however, only compute a single valued viscosity soloutions.

The algorithm given by Benamou is as follows:

(1) Shoot a given number of rays, say M, in regularly spaced directions. We denote these
by (R:)i=1,..,m and call this step the ray sicretization.

(2) Define around eah ray R; a local domain §;, also called a big ray.

(3) Compute the viscosity solution of the eikonal equation on each ;.

The difficulty lies in step (2). ; hae to satisfy two conflicting properties:

a) They have to be big enough to cover the domain.

b) They have to be small enough so that they do not contains several rays whih intersect.

In [3] Benamou preseted an example as follows: He considered the case when the graph of
teh velocity index 7(z) is depicted in Fig. 7. He used a third-order Runge-Kutta algorithm to
integarate the ray equations. We first shoot 200 rays (Fi. 8), and the 100 rays (Fig. 9). Here,
we only put the pictures of Big rays and Travel times given by Benamou[3] in the remaining
pages.
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FIG. '7 Velocity profile; the horizontal axis is z.
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FIG.g Twenty rays shot with regularly spaced initiai directions. FIG. ? One hundred rays shot with regularly spaced initial directions-
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