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Abstract

In this paper, we consider a reverse convex programming problem constrained by a
convex set and a reverse convex set which is defined by the complement of the interior of
a compact convex set X. We propose an inner approximation method to solve the prob-
lem in case X is not necessarily a polytope. The algorithm utilizes inner approximation
of X by a sequence of polytopes to generate relaxed problems. It is shown that every
accumulation point of the sequence of optimal solutions of relaxed problems is an optimal
solution of the original problem.

Keywords: Global Optimization, Reverse Convex Programming Problem, Dual Prob-
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1 Introduction

In this paper, we consider a reverse convex programming problem constrained by a convex set
and a reverse convex set which is defined by the complement of the interior of a compact convex
set X. In case when X is a polytope in the problem, a solution method using duality has been
proposed (Horst and Tuy [4], Horst and Pardalos [5], Konno, Thach and Tuy [6], Tuy 8]).
Duality is one of the most powerful tools in dealing with a global optimization problem like the
problem described above. The dual problem to the problem is a quasi-convex maximization
problem over a convex set and solving one of the original and the dual problems is equivalent
to solving the other (Konno, Thach and Tuy [6], Tuy [8]). Since the feasible set of the dual
problem is a polytope, there exists a vertex which solves the dual problem. Moreover, since the
objective function of the dual problem is the quasi-conjugate function of the objective function
of the original problem, for every vertex, the objective function value is obtained by solving a
constrained convex minimization problem. Consequently, an optimal solution of the original
problem is obtained by solving a finite number of constrained convex minimization problems.

We propose an inner approximation method to solve the reverse convex programming
problem in case X is not necessarily a polytope. The algorithm utilizes inner approximation of
X by a sequence of polytopes. That is, at every iteration of the algorithm, a relaxed problem
in which X is replaced by a polytope contained in X is solved. Then, it is shown that every
accumulation point of the sequence of optimal solutions of relaxed problems is an optimal
solution of the original problem. Every relaxed problem can be solved through a finite number
of constrained convex minimization problems. By using penalty functions, such constrained
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problems can be transformed into unconstrained convex minimization problems. Thus, the
minimum of the optimal values of such unconstrained problems underestimates the optimal
value of the relaxed problem.

The organization of this paper is as follows: In Section 2, we explain a reverse convex
programming problem. Moreover, we describe an equivalent problem to the problem, and its
dual problem, where equivalence is understood in the sense that the sets of optimal solutions
coincide. In Section 3, we formulate an inner approximation algorithm for the problem, and es-
tablish the convergence of the algorithm. In Section 4, we propose another inner approximation
algorithm for the problem which is incorporating a penalty function method.

Throughout this paper, we use the following notation: int X, bd X and co X denote the
interior set of X C R", the boundary set of X and the convex hull of X, respectively. Let
R = RU{—o0}U{+400}. Let for a,b € R",]a,b]={z € R* : ¢ = a+6(b—a), 0 <d <1, € R}
and Ja,b) ={z € R":z =a+6(b—a), 0 <d <1, § € R}. Given a convex polyhedral set
(or polytope) X C R"™, V(X) denotes the set of all vertices of X. For a subset X C R",
X° ={uc€ R":{u,z) <1, Vz € X} is called the polar set of X. For a nonempty closed set
X C R", Nx(y) denote the normal cone to X at y € X. For a subset X C R", the indicator
of X which is denoted by §( - |X) is an extended-real-valued function defined as follows:

[0 ifzeX
(=X) _{ too if z ¢ X.

Given a function f : R* — RU {+oc}, the quasi-conjugate of f is the function f# defined as
follows:

_ [ —suw{f(z):e€ R} ifu=0
fHW%_{—mﬂﬂw=W¢>2H-ﬁ“#“

The gradient of f at z is denoted by V f(z) and the subdifferential of f at = by 9f(z).

2 A Reverse Convex Programming Problem
Let us consider the following reverse convex programming problem problem:

minimize  f(z),
(ECP) { subject to z € Y\int X,

where f : R — R is a convex function, X is a compact convex set and Y is a closed convex
set in R". In general, the feasible set of problem (RCP) is not convex. For problem (RCP),
we shall assume the following throughout this paper:

(A1) Y\int X # 0.
(A2) For some a € R, {x € R™: f(z) < a} is nonempty and compact.

(A3) X ={z € R":pj{(z) <0, j=1,...,tx}and Y = {z € R* : rj(z) <0, j=1,...,ty}
where p; : R* - R (j=1,...,tx)and r; : R* — R (j = 1,...,ty) are convex functions.
Moreover, there exists ¢x, ¢y € R™ such that p;(zx) < 0(j =1,...,tx) and r;(zy) <0
(F=1,...,ty).
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Let p(z) = maxje1, 4y pj(z) and r(z) = max;; ,, rj(z). Then, from assumption (A3),
X:{wER":p(m)SO»},Yr{wER":r(m)SO},inth{wER”:p(w)<0}andintY:
{z € R" : r(z) < 0}. From assumption (A2), the minimal value of f over R™ exists. Moreover,
for any 8 > min{f(z) : = € R"}, {z € R" : f(z) < B} is nonempty and compact. From
assumption (A1), there exists a feasible solution z' of problem (RCP). Then, problem (RCP)
is equivalent to minimize f(z) subject to z € (Y\int X) N {z € R" : f(z) < f(z)}. Since
{z € R*: f(z) < f(z')} is compact, problem (RCP) has an optimal solution. Denote by
min(RCP) the optimal value of problem (RCP). Then, we have min(RCP) < +o0o. From
assumptions (Al) and (A2), Y is nonempty and there exists a minimal solution z° of f over
Y. Then, it is fairly easy to find z°. In case z° € R*\int X, z° solves problem (RCP). In the
other case, we propose a solution method in this paper. Throughout this paper, without loss
of generality, we may assume the following:

(A4) p(0) < 0 and r(0) < 0, that is, 0 € int X and 0 € Y. Moreover, 0 € R" is a minimal
solution of f over Y.

By using the indicator of Y, problem (RCP ) can be reformulated as

minimize g(z)
(MP) { subject to z € R™\int X

where g(z) := f(z) + §(z|Y). The objective function g : R* — R is a quasi-convex function.
From assumption (A4), we have g(0) = inf{g(z) : ¢ € R"}. The dual problem of problem
(MP) is formulated as '

maximize g u)
(DP) { subject to u € X°.

il

Hence, by assumption (A4) and the principle of the duality, X° is a compact convex set.
Furthermore, since g¥ is a quasi-convex function (Konno, Thach and Tuy [6], Chapter 2), we
note that problem (DP) is a quasi-convex maximization problem over a compact convex set in
R". Denote by min(MP) and max(DP) the optimal values of (MP) and (DP), respectively.
Since problem (MP) is equivalent to problem (RCP), we have min(MP) = min(RCP) <
+00. Moreover, it follows from the duality relation between problems (MP) and (DP) that
min(MP) = — max(DP) (cf., Konno, Thach and Tuy [6], Chapter 4).

3 An Inner Approximation Method for Problem (MP)

3.1 Relaxed Problems for Problems (M P) and (DP)

One of the reasons for difficulty in solving problem (MP) is that X is not a polytope. If X
is a polytope, then the feasible set of problem (MP) can be formulated as the union of finite
halfspaces. In this case, problem (MP) is fairly easy to solve by minimizing g over every
halfspace.

In this subsection, we discuss the following problem:

P) minimize g(z),
( subject to z € R"\int §,
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where S is a polytope such that S C X and 0 € int S. Then, we get R*\int § D R"\int X.
Therefore, problem (P) is a relaxed problem for problem (MP). From the definition of g,
we note that problem (P) is equivalent to minimize f(z) subject to z € Y\int S. Since
(Y\int §) O (Y\int X) # §, by assumption (A2), a minimal solution of f on Y\int § exists
and solves problem (P). Denote by min(P) the optimal value of problem (P). Then, we have
min(P) < min(MP) < +00.

The dual problem of problem (P) is formulated as

- . H
maximize g% (u),
(D){ subject to u € S°.

Since S C X, the feasible set of problem (D) includes X°. Therefore, problem (D) is a relaxed
problem of (DP). We note that the feasible set S° is a polytope because S is a polytope and
0 € int S. Hence, problem (D) is a quasi-convex maximization over a polytope 5°. There
exists an optimal solution of problem (D) over the set of all vertices of S°. Denote by max(D)
the optimal value of problem (D). Since problem (D) is the dual problem of problem (P)
and a relaxed problem of problem (DP), we obtain max(D) = —min(P) > —min(MP) =
max(DP) > —oo (Konno, Thach and Tuy [6], Chapter 4). Consequently, we can choose an
optimal solution of problem (D) from V(5°). Since 0 € int S, from the principle of duality, we
have

§°={u€R":(u,z) <1, Vz € V(S)} and S ={z € R": (v,z) < 1, Vv € V(59)}. (1)

Hence, we obtain 0 ¢ V(5°).
For any v € V(5°), we have g#(v) = —inf{g(z) : (v,2) > 1}. From the definition of g, for
any v € V(5°),

a, | —o0, ifYN{zeR:(v,z)>1} =0,
9°(") =\ _inf{f(z): (v,2) > 1, 2 € Y} otherwise.

This implies that v € V(8°) is not optimal to problem (D) if Y N {x € R": (v,z) > 1} = 0.
Lemma 3.1 There exists v € V(S°) such that Y N{z € R": (v,z) > 1} 76 0.
Denote by T the set of all v € V(S°) such that Y N {z € R": (v,z) > 1} # 0. From

Lemma 3.1, T' # 0. For every v € I, we consider the following convex minimization problem:

minimize f(x)
(SP(’U)){ subject to z € Y N{x € R": (v,z) > 1}.

From assumption (A2), for every v € T, problem (SP(v)) has an optimal solution z°. Then,
we have g (v) = —min(SP(v)) = —f(«"), where min(SP(v)) is the optimal value of prob-
lem (SP(v)). Hence, 4 € T is an optimal solution of problem (D) if f(z?) = min{f(z") : v €
V(S°)}. Moreover, z? is optimal to problem (P) (Konno, Thach and Tuy [6], Proposition 4.3).
However, it is hard to examine whether Y N {z € R™: (v,z) > 1} is empty. This examination
is not necessary to execute the inner approximation algorithm proposed in Section 4.
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3.2 An Inner Approximation Algorithm

From the discussion in Subsection 3.1, we notice that inner approximation of X by a sequence
of polytopes is applicable in solving problem (MP).
We propose an inner approximation algorithm for problem (M P) as follows:

Algorithm TA

Initialization. Generate a finite set V; such that V; C X and that 0 € int (co V1). Let
51 = co Vi. Compute the vertex set V((S51)°). For convenience, let V((S5)°) = 0. Set
k < 1 and go to Step 1.

Step 1. Let T be the set of all v € V((Sk)°) satisfying Y N {z € R" : (v,z) > 1} # 0. For
every v € I't\V((Sk-1)°), let z” be an optimal solution of problem (SP(v)). Choose
v* € T satisfying f(2*") = min{f(z") : v € [}}. Let z(k) = z°".

- Step 2.

a. If p(z(k)) > 0, then stop; z(k) solves problem (MP) and the optimal value of
problem (SP(v*)) is the optimal value of problem (M P).

b. Otherwise, solve the following convex minimization problem:

minimize B(z;v*) = max{p(m).,h(:c,vk)} 9
subject to = € R" 2)

where h(z,v*) = —(v*,z) + 1. Let z* denote an optimal solution of problem (2). It
will be proved later in Lemmas 3.2 and 3.3 that problem (2) has an optimal solution
and that z* € X, respectively. Set Vi1 = V4 U {z*}. Let Siy; = co Vi+1. Compute
the vertex set V((Sk+1)°). Set k < k + 1 and return to Step 1.

Note that Sk, k = 1,2,..., are polytopes. Since 0 € int (co V;) = int Sy, S, k = 1,2,...,
satisfy that 0 € int S;. It follows from the following theorems that at every iteration of the
algorithm, problem (2) has an optimal solution and S is contained in X.

Lemma 3.2 For any v € R", the function ¢(x;v) attains its minimum over R".

Lemma 3.3 At iteration k of Algorithm IA, assume that S, C X. Then
(1) v ¢ int X° for any v € V((S:)°).
(i) $(2¥4) <0,
(i) 2* € X.
From Lemma 3.3 and the definition of S;, we have
e 5,CSC...Cc5%C...C X,

e (51)°D(52)°D...0(S)°D>...D X".



90

Hence, for every iteration k of the algorithm, the foliowing problems (P) and (D) are relaxed
problems of (M P) and (DP), respectively.

(Py) minimize g(x)
*/1 subject to « € R™\ int Sk,

(Dx) maximize g7 (u)
k71 subject to u € (Sk)°.

From the discussion in Subsection 3.1, z(k) and v* obtained in Step 1 of the algorithm solve
problems (P,) and (D), respectively. Moreover, we note that max(Dy-;) > max(Dy) for any
k > 2, that is,

g¥(v") > g (v%) > -+ 2 g¥(v*) 2 -+ > max(DP), (3)
and that min(Pg—1) < min(Py) for any k > 2, that is,
g(=(1)) < g((2)) < -+ < g(z(k)) < -+ < min(MP). | (4)

Since g(z) = +oo for any = ¢ Y, z(k) belongs to Y. It follows from the following theorem
that z(k) solves problem (MP) if p(z(k)) > 0.

Lemma 3.4 At iteration k of the algorithm, z(k) solves problem (MP) zfp(a:(k)) >0.
For any k, the following assertions are valid.
o V(Sk) C V.
o (S)°={u€ R":{u,z) <1Vze WV}
o (Sp41)° = (Sk)°N{u € R": (u,z*) < 1}.
Moreover, the following lemma holds.
Lemma 3.5 At iteration k of Algorithm IA, if p(z(k)) < 0, then (vF,z%) > 1.

From Lemma 3.5, Sgt1 = co (Sk U {z*}) # Si because Sp C {z € R™ : (v*,z) < 1} and
(v*,z*) > 1 . Moreover, since V(Sy41) C V(Sk) U {z*}, we have

(St41)° = (Sk)° N {u € R™ : {u,2") <1} # (8)° (5)

3.3 Convergence of Algorithm [A

Algorithm IA doesn’t necessarily terminate after finitely many iterations. In this subsection,
we consider the case that an infinite sequence {v*} is generated by the algorithm.

It follows from the following theorem that every accumulation point of {v*} belongs to the
feasible set of problem (DP).

Theorem 3.1 Assume that {v*} is an infinite sequence such that for all k, v* is an optimal
solution of (D) at iteration k of Algorithm IA and that % is an accumulation point of {v*}.
Then v belongs to X°.
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Corollary 3.1 Assume that {v*} is an infinite sequence such that for all k, v* is an optimal

solution of problem (Dy) at iteration k of Algorithm IA and that o is an accumulatwn point of
{v*}. Then v ¢ int X°.

~ Moreover, from the following theorem, every accumulation point of {v*} solves prob-
lem (DP).

Lemma 3.6 At iteration k of Algorithm IA, let v* € V((S:)°) be an optimal solution for
problem (Dy). Then, v* ¢ int Y°.

Lemma 3.7 Assume that {z(k)} is an infinite sequence such that for all k, (k) is an optimal
solution of problem (P;) at iteration k of Algorithm IA. Then, {z(k)} has an accumulation
pomt

Theorem 3.2 Assume that {v*} is an infinite sequence such that for all k, v* is an optimal
solution of (Dy) at iteration k of Algorithm IA and that © is an accumulatzon point of {v*}.
Then v solves problem (DP). Furthermore, limy_, . g7 (v*) = max(DP).

By Theorems 3.1 and 3.2, we get that every accumulation point of {v*} belongs to the
feasible set of problem (DP) and solves problem (DP).

Theorem 3.3 Assume that {z(k)} is an infinite sequence such that for all k, z(k) is an
optimal solution of problem (Pi) at iteration k of Algorithm IA and that % is an accumula-
tion point of {z(k)}. Then & belongs to R™\int X and solves problem (MP). Furthermore,
limy_, o g(z(k)) = min(MP).

From Theorem 3.3, we note that liminfy_, p(z(k)) > 0. Hence, in order to terminate
Algorithm IA after finitely many iterations, using admissible tolerance v > 0, we propose the
following stopping criterion:

If p(x(k)) = —~, then stop; z(k) is an approximate solution of problem (MP).

4 An Inner Approximation Method Incorporating
a Penalty Function Method

4.1 Underestimation of the Optlmal Value of Relaxed Problems by
Usmg Penalty Functions

In order to obtain an optimal solution of problem (P), problem (SP(v)) has been solved
for each v € T:\V((Sk-1)°) at every iteration of Algorithm IA discussed in Section 3. In
Subsection 3.1, we remarked that problem (SP(v)) is a convex minimization problem with
convex constraints. In this section, we propose another inner approximation algorithm which
is incorporating a penalty function method. By using penalty functions, problem (SP(v))
can be transformed into an unconstrained convex minimization problem. That is, without
solving problem (SP(v)) at every iteration, the algorithm guarantees the global convergence
to an optimal solution of problem (MP). Furthermore, the problem is solvable for every
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v € V((Sk)°). Hence, by incorporating a penalty function method, the inner approximation
algorithm does not need to generate I'; at every iteration. '

Let § C X be a polytope satisfying 0 € int 5. Forany v € V(S°), we consider the following
problem

| minimize F, ,(z) = f(z) + pb,(z),
(SPl(v,p)){ subject to z € R”,

where 8,(z) = %, [max{0,r;(z)}]* + [{max{0,h(z,v)}|°, s > 1 and y > 0. We know that
the objective functlon F,, of problem (SP1(v,p)) is convex (Bazaraa, Sherali and Shetty 1],
Chapter 9). It follows from the following lemma that problem (SP1(v, u)) is solvable for every

v e V(S°).
. Lemma 4.1 For every v € R® and pu > 0, the function F,, attains its minimum over R".

Denote by min(SP1(v,u)) the optimal value of problem (SP1(v,u)). From the definition
of g, min(SP1(v,u)) < —g#(v) = oo if v ¢ I'. In case v € T, since F, ,(z) = f(z) for any
zeYN{zeR":(v,z)>1},

min(SP1(v,p)) = min{F,,(z):z € R"}
< min{F, ,(z) : (v,z) > 1, z €Y}
= min{ f(z) : (v,z) > 1, z €Y} (6)
= min(SP(v))
= —g¥(v).

Hence, we have the following relations between problem (SP1(v, 1)) and relaxed problems (P)
and (D) described in Subsection 3.1:

min(P) = min{min(SP(v)):v € T}
> min{min(SP1(v,p)) :v €'} . (7
> min{min(SP1(v,u)) : v € V(5°)},
and

max(D) = max{g?(v):v e V(5°)} (8)
< max{—min(SP1(v,u)) : v € V(5°)}.

4.2 An Inner Approximation Algorithm Using Penalty Functions

An inner approximation algorithm for problem (M P) incorporating an exterior penalty method
is as follows:

Algorithm IA-P

Initialization. Choose a penalty parameter u; > 0, a scalar B > 1 and s > 1. Generate a
polytope V; such that V; C X and that 0 € int (co V;). Let §; = co V;. Compute the -
. vertex set.V((S1)°). Set k < 1 and go to Step 1.

- Step 1. For every v € V((Sk+1)°), let A, and ¥ be the optimal value and an optimal solution
~ of problem (SP1(v,p)), respectlvely Choose v* € V((Sk)°) satisfying A, = min{A4, :
v E V((Sk) )}. Let z(k) = 2*
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Step 2.

a. If p(z(k)) > 0 and r(z(k)) < 0, then stop; z(k) are optimal solutions of prob-
lem (MP).

- b. Otherwise, for v*, solve problem (2). Let z* and wj, denote an optimal solution and
the optimal value of problem (2), respectively. Let

W . %U{Zk} ifwk<0,
17 v, if w, =0,

and let

) Buy if 0(z(k)) > 0,
Ber1 =\ me  if 6,u(z(k)) = 0.

Let Sk41 = co Viy1. Compute the vertex set V((Sk+1)°). Replace k by k + 1, and
return to Step 1.

From the discussion of Subsection 4.1, at every iteration k of the algorithm, we have
f(z(k)) < Fyr p, (2(k)) = Aye < min(P) < min(MP). (9)

Lemma 4.2 At iteration k of algorithm IA-P, if p(z(k)) > 0 and r(z(k)) < 0, then z(k)
solves problem (MP).

4.3 Convergence of Algorithm IA-P

In this subsection, the convergence of Algorithm IA-P will be verified.

Let {z(k)} and {v*} be an infinite sequence generated by Algorithm IA-P. By Theorem 3.1,
every accumulation point of {v*} belongs to the feasible set X° of problem (DP). It follows
from the following theorems that every accumulation point is contained in R™\int X and solves

problem (RCP).

Lemma 4.3 Let {z(k)} and {v*} be infinite sequences generated by Algorithm IA-P. Then,
B,k (z(k)) = 0 as k — oo.

Theorem 4.1 Let {z(k)} be an infinite sequence generated by Algorithm IA-P. Then, every
accumulation point & of {z(k)} belongs to the feasible set R™\int X of problem (MP). Fur-
thermore, & is contained in the feasible set Y\int X of problem (RCP).

Theorem 4.2 Let {z(k)} be an infinite sequence generated by Algorithm IA-P. Then, every
accumulation point T of {x(k)} solves problem (M P).

Theorem 4.3 Let {v*} be an infinite sequence generated by Algorithm IA-P. Then, every
accumulation point v of {v*} solves problem (DP).

From Theorem 4.1, we have lim infj_, ., p(z(k)) > 0. Moreover, from Lemma 4.3, we get
limg o 0,1 (z(k)) = 0, so that lim sup,_, ., r(z(k)) < 0. Hence, in order to terminate Algorithm
IA-P after finitely many iterations, usmg admissible tolerances 71, 72 > 0, we propose the
following stopping criterion:

If p(z(k)) > —71 and r(z(k)) < 72, then stop; z(k) is an approximate solution of
problem (MP). ' :
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4.4 A Relationship between Problems (SP(v*)) and (SP1(v*, ut))
In this subsection, we assume that
(A5) For any z € (bd X)NY and w € dp(z), {y € R™: (w,y —z) > 0} Nint ¥ # 0.

Let s = 1 at Initialization of Algorithm IA-P. Then, we shall show that there exists k such that
for each k > k, every optimal solution of problem (SP1(v*,uz)) solves problem (SP (v*)).
Let Qs and Qp be the optimal solution sets of problems (M P) and (DP), respectively.

Lemma 4.4 Assume that Vf(z') # 0 for some @' € Qp. Then, for any u € Qp, {y € R :
{(u,y) > 1} Nint Y # 0.

For any u € (S1)°\int Y°, let Q(sp(u)) be the optimal solution set of problem (SP(u)).

Lemma 4.5 Qu = U Q(gp(u)).
ueflp

Lemma 4.6 Assume that Vf(z') # 0 for some ' € Qu. Then, for any u € Qp, Q(spu)) C
{z € R": (u,z) = 1}. .

For any u € (S1)°\int Y°, let Y(u) = {# € Y : —(u,z) + 1 < 0}. Then, Y (u) is the
feasible set of problem (SP(u)). Moreover, let r(u,z) = max{r;(u,z) : j = 1,...,ty + 1}
where 7;(u,z) = r;(z), 7 = 1,...,ty and rypa(u,2) = —(u,2) + 1, and let 8,r(u,z) =
co (Vry(z),. .., Vry(z),—u). Note that Y(u) = {z € R" : r,(z) < 0}.

Lemma 4.7 For anyu € Qp and ¢ € bd Y(u), 0 ¢ ,7(u, z).

Lemma 4.8 Let ' C R" satisfy that (int Y) N {z € R": (u,z) > 1} # 0 for allw € I'. Then,

Uzesp(u) 0,7 (u, z) ts upper semicontinuous over I'.

Lemma 4.9 Assume that Vf(z) # 0 for some o' € Qpr. Then, the following assertion holds:
inf {lel we Y U Gerly, a:))} > 0.
w€p 2eQ(SP(u))

Theorem 4.4 There exists A > 0 such that for any u € Qp and © € Qsp)), there ezists
Mu,z); >0 (7 =1,...,ty + 1) satisfying

jmmax  Au,z); <A, | (10)
Vi(z)+ é}\(u,m)erj(:c) - AMu, 2)gyr1u =0, (11)
Ay 2)ym(5) = 0 (5= 1. b) and Alus eysa(—{ur2) +1) = 0. (12)

Lemma 4.10 Let {v*} be generated by Algorithm IA-P. Assume that Vi(z') # 0 for some
¢’ € Q. Then, there exists k such thatint Y N {z € R™: (v*,2) > 1} £ 0 for all k > k.

Theorem 4.5 Assume that s = 1 at Initialization of Algorithm IA-P. Then, there exists k
such that 6,x(z(k)) = 0 for all k > k. Furthermore, for all k > k, an optimal solution z(k) of
problem (SP1(v*,u)) solves problem (SP(v)).
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5 Conclusion

In this paper, instead of solving problem (RC P) directly, we have presented two inner approx-
imation algorithms for problem (M P).

- To execute the algorithms, a convex minimization problem (2) is solved at each iteration.
However, we note that it is not necessary to obtain an optimal solution for problem (2) at each
step. At iteration k of the algorithms, it suffices to get a point which is contained in X and is
not conta.med in Si. That is, at each step, we can compromise solving problem (2) by getting
a point z* satisfying &(z*;v ) < 0, because z* belongs to X\ Sy if #(2*;v*) < 0.

From the discussion of Section 3, by solving two kinds of convex minimization problems
(SP(v)) and (2) successively, it is possible to obtain an optimal solution of problem (RCP).
In Section 4, the proposed method using penalty functions transforms problem (SP(v)) into
the unconstrained problem (SP1(v,u)). These unconstrained convex minimization problems
are fairly easy to solve and therefore the proposed algorithm is practically useful.
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