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ABSTRACT. In this note, we will remove an additional assumption made for Ahlfors’
univalence criterion. This leads to an estimate of the inner radius of univalence for an
arbitrary quasidisk in terms of a quasiconformal reflection.

1. INTRODUCTION
Let $D$ be a domain in the Riemann sphere $\hat{\mathbb{C}}$ with the hyperbolic metric $\rho_{D}(z)|dz|$

of constant negative curvature $-4$ . For a h.olomorphic function $\varphi$ on $D$ , we define the
hyperbolic $\sup$-norm of $\varphi$ by

$|| \varphi||_{D}=\sup_{\in zD}\rho_{D}(z)^{-2}|\varphi(z)|$ .

We denote by $B_{2}(D)$ the complex Banach space consisting of all holomorphic functions
of finite hyperbolic $\sup$-norm. For a holomorphic map $g$ : $D_{1}arrow D_{2}$ , the pullback $g^{*}$ :
$\varphi\vdasharrow\varphi\circ g\cdot(g’)^{2}$ is a linear contraction from $B_{2}(D_{2})$ to $B_{2}(D_{1})$ . In particular, if $g$ is
biholomorphic, $g^{*}$ : $B_{2}(D_{2})arrow B_{2}(D_{1})$ becomes an isometric isomorphism. As is well
known, the Schwarzian derivative $S_{f}=(f^{\prime/}/f’)’-(f^{\prime/}/f’)^{2}/2$ of a univalent function on $D$

satisfies $||S_{f}||_{D}\leq 12$ (see [3]). This result is classical for the unit disk $\mathrm{D}=\{z\in \mathbb{C}, |z|<1\}$ ,
actually, a better estimate $||S_{f}||_{\mathrm{D}}\leq 6$ holds. On the other hand, Nehari’s theorem [12]
asserts that if a locally univalent function $f$ on $\mathrm{D}$ satisfies $||S_{f}||_{\mathrm{D}}\leq 2,$ $\mathrm{t}_{\mathrm{J}}\mathrm{h}\mathrm{e}\mathrm{n}f$ is necessarily
univalent. Hille’s example [7] shows that the number 2 is best possible. We now define
the quantity $\sigma(D)$ , which is called the inner radius of univalence of $D$ , as the infimum
of the norm $||S_{f}||_{D}$ of those locally univalent meromorphic function $f$ on $D$ which are
not globally univalent. In other words, $\sigma(D)$ is the possible largest value $\sigma\geq 0$ with the
property that the condition $||S_{f}||_{D}\leq\sigma$ implies univalence of $f$ in $D$ . In the case $D=\mathrm{D}$ ,
we already know $\sigma(\mathrm{D})=2$ . For a comprehensive exposition of these notions and some
background, we refer the reader to the book [9] of $0$ . Lehto.

Ahlfors [1] showed that every quasidisk has positive inner radius of univalence. Con-
versely, Gehring [6] proved that if a simply connected domain has positive inner radius of
univalence then it must be a quasidisk. Later, Lehto [8] pointed out the inner radius of
univalence of a quasidisk can be estimated by the $\mathrm{A}\mathrm{h}\mathrm{l}\mathrm{f}\mathrm{o}\mathrm{r}\cap \mathrm{O}\mathrm{m}\mathrm{e}\mathrm{t}\mathrm{h}_{\mathrm{o}\mathrm{d}}$ as

(1) $\sigma(D)\geq 2\inf_{z\in D},$
$\frac{|\overline{\partial}\lambda(Z)|-|\partial\lambda(z)|}{|\lambda(Z)-z|2p_{D}(\mathcal{Z})^{2}}$ ,
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where $\lambda$ is a quasiconformal reflection in $\partial D$ which is continuously differentiable off $\partial D$

and $D’=D\backslash \{\infty, \lambda(\infty)\}$ . However, in order to obtain the estimate (1) rigorously, a kind
of approximation procedure must work, so an additional assumption was needed. For
example, Lehto [9, Lemma III.5.1] assumed the quasidisk $D$ to be exhausted by domains
of the form $\{rz;z\in D\}$ , for $0<r<1$ . More recently, Betker [5] gave a similar result
for general quasidisks under the assumption that the quasiconformal reflection $\lambda$ is of a
special form associated with the L\"owner chains. For another additional condition, see a
remark at the end of the next section.

Remark that if we content ourselves with an estimate of the form $\sigma(D)\geq C(K)$ for a
$K$-quasidisk $D$ , where $C(K)$ is a positive constant depending only on $K$, the original idea
of Ahlfors [1] is sufficient (see also [2, Chapter VI] and [9, Theorem II.4.1]).

Our main result is to show (1) without any additional assumption, which might be
known as a kind of folklore.

Theorem 1. Let $D$ be a quasidisk with a quasiconformal refiection $\lambda$ in $\partial D$ which $i\mathit{8}$

continuously differentiable off $\partial D$ . Then the inequality (1) holds for $D$ .

2. $\mathrm{p}_{\mathrm{R}\mathrm{o}\mathrm{O}\mathrm{F}}$ OF MAIN RESULT

First of all, we make a quick review of the original proof of (1) by Ahlfors under an
additional assumption. Let a quasiconformal reflection $\lambda$ in $\partial D$ be given, i.e., $\lambda$ is an
orientation-reversing homeomorphic involution of $\hat{\mathbb{C}}$ keeping each boundary point of $D$

fixed and satisfying that $\lambda(\overline{z})$ is quasiconformal. Further suppose that $\lambda$ is continuously
differentiable on $\hat{\mathbb{C}}\backslash \partial D$ . We note that $|\partial\lambda|\leq k_{0}|\overline{\partial}\lambda|$ for some constant $0\leq k_{0}<1$ .

Noting that the inequality (1) is invariant under a M\"obius transformation (see [9, Sec.
II 4.1]), we may assume that a quasidisk $D$ is contained in $\mathbb{C}$ . We take a $\varphi\in B_{2}(D)$ with
$||\varphi||_{D}<\epsilon_{0}$ , where $\epsilon_{0}$ denotes the right-hand side of the inequality (1).

Let $\eta_{0}$ and $\eta_{1}$ be the solutions of the linear differential equation

(2) $2y”+\varphi y=0$

in $D$ with the initial conditions $\eta_{0}=1,$ $\eta_{0}’=0$ and $\eta_{1}=0,$ $\eta_{1}’=1$ , respectively, at a
reference point $w_{0}$ in $D$ . Then it is well known that $f=\eta_{1}/\eta_{0}$ satisfies the Schwarzian
differential equation $S_{f}=\varphi$ in $D$ and has the normalization $f(w_{0})=f’(w_{0})-1=$
$f^{\prime/}(w_{0})=0$ . To extend $f$ to the whole sphere, we consider the map

$F(w)= \frac{\eta_{1}(w)+(\lambda(w)-w)\eta’1(w)}{\eta_{0}(w)+(\lambda(w)-w)\eta_{0}(w)},$.

A direct cumputation shows that $F$ is a local $C^{1}$ diffeomorphism in $D$ and satisfies

$\frac{\partial F(w)}{\overline{\partial}F(w)}=\frac{\partial\lambda(w)+(\lambda(w)-w)^{2}S_{f}(w)/2}{\overline{\partial}\lambda(w)}$ .

Hence the assumption $||\varphi||_{D}<\epsilon_{0}$ implies

$||\partial F/\overline{\partial}F||_{\infty}\leq k:=1-(1-k_{0})(1-k_{1})<1$ ,
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where $k_{1}=||\varphi||_{D}/\epsilon_{0}<1$ . Therefore, if the map

(3) $\hat{f}(w)=\{$
$f(w)$ for $w\in D$ ,
$F(\lambda(w))$ for $w\in D^{*}=\hat{\mathbb{C}}\backslash \overline{D}$

continuously extends to the boundary $\partial D$ and locally homeomorphic nearby there, $\hat{f}$

would become a local homeomorphism of the Riemann sphere, and hence a (quasiconfor-
mal) $\mathrm{h}\mathrm{o}\mathrm{m}\mathrm{e}\mathrm{o}\dot{\mathrm{m}}$orpshism of it.

In particular, if $\partial D$ is an analytic Jordan curve and if the quasiconformal reflection
$\lambda$ is continuously differentiable at any point, it is easily verified that $\hat{f}$ is a local $C^{1}-$

diffeomorphism of $\hat{\mathbb{C}}$ and then a quasiconformal extension of $f$ for $\varphi$ holomorphic in $\overline{D}$,
namely, holomorphic in a neighborhood of $\overline{D}$ .

For a general $\varphi\in B_{2}(D)$ , a crux will be the following, $\acute{\mathrm{w}}$hich is essentially due to Bers
[4, Lemma 1].

Proposition 2. Let $D$ be a Jordan domain in $\hat{\mathbb{C}}$ . For any $\varphi\in B_{2}(D)$ there exists a
sequence $(\varphi_{j})_{j}$ of holomorphic $function\mathit{8}$ in $\overline{D}$ such that $||\varphi_{j}||_{D}\leq||\varphi||_{D}$ and $\varphi_{j}$ tends to
$\varphi$ uniformly on each compact $sub\mathit{8}et$ of $D$ as $jarrow\infty$ .

Proof. We denote by $g$ : $\mathrm{D}arrow D$ the Riemann mapping function of $D$ with $g(\mathrm{O})=w_{0}$

and $g’(0)>0$ . Let $D_{j},$ $j=1,2,$ $\ldots$ be Jordan domains with $\overline{D}_{j+1}\subset D_{j}$ and with
$\bigcap_{j}D_{j}=D$ . Then the Carath\’eodory kernel theorem implies that the Riemann mapping
functions $g_{j}$ of $D_{j}$ with $g_{j}(0)=w_{0}$ and $g_{j}’(0)>0$ converge to $g$ uniformly on each
compact subset of the unit disk as $j$ tends to $\infty$ . Now we set $\varphi_{j}=(g\circ g_{j}^{-1})^{*}\varphi$ . We then
have $||\varphi_{j}||_{D}\leq||\varphi_{j}||_{D_{j}}=||\varphi||_{D}$ by the Schwarz-Pick lemma: $\rho_{D}\geq\rho_{D_{j}}$ . We also have
$\varphi_{j}arrow\varphi$ locally uniformly as $jarrow\infty$ . $\square$

With this result, the following lemma implies our main result.

Lemma 3. Suppose that $\varphi\in B_{2}(D)$ with $||\varphi||_{D}\leq k_{1}\epsilon_{0}$ is holomorphic in $\overline{D}$, where
$0\leq k_{1}<1$ and $\epsilon_{0}$ denotes the quantity in the right-hand side of (1). Then the function
$\hat{f}$ defined by (3) extends to a $K$ -quasiconformal homeomorphism of the Riemann sphere,
where $K=(1+k)/(1-k)$ and $k=1-(1-k_{0})(1-k_{1})$ .

Actually, we can prove our main theorem as follows. Let $\varphi\in B_{2}(D)$ satisfy $||\varphi||_{D}<\epsilon_{0}$

and set $k_{1}=||\varphi||_{D/\mathit{6}}0$ . We take a sequence $(\varphi_{j})_{j}$ as in Proposition 2. Let $\hat{f}$ and $\hat{f}_{j}$ be
the functions in $\hat{\mathbb{C}}\backslash \partial D$ defined by (3) for $\varphi$ and $\varphi_{j}$ , respectively. Then, by the above
lemma, each $\hat{f}_{i}$ can be continued to a $K$-quasiconformal homeomorphism of $\hat{\mathbb{C}}$ , where
$K=(1+k)/(1-k)$ and $k=1-(1-k_{0})(1-k_{1})$ . Since normalized K-quasiconformal
mappings form a normal family, $\hat{f}_{j}$ has a subsequence converging to a K-quasiconformal
mapping in $\hat{\mathbb{C}}$ uniformly. By construction, the limit mapping coincides with $\dot{f}$ in $\hat{\mathbb{C}}\backslash \partial D$ .
This implies that $\hat{f}$ has a $K$-quasiconformal extension to the whole sphere. Now the proof
of our main theorem is complete except for a proof of the above lemma.
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Remark. Under the $\mathrm{a}\mathrm{s}\mathrm{S}\mathrm{u}\mathrm{m}.\mathrm{p}\mathrm{t}\mathrm{i}_{0}\mathrm{n}$ that $\varphi$ is holomorphic in $\overline{D}$ with $||\varphi||_{D}<\epsilon_{0}$ , a direct
calculation sho.ws

$\partial\hat{f}(z)=-\frac{1+(z-\lambda(z))^{2}\varphi(\lambda(Z))\partial\lambda(z)/2}{(\eta_{0}(\lambda(_{Z}))+(z-\lambda(z))\eta_{0}(\lambda(Z))2}$, and

$\overline{\partial}\hat{f}(z)=-\frac{(z-\lambda(_{Z}))^{2}\varphi(\lambda(Z))\overline{\partial}\lambda(z)/2}{(\eta \mathrm{o}(\lambda(Z))+(z-\lambda(z))\eta_{0}’(\lambda(Z))^{2}}$

at every $z\in D^{*}\backslash \{\infty, \lambda(\infty)\}$ . Therefore, if $(\lambda(z)-z)^{2}\overline{\partial}\lambda(z)$ vanishes at the boundary
$\partial D$ , then we would obtain continuous extensions, say $a$ and $b$ , of $\partial\hat{f}$ and $\overline{\partial}\hat{f}$ to $\hat{\mathbb{C}}$ . We
note that it is always possible to take such a quasiconformal reflection $\lambda$ for any quasidisk
$D$ (see [1] or [9, Section II.4]). Furthermore, if $\partial D$ is rectifiable, it would follow that
$\int_{\alpha}(adz+bd\overline{z})=0$ for any smooth closed curve $\alpha$ . Hence, in this case, we can conclude
that $\hat{f}$ is a local $C^{1}$ -diffeomorphism of $\hat{\mathbb{C}}$ , and then, a global $C^{1}$-diffeomorphism of it.

3. PROOF OF LEMMA 3

Let $\varphi$ be as in Lemma 3. Then the solutions $\eta_{0}$ and $\eta_{1}$ of (2) are holomorphic in $\overline{D}$.
Thus $\hat{f}$ can be continuously extended to the whole sphere and $\hat{f}(\partial D)$ is locally a conformal
image of a quasi-circle. Now we require an extension theorem for quasiregular mappings,
where a continuous map $f$ from a plane domain $\Omega$ into $\hat{\mathbb{C}}$ is called $(K-)\mathrm{q}\mathrm{u}\mathrm{a}\mathrm{s}\mathrm{i}\mathrm{r}\mathrm{e}\mathrm{g}\mathrm{u}\mathrm{l}\mathrm{a}\mathrm{r}$ if
$f$ can be decomposed into the form $g\mathrm{o}\omega$ where $\omega$ is a $(K-)\mathrm{q}\mathrm{u}\mathrm{a}\mathrm{s}\mathrm{i}\mathrm{C}\mathrm{o}\mathrm{n}\mathrm{f}_{0}\mathrm{r}\mathrm{m}\mathrm{a}1$ mapping on
$\Omega$ and $g$ is a non-constant meromorphic function on $\omega(\Omega)$ (see [10, Chapter VI] where
the authors used the term “quasiconformal function” instead of “quasiregular mapping”).
Note that a non-constant continuous function $f$ : $\Omegaarrow \mathbb{C}$ is $K$-quasiregular if and only if
$f$ is ACL$=\mathrm{A}\mathrm{C}\mathrm{L}^{1}$ and $|\overline{\partial}f|\leq k|\partial f|\mathrm{a}.\mathrm{e}$. in $\Omega$ , where $k=(K-1)/(K+1)$ (see [13]).

Lemma 4. Let $\Omega$ be a plane domain and $C$ an open quasi-arc (or a quasi-circle) in $\Omega$

such that $\Omega\backslash C$ is an open set in $\hat{\mathbb{C}}$ . Suppose that $f$ : $\Omegaarrow\hat{\mathbb{C}}$ is a continuous map such
that $f|_{\Omega\backslash C}$ is a locally injective $K$ -quasiregular map and $that_{f}$ for each $x\in C,$ $f$ maps
$C\cap U$ injectively onto a quasi-arc for some open neighborhood $U$ of $x$ in $\Omega$ . Then $f$ is
$K$-quasiregular in $\Omega$ .

Proof. If once we know that $f$ is quasiregular in $\Omega$ , we can conclude that $f$ is K-
quasiregular because $|\overline{\partial}f/\partial f|\leq k\mathrm{a}.\mathrm{e}$ . by assumption. Since quasiregularity is a local
property, it suffices to show that $f$ is quasiregular in an open neighborhood $U$ of each
$x\in C$ . The assumption allows us to take $U$ so that $f$ maps $U\cap C$ injectively onto a quasi-
arc. Then, by composing suitable quasiconformal mappings, we may further assume that
$U$ is an open disk centered at $x=0$ with $U\cap C=U\cap \mathbb{R}$ and that $f(U\cap \mathbb{R})\subset \mathbb{R}$ . Set
$U_{\pm}=\{z\in U;\pm{\rm Im} z\geq 0\}$ . By the reflection principle for quasiregular mappings [11], the
mapping $f|_{U}\pm \mathrm{e}\mathrm{x}\mathrm{t}\mathrm{e}\mathrm{n}\mathrm{d}\mathrm{S}$ to a quasiregular one in $U$ for each signature. This means $f$ is
ACL in $U$, and hence $f$ is quasiregular there. $\square$

By this lemma, our mapping $\hat{f}$ turns out to be a $K$-quasiregular mapping on $\hat{\mathbb{C}}$ , that is,
$\hat{f}=g\mathrm{o}\omega$ for a $K$-quasiconformal mapping $\omega$ : $\hat{\mathbb{C}}arrow\hat{\mathbb{C}}$ and a rational function $g$ . Suppose
that the degree of $g$ is greater than one. Then there exists a branch point, say $b$ , of $g$ .
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Without loss of generality, we may assume that $\omega(0)=b$ and $\infty\in C=\partial D$ . Furthermore,
we may assume that $\eta_{0}(0)\neq 0$ . (If not, consider $1/f$ instead of $f$ in the following.)

Now we recall an important fact on quasiconformal reflections.

Lemma 5 ([9, Lemma I.6.3]). Let $\lambda$ be a $K$ -quasiconformal reflection in $C$ with $\infty\in C$ .
Then

$\frac{1}{c(K)}|z-a|\leq|\lambda(z)-a|\leq c(K)|Z-a|$

for any $z\in \mathbb{C}$ and $a\in C$ , where $c(K)>1$ is a constant depending only on $K$ .

Since $\hat{f}$ is never injective near $0$ but $\hat{f}|_{D}=f=\eta_{1}/\eta_{0}$ is injective near $0$ , we can select
sequences of pairs of points $z_{n}$ and $w_{n}$ in $D$ and closed arcs $\alpha_{n}$ connecting $z_{n}$ and $w_{n}$ in $D$

such that $F(z_{n})=F(w_{n})$ and $F(\alpha_{n})$ has winding number 1 around $F(\mathrm{O})=f(0)$ , and that
$z_{n},$ $w_{n}$ and diam $\alpha_{n}$ all tend to $0$ as $n$ tends to $\infty$ , where diam stands for the Euclidean
diameter.

Now we consider the asymptotic behavior of $F(z)$ as $zarrow \mathrm{O}$ . We have

$F(z)-F( \mathrm{o})=\frac{\eta_{1}(z)+(\lambda(_{Z)}-Z)\eta_{1}/(Z)}{\eta_{0}(Z)+(\lambda(z)-Z)\eta’0(Z)}-\frac{\eta_{1}(0)}{\eta_{0}(0)}$

$= \frac{(\eta \mathrm{o}(\mathrm{o})\eta_{1}(Z)-\eta_{1}(\mathrm{o})\eta_{0}(z))+(\lambda(z)-Z)(\eta 0(0)\eta_{1}’(Z)-\eta 1(0)\eta \mathrm{o}(/z))}{\eta_{0}(0)(\eta 0(_{Z)}+(\lambda(_{Z)}-z)\eta \mathrm{o}(/z))}$.

By the relation $\eta(z)=\eta(0)+z\eta’(0)+O(z^{2})$ or similar ones, the numerator in the above
can be calculated as

$z(\eta_{0(}\mathrm{o})\eta’1(0)-\eta 1(\mathrm{o})\eta_{0}’(\mathrm{o}))+(\lambda(Z)-Z)(1+z(\eta_{0}(\mathrm{o})\eta_{1}(\prime\prime \mathrm{o})-\eta_{1}(0)\eta’\mathrm{o}’(0)))+O(z^{2})$

when $zarrow \mathrm{O}$ . Noting the relations $\eta_{0}\eta_{1}’-\eta_{1}\eta_{0}’\equiv 1$ and $\eta_{j}’’=-\varphi\eta_{j}/2$ and Lemma 5, we
obtain

(4) $F(z)-F(0)=\eta 0(0)^{-}2\lambda(Z)+O(Z^{2})$

as $zarrow \mathrm{O}$ in $D$ .
Now we may assume $|z_{n}|\geq|w_{n}|$ for every $n$ . Since $F(z_{n})=F(w_{n})$ we have $\delta_{n}$ $:=$

$|z_{n}^{*}-w_{n}^{*}|=o(|z_{n}|^{2})$ as $narrow\infty$ by (4), where we set $z_{n}^{*}=\lambda(z_{n})$ and $w_{n}^{*}=\lambda(w_{n})$ .
Similarly, we have $\eta_{0}(0)2(F(\alpha_{n}(t))-F(0))-\alpha_{n}^{*}(t)=O(\alpha_{n}(t)^{2})=O(\alpha^{*}(t)^{2})$ as $narrow\infty$ ,
where $\alpha_{n}^{*}=\lambda(\alpha_{n})$ . In particular,

(5) $|\eta \mathrm{o}(\mathrm{o})^{2}(F(\alpha_{n}(t))-F(\mathrm{o}))-\alpha_{n}^{*}(t)|<|\alpha_{n}^{*}(t)|$

holds for sufficiently large $n$ .
On the other hand, linear connectedness of $D^{*}$ asserts the existence of a constant $M>1$

such that any pair of points in $D^{*}\cap B(a, r)$ can be joined by a curve in $D^{*}\cap B(a, Mr)$

for all $a\in \mathbb{C}$ and $r>0$ , where $B(a, r)$ stands for the closed disk centered at $a$ of radius $r$

(see [6] or [9]). In particular, there exists a sequence of curves $\beta_{n^{\mathrm{C}}}^{*}\mathrm{o}\mathrm{n}\mathrm{n}\mathrm{e}\mathrm{c}\mathrm{t}\mathrm{i}\mathrm{n}\mathrm{g}w_{n}\mathrm{a}\mathrm{n}\mathrm{d}_{Z^{*}}\mathrm{i}\mathrm{n}*n$

$D^{*}\cap B(z_{n}^{*}, M\delta n)$ . Therefore we have $|\eta_{0}(0)2(F(Zn)-F(0))-\beta n*(t)|\leq M\delta_{n}+O(|Z_{n}|^{2})=$

$O(|Z_{n}|^{2})$ as $narrow\infty$ , and then

(6) $|\eta_{0}(0)2(F(Z_{n})-F(0))-\beta n(*t)|<|\beta_{n}^{*}(t)|$

for $n$ large enough.
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Now we conclude that the closed curves $F(\alpha_{n})-F(\mathrm{O})$ and $\gamma_{n}^{*}:=\alpha_{n}^{*}\cdot\beta_{n}^{*}\mathrm{h}\mathrm{a}\mathrm{V}\mathrm{e}$ the same
winding number around $0$ for sufficiently large $n$ from (5) and (6). By the choice of $\alpha_{n}$ ,
we see that $\gamma_{n}^{*}$ has winding number 1, and hence separates $0$ from $\infty$ for such $n$ . Since
$0\in\partial D$ and $\gamma_{n}^{*}$ is a curve in $D^{*},$ $D$ is contained in a bounded component of $\mathbb{C}\backslash \gamma_{n}^{*}$ . In
particular, we have diam $D\leq \mathrm{d}\mathrm{i}\mathrm{a}\mathrm{m}\gamma_{n}^{*}\leq \mathrm{d}\mathrm{i}\mathrm{a}\mathrm{m}\alpha_{n}^{*}+\mathrm{d}\mathrm{i}\mathrm{a}\mathrm{m}\beta_{n}*\mathrm{f}\mathrm{o}\mathrm{r}$ sufficiently large $n$ . Since
both diam $\alpha_{n}^{*}$ and diam $\beta_{n}^{*}$ tend to $0$ as $narrow\infty$ , we would have diam $D=0$ , which is
impossible. This contradiction is caused by the assumption $\deg g>1$ . Theorefore we
can now conclude that $g$ is a M\"obius transformation, and hence the proof of Lemma 3 is
complete.
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