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1 Introduction
We consider an analytic function $f$ on the unit disk $\mathrm{D}$ normalized so that
$f(\mathrm{O})=f’(0)-1=0$ . For a constant $\beta\in(-\pi/2, \pi/2)$ , such a function $f$ is
called $\beta$ -spiral-like if $f$ is univalent on $\mathrm{D}$ and for any $z\in \mathrm{D}$, the $\beta$-logarithmic
spiral $\{f(z)\exp(-e^{i\beta}t);t\geq 0\}$ is contained in $f(\mathrm{D})$ . It is equivalent to the
analytic condition that $\Re(e^{-i\beta}zf’(z)/f(z))>0$ in D. We denote by $SP(\beta)$

the set of $\beta$-spiral-like functions. We call $f_{\beta}(z):=z(1-z)^{-2e^{\beta}\cos\beta}\in SP(\beta)$

the $\beta$-spiral Koebe function. Note that $SP(\mathrm{O})$ is the set of starlike functions
and that $f_{0}(z)=z(1-z)^{-2}$ is the Koebe function. The $\beta$-spiral Koebe func-
tion conformally maps the unit disk onto the complement of the $\beta$-logarithmic
spiral $\{f_{\beta}(-e^{-2i\beta})\exp(-e^{i\beta}t);t\leq 0\}$ in C. For the known results about these
classes of the functions, see, for example, [1].

2 Norm estimates
For a locally univalent holomorphic function $f$ , we define

$T_{f}= \frac{f’’}{f}$, and $S_{f}=(T_{f})’- \frac{1}{2}(T_{f})^{2}$ ,
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which are said to be the pre-Schwarzian derivative (or nonlinearity) and the
Schwarzian derivaiive of $f$ , respectively. For a locally univalent function $f$

in $\mathrm{D}$ , we define the norms of $T_{f}$ and $S_{f}$ by

$||T_{f}||_{1}= \sup_{z\in \mathrm{D}}(1-|z|^{2})|T_{f}(z)|$ and $||S_{f}||_{2}= \sup_{z\in \mathrm{D}}(1-|z|^{2})^{2}|S_{f}(z)|$ ,

respectively.
As well as $||S_{f}||_{2}\backslash$ , the norm $||T_{f}||_{1}$ has a significant meaning in the theory

of Teichm\"uller spaces. For example, see [8], [2] and [13].
We shall give the best possible estimate of the norms of pre-Schwarzian

derivatives for the class $SP(\beta)$ .
Main Theorem 1 ([9]). For any $f\in SP(\beta)$ , where $\beta\in(-\pi/2, \pi/2)$ , we
have the following.

I) In the case $|\beta|\leq\pi/3_{t}$ we have

$||T_{f}||_{1}\leq||T_{f_{\beta}}||_{1}=2|2+e^{2i\beta}|$ . (1)

II) In the case $|\beta|>\pi/3$ , we have $||T_{f}||_{1}\leq||T_{f_{\beta}}||_{1}$ , where

$||T_{f_{\beta}}||_{1}= \mathrm{m}\mathrm{x}2m\cos\beta 0\leq m\leq\frac{4\mathrm{a}}{3}\sin|\beta|(1+\sqrt{\frac{m^{2}+4-4m\sin|\beta|}{m^{2}+1-2m\sin|\beta|}})$ and (2)

$2|2+e^{2i\beta}|<||T_{f\rho}||_{1}<2(1+ \frac{4}{3}\sin 2|\beta|)$ . (3)

In pariicular, $||T_{f_{\beta}}||_{1}arrow 2$ as $|\beta|arrow\pi/2$ .
In both cases, the equality $||T_{f}||_{1}=||T_{f_{\beta}}||_{1}$ holds if and only if $f$ is a rotation
of the $\beta$ -spiral Koebe function, $i.e.,$ $f(z)=(1/\epsilon)f_{\beta}(\epsilon z)$ for some $|\epsilon|=1$ .

The proof of Main Theorem 1 is in [9]. From the proof, if $|\beta|\leq\pi/3$ , the
function $(1-|z|^{2})|T_{f_{\beta}}(z)|$ does not attain its supremum in D. However if
$|\beta|>\pi/3$ , it does since

$\varpi\max_{\ni z_{0}}\lim_{\mathrm{D}\ni zarrow}\sup_{z_{0}}(1-|z|^{2})|T_{f_{\beta}}(z)|=2|2+e^{2i\beta}|<||T_{f_{\beta}}||_{1}$.

This phenomenon of phase transition seems to be quite interesting.
Remark. Clearly, the $\beta$-spiral Koebe function $f_{\beta}$ converges to $id_{\mathrm{D}}$ (which is
bounded) locally uniformly on $\mathrm{D}$ as $|\beta|arrow\pi/2$ but does not converge to it
with respect to the norm $||\cdot||_{1}$ since $\lim_{|\beta|arrow\pi/2}||T_{f_{\beta}}||_{1}=2$ . On the other hand,
it is known that a normalized analytic function $f$ is bounded if $||T_{f}||_{1}<2$ .
In fact, the value 2 is the least one of the norms of unbounded normalized
analytic functions.
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We would also like to mention the related works about norm estimates
of pre-Schwarzian derivatives in other classes by Shinji Yamashita [11] and
Toshiyuki Sugawa [10].

Theorem 2.1. Let $0\leq\alpha<1$ and $f$ be a normalized analytic function.
If $f$ is siarlike of order $\alpha,$ $i.e.,$ $\Re(zf’(z)/f(z))>\alpha$ , then $||T_{f}||_{1}\leq 6-4\alpha$ .
If $f$ is convex of order $\alpha,$ $i.e.,$ $\Re(1+zf’’(z)/f’(z))>\alpha$ , ihen $||T_{f}||_{1}\leq$

$4(1-\alpha)$ .
If $f$ is strongly starlike of order $\alpha,$ $i.e.,$ $\arg(zf’(z)/f(z))<\pi\alpha/2$ , then

$||T_{f}||_{1}\leq M(\alpha)+2\alpha$ , where $M(\alpha)$ is a specified constant depending only on
$\alpha$ saiisfying $2\alpha<M(\alpha)<2\alpha(1+\alpha)$ .

All of the bounds are sharp.

On the other hand, we also obtain the estimate of the norms of Schwarzian
derivatives of $\beta$-spiral-like functions.

Main Theorem 2 ([9]). Assume $|\beta|<\pi/2$ . For any $f\in SP(\beta),$ $||S_{f}||_{2}\leq$

$||S_{f_{\beta}}||_{2}=6$ .

Proof. From direct calculation, it follows that

$S_{f_{\beta}}=(T_{f_{\beta}})’- \frac{1}{2}(T_{f\rho})^{2}$

$=-c \frac{e^{2i\beta}\{e^{2i\beta}(e^{2i\beta}-1)z^{2}+4(e^{2i\beta}-1)z+6\}}{2(1-z)^{2}(1+ze^{2i\beta})^{2}}$

and that

$(1-|z|^{2})^{2}|S_{f_{\beta}}(z)|=|c| \frac{(1-|z|^{2})^{2}|e^{2i\beta}(e^{2i\beta}-1)z^{2}+4(e^{2i\beta}-1)z+6|}{2|1-z|^{2}|1+ze^{2i\beta}|^{2}}$ .

We can easily see that $(1-|z|^{2})^{2}|S_{f_{\beta}}(z)|arrow 6$ as $zarrow-e^{-2i\beta}$ radially. By
the Kraus-Nehari theorem, we obtain $||S_{f_{\beta}}||_{2}=6$ and the extremality of $f_{\beta}$

in $SP(\beta)$ for any $|\beta|<\pi/2$ . $\square$

3 Order estimates of the coefficients
Knowing the norm $||T_{f}||_{1}$ enables us to estimate the growth of coefficients of
$f$ . For example, the following holds.

Theorem 3.1 (cf. [7]). Let (3/2) $<\lambda\leq 3$ . For a normalized analytic
function $f(z)=z+a_{2}z^{2}+a_{3}z^{3}+\cdots$ such that $||T_{f}||_{1}\leq 2\lambda$ , it holds that
$a_{n}=O(n^{\lambda-2})$ as $narrow+\infty$ . This order estimate is best possible.
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However the sharp estimate of coefficients of $f\in SP(\beta)$ has been already
obtained by Zamorski [12] in 1960. We would like to remark that we can
derive the sharp growth estimate of coefficients of $f\in SP(\beta)$ from this.

Theorem 3.2 ( $\mathrm{Z}\mathrm{a}\mathrm{m}\mathrm{o}\mathrm{r}\mathrm{s}\mathrm{k}\mathrm{i}\rangle$. If $f(z)=z+a_{2}z^{2}+a_{3}z^{3}+\cdots$ is in $SP(\beta)$ and
$|\beta|<\pi/2$ , then

$|a_{n}| \leq\prod_{k=1}^{n-1}|1+\frac{e^{2i\beta}}{k}|$ (4)

for any $n\geq 2$ . The equality in (4) holds for some $n\geq 2$ if and only if $f$ is a
rotation of the $\beta$ -spiral Koebe function $f_{\beta}$ .
Remark. This is also shown in terms of generalized spiral-like functions by
C. Burniak, J. Stankiewicz and Z. Stankiewicz $[4](1980)$ .

Corollary 3.1. $Let|\beta|<\pi/2$ and $f(z)=z+a_{2}z^{2}+a_{3}z^{3}+\cdots$ be a $\beta$ -spiral-
like $fu$nction. Then it holds that

$a_{n}=O(n^{\cos 2\beta})$ $(narrow+\infty)$ . (5)

This order estimate is sharp.

Proof. From the inequality (4), we have that for $|\beta|<\pi/2$ ,

$\log|a_{n}|\leq\frac{1}{2}\sum_{k=1}^{n-1}\log(1+\frac{2\cos 2\beta}{k}+\frac{1}{k^{2}})$

$= \frac{1}{2}\sum_{k=1}^{n-1}(\frac{2\cos 2\beta}{k})+O(1)$

$=\cos 2\beta\log n\perp O(1)$

as $narrow+\infty$ . Therefore we obtain the estimate (5). $\square$

Remark. In the case $|\beta|<\pi/4$ , this is shown by Basg\"oze and Keogh in
$[3](1970)$ .

4 Strongly normalized univalent functions are
not always holomorphic.

The following is known.
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Theorem 4.1. For a holomorphic function $\phi$ on a simply connected domain
$A$ , there exists a locally univalent meromorphic function $f$ on $A$ such that

$S_{f}=\emptyset$.

The solution is unique up to postcomposition of an arbitrary M\"obius trans-
formatian.

We assume $A=$ D. Nehari showed that if $|| \phi||_{2}=\sup_{z\in \mathrm{D}}|\phi(z)|(1-$

$|z|^{2})^{2}\leq 2$ , then $f$ is univalent (meromorphic) on D. It is well-known that if
$|| \phi||_{2}=\sup_{z\in \mathrm{D}}|\phi(z)|(1-|z|^{2})^{2}\leq 2$ and $f$ is the strongly normalized solution,
i.e., $f(\mathrm{O})=f’(0)-1=f’’(0)=0$ , then $f$ is holomorphic on D. Since for
a normalized analytic function $f(z)=z+a_{2}z^{2}+\cdots,$ $g:=f/(a_{2}f+1)$ is
strongly normalized and $||S_{f}||_{2}=||S_{g}||_{2}$ , we have the following.

Proposition 4.1 ([6] and [5] Corollary 2.). If a normalized analytic func-
tion $f(z)=z+a_{2}z^{2}+\cdots$ satisfies $||S_{f}||_{2}\leq 2$ , then $f$ is univalent and
$a_{2}f+1\neq 0$ on D.

In [5] Chuaqui and Osgood remark that a strongly normalized univalent
function $f$ is not always holomorphic if $||S_{f}||_{2}>2$ . Spiral-like functions are
examples for this fact.

Theorem 4.2. $If|\beta|$ is sufficiently close to $\pi/2$ , the $\beta$ -spiral-Koebe function
$f_{\beta}(z)=z+a_{2}z^{2}+\cdots$ satisfies $a_{2}f_{\beta}(z)+1=0$ for some $z\in \mathrm{D}$ .

Proof. By direct calculation, we have $a_{2}=f_{\beta}’’(0)/2=e^{2i\beta}+1$ . The $\beta-$

logarithmic spiral $\{f_{\beta}(-e^{-2i\beta})\exp(e^{i\beta}t);t\geq 0\}$ is the complement of $f_{\beta}(\mathrm{D})$

in C. Thus $a_{2}f_{\beta}(z)+1\neq 0$ on $\mathrm{D}$ if and only if this spiral contains $-1/a_{2}$ .
We can see that if $f_{\beta}(-e^{-2i\beta})\exp(e^{i\beta}t)=-1/a_{2}$ , then

$t=e^{i\beta}\log(1+e^{-2i\beta})$ . (6)

and that the imaginary part of the right side of (6) tends $\mathrm{t}\mathrm{o}-\infty$ (resp. $+\infty$ )
if $\beta$ tends $\mathrm{t}\mathrm{o}+\pi/2$ (resp. $-\pi/2$ ). $\square$
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