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Abstract

The classical game of peg solitaire has uncertain origins, but was certainly popular
by the time of Louis X1V, and was described by Leibniz in 1710. One of the classical
problems concerning peg solitaire is the feasibility issue. An early tool used to show the
infeasibility of various peg games is the rule-of-three [Suremain de Missery 1841], which can
be slightly generalized by the lattice criterion. In the 1960s the description of the solitaire
cone [Boardman and Conway] provides necessary conditions: valid inequalities over this
cone, known as pagoda functions, were used to show the infeasibility of various peg games.
In this paper, we recall these necessary conditions and give an explicit solution to the odd
central square complementary game.

1 Introduction and Basic Definitions

1.1 Introduction

Peg solitaire is a peg game for one player which is played on a board containing a number
of holes. The most common modern version uses a cross shaped board with 33 holes - see
Fig. 1 - although a 37 hole board is common in France. Computer versions of the game now
feature a wide variety of shapes, including rectangles and triangles. Initially the central hole
is empty, the others contain pegs. If in some row (column respectively) two consecutive pegs
are adjacent to an empty hole in the same row (column respectively). we may make a mowve
by removing the two pegs and placing one peg in the empty hole. The objective of the game
is to make moves until only one peg remains in the central hole. Variations of the original
game, in addition to being played on different boards, also consider various alternate starting
and finishing configurations.

Starting Final
configuration €, configuration C;)

Figure 1: A feasible English solitaire peg game with possible first and last moves
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The game itself has uncertain origins, and different legends attest to its discovery by various
cultures. An authoritative account with a long annotated bibliography can be found in the
comprehensive book of Beasley [4]. The book mentions an engraving of Berey, dated 1697, of a
lady with a solitaire board. The book also contains a quotation of Leibniz [7] which was written
for the Berlin Academy in 1710. Apparently the first theoretical study of the game that was
published was done in 1841 by Suremain de Missery, and was reported in a paper by Vallot [9].
The modern mathematical study of the game dates to the 1960s at Cambridge University. The
group was led by Conway who has written a chapter in [5] on various mathematical aspects
of the subject. One of the problems studied by the Cambridge group is the following basic
feasibility problem (see Definition 1.1 in the sequel for a formal definition):

Peg solitaire feasibility problem. Given a board B and a pair of configurations (¢,c') on B,
determine if (c, ¢) is feasible, that is, if there is a legal sequence of moves transforming ¢ into ¢

The complexity of the feasibility problem for the game played on a n by n board was
shown by Uehara and Iwata [8] to be NP-complete, so easily checked necessary and sufficient
conditions for feasibility are unlikely to exist. In this paper, we recall constructions used to
prove the infeasibility of some pair (¢, ¢'): the rule-of-three in Section 2.1, the solitaire cone in
Section 2.2, the lattice criterion in Section 2.3; and give an explicit solution to the odd central
square solitaire game in Section 3.

1.2 Basic definitions

In this section we introduce some terminology used throughout this paper. The board of a
peg solitaire game is a finite subset B C Z?. Thus. B stands for the set of locations (i,7)
of holes of the board on which the game is played. For example, the classical 33-board is:
B={(,j): -1<i<1, =3<j<3}uU{(s,j): -3<i<3, -1 <j < 1}. A configuration c
on the board is an integer vector ¢ € Z® ¢ IRP. 1t can be interpreted as a configuration of pegs
on the board: in the usual game, all configurations ¢ lie in {0,1}Z, with the interpretation
that hole (i,7) € B contains a peg if ¢;; = 1 and is empty if cij = 0; extending this, we
allow any integer (possibly negative) number ci,; of pegs to occupy any hole (7,7) € B. The
complement of a {0, 1}-configuration ¢ € {0,1} is defined to be the configuration ¢ := 1 — ¢
where 1 = (1,1.....1) € IR? is the all-ones configuration. A mowve or a jump u is a vector
in R® which has 3 non-zero entries: two entries of -1 in the positions from which pegs are
removed and one entry of 1 for the hole receiving the new peg. We can now make the peg
solitaire feasibility problem precise.

Definition 1.1 Given a board B and an associated set of moves .M, a pair (¢, ¢) of configu-
rations is feasible if there is a sequence p!...., u* € M of moves on B such that

k i
c’—c:Z,uiandc—i—Z/,LjE{O,l}Bfori::l ..... k

=1 j=1

For instance, the English 33-board admits 76 moves (none over the 8 corners, 24 moves over
the 12 holes next to a corner and 52 moves over the 13 remaining holes); see Fig. 1 for possible
first and last moves in some sequence of moves transforming the initial configuration ¢y to its
complementary cj.
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2 Necessary Conditions

2.1 The rule-of-three

In this section we recall the so-called rule-of-three (cf. [4, 5]), a classical construction used to
test solitaire game feasibility. The rule-of-three can be used, for example, to show that on the
cross shaped English 33-board, starting with the initial configuration ¢ of Fig. 1, the ouly
reachable final configurations with ezactly one peg are cj (given in Fig. 1), ¢}, ch. ¢4 and ¢}
with, respectively, a final peg in position (0,0), (—3,0),(0,3),(3,0) and (0, -3).

Let Zsg := {a,b,c,e} be the Abelian group with identity e and addition table

at+a=b+b=c+c=e a+b=c,a+c=b, b+c=ua.

Define the following two maps gi.g2 : Z? — Zs, which simply color the integer lattice u?
by diagonals of a. b and c in either direction: see Fig. 2: '

a if (i+j)=0 (mod 3) a if (i—7)=0 (mod 3)
g1(t,j) =< b if (i+j)=1 (mod3) . g2(t.7):=< b if (i —j)=1 (mod 3)
c if (i+j) =2 (mod 3) c i (i—7)=2 (mod 3)

For each (i,7) € B C 7Z? let ¢;; be the (4, j)th unit vector in IR”, and define the score map
to be the Z-module homomorphism ¢ : ZP — 73 with ¢(e; ;) :== (g91(4,7) , g2(4,j)). Thus,
the score of a configuration ¢ € Z? is given by

¢lc) = Y cij-(91(@7) . g2(i. )

(ij)eB

Since the board B under discussion will always be clear from the context. we use the notation
¢ for any board. For instance, the score of the configuration ¢ of one peg in the center of
the English 33-board is d(cy) = (a.a), as is also the score of its complement co: see Fig. 2.
The score of the board B (all holes filled) is defined to be ¢(B) = ¢(1). It is easy to verify
that any feasible move p on any board B has the identity score ¢(u) = (e, e). This gives the
following proposition.

Proposition 2.1 [The rule-of-three]
A necessary condition for a pair of configuration (c.c') to be feasible is that ¢(c’ —c¢) = (e.e).
namely, ¢ — ¢ € Ker(¢).

Using Proposition 2.1, we can show that, besides the configuration ¢} given in Fig. 1. the only
final configuration ¢’ with exactly one non-zero entry cfj = 1 forming a feasible pair (¢g, )
are the 4 configurations ¢}. c. ¢5 and ¢. Fig. 2 shows that ¢(c’) = (a.a) = ¢(co) if ¢’ is one of
chy €y ...y, whereas ¢(c’) # (a,a) otherwise.
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Figure 2: The score of a final configuration with only one peg remaining

With ¢ = 1 — ¢ the complement of ¢, the rule-of-three implies that (c, ¢) is feasible only if
#(¢) = ¢(c), which is equivalent to ¢(B) = ¢(c) + ¢(¢) = ¢(c) + ¢(c) = (e, €). In other words.
a necessary condition for the configurations pair (c. ) to be feasible is that the board score is
#(B) = (e,e). Such a board is called a null-class board in [4]. For example. the score of the
English 33-board is ¢(B) = ¢(co) + ¢(ch) = (a.a) + (a.a) = (c.e).

2.2 Solitaire cone and pagoda functions

A first relaxation of the feasibility problem is to allow any integer (positive or negative) number
of pegs to occupy any hole for any intermediate configurations. We call this game the integer
game, and call the original game the 0-1 game. Note that in a 0-1 game we require that for
each intermediate configuration of the game a hole is either empty or contains a single peg.
Clearly:
¢’.c is integer feasible <= ¢’ —c € ICp = { Z Ault AL € ]";\T}
. : neM

where the integer solitaire cone ICp is the set of all non-negative integer linear combinations
of moves. Unfortunately deciding if ¢/ — ¢ can be expressed as the sum of move seems to be a
hard computational problem. We get the following necessary criterion:

Proposition 2.2 [The integer cone criterion]
A necessary condition for a pair of configurations (c,c') to be feasible is that ¢ — ¢ € ICp.

A further relaxation of the game leads to a more tractable condition. In the fractional game
we allow any fractional (positive or negative) number of pegs to occupy any hole for any inter-
mediate configurations. A fractional move is obtained by multiplying a move by any positive
scalar and is defined to correspond to the process of adding a move to a given configuration.
For example, let ¢ =[ 11 1]. ¢ =[101]. Then ¢ —c¢ =[0-10]=1[-1-1 U+5[1-1-1]is a
feasible fractional game and can be expressed as the sum of two fractional moves, but is not
feasible as a 0-1 or integer game. Clearly: ,

Shle ! — : e+
c’.cis fractional feasible < ¢ —c € Cp = { Z Auph A €R }
neM
where the solitaire cone Cp is the set of all non-negative linear combinations of moves. We

get the-weaker, but useful. following necessary criterion:

Proposition 2.3 [The cone criterion]
A necessary condition for a pair of configurations (c,c') to be feasible is that ¢ — c € Cp.
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The condition ¢’ — ¢ € Cp provides a certificate for the infeasibility of certain games. The
certificate of infeasibility is any inequality valid for Cp which is violated by ¢’ — c. According
to [4], page 71, these inequalities “were developed by J.H. Conway and J.M. Boardman in 1961,
and were called pagoda functions by Conway...”. They are also known as resource counts, and
are discussed in some detail in Conway [5]. The strongest such inequalities are induced by the
facets of Cp. For example, the facet (given by Beasley) of Fig. 4 induces an inequality a-z < 0
that is violated by ¢ — ¢ with (¢, c') given in Fig. 3: (¢ —c¢)-a =2 > 0. This implies that this
game is not feasible even as a fractional game and, therefore, not feasible as an integer game
or classical 0-1 game either.

Starting Final

Figure 3: An infeasible classical solitaire peg game

Figure 4: A facet of the English solitaire cone

2.3 The lattice criterion

For the fractional game, we relaxed the integrality while keeping the non-negativity condition.
Another relaxation of the integer game is to drop the non-negativity while keeping the inte-
grality. It amounts, besides allowing any integer (positive or negative) number of pegs for any -
intermediate configurations, to allow additive moves. The configuration of an additive move ut
(jumping over an empty hole and putting a peg in) is c; = —c, where ¢, is the configuration
of an ordinary (subtractive) move u. We call this game the lattice game. Clearly:

¢'.c is lattice feasible < ¢ —c € Lp = { Z Auth )\,L € Z}
pneM
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where the solitaire lattice Lp is the set of all integer linear combinations of moves. It gives
the following criterion (weaker than Proposition 2.2):

Proposition 2.4 [The lattice criterion]
A necessary condition for a pair of configurations (c,c') to be feasible is that ¢ — ¢ € Lg.

Since the score ¢ is a homomorphism of Z-modules which maps each lattice generator
p € M to (e e), it follows that ¢(v) = (e, e) for any v € Lp; i.e., for any board B and any
pair (c,c') on B if ¢ — ¢ € Lp then ¢/ — ¢ € Ker(¢). In other words, as stated in the following
proposition, the lattice criterion is generally stronger than the rule-of-three.

Proposition 2.5 For any board B, we have Lg C Ker(g).

Fig. 5 provides an example of a null-class board and a game on it whose associated pair (¢, )
‘satisfies ¢ — ¢ € Ker(¢) but ¢ — ¢ ¢ L. This shows that the lattice criterion may be strictly
stronger than the rule-of-three and therefore could be more useful in proving infeasibility.

000000

ss8sss 333333
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oe0000 000000
ee00000000 0000000000
so0ee 00000
eeCo0 00800
0000 00000
o000 C0O000O
Configuration ¢ Configuration ¢

Figure 5: An infeasible game satisfying the rule-of-three but not the solitaire lattice criterion

Checking membership in the lattice Lp is usually easy (once we have a basis) and checking
membership in the cone Cp amounts to solve a linear program in polynomial time. Combining
these two criteria, that is, checking membership in Cg N Lp. is usually efficient in proving
infeasibility. For example, while the game in Fig. 3 satisfies ¢ — ¢ € Lg but ¢ — ¢ ¢ Cp, the
central game (sce Fig. 1) played on a French board (an English board with 4 additional holes
in positions (2, £2)) satisfies ¢ —c € Cp but ¢ — ¢ ¢ Lp. Note that for both the French and
English boards, we have Lp = ker(¢); therefore checking the membership in Lp can be easily
done using the rule-of-three. The membership in Cp of the central game played on a French
board can be shown by moving all pegs on the boundary to the inner part of the board, then
moving one peg in the center and finally remove the other pegs using the fractional move given
after Proposition 2.2. Clearly we have CpNLp C ICp but this inclusion is strict as illustrated
by Fig. 6. A further step could be to find a relatively small generating set (Hilbert basis) for
the integer cone ICp of some interesting classes of boards B.
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Figure 6: A lattice and fractional feasible but integer infeasible game
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Figure 7: The rule-of-three and the integer, fractional and lattice relaxations
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In this Section, we consider the feasibility of the central odd square solitaire game: Given odd
n, is'it possible, on the n.xn board, to start with pegs in all holes but the center and finish with a
_single peg in the center? In other words, with n = 2k+1. k € IN, B, = {(¢,7) : —k <i,j <k}
- the centrally symmetric square n x n board and ¢ = ey the final configuration with exactly
one peg at the origin, is the pair {c, ¢} feasible on B),?

J
~
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- Figure 8: The odd central square solitaire on By

The central odd square game is trivially infeasible on the board Bs. For n > 5, let first
check if {c, ¢} satisfies the necessary conditions given in Section 2. Since for any m x n board
with m > 4 or n > 4, we have Lg = ker(¢), checking the membership of ¢ — ¢ in the lattice
Lp can be done using the rule-of-three. It gives the necessary condition that n should be a
multiple of 3. For n = 1 mod 2, n = 0 mod 3 and n > 5, one can easily check that ¢ — ¢ can
be written as a non-negative linear combinations of moves Hi; that is, ¢ — c € Cp,.

We now show that the odd central square game is feasible for n = 1 mod 2, n = 0 mod 3
and n > 5 by giving an explicit sequence of moves from ¢ to ¢ on the board B,,. The basic
sub-sequences or moves are the following two purges: the 3-purge (respectively 6-purge) is a
sub-sequence of 3 (respectively 6) moves. See Fig. 9 where, besides black (respectively white)
hole representing a peg (respectively an empty hole), a pair of @ represents two holes such

“that one is empty and the other contains a peg. For other purges and packages (useful short
sequences of moves). see [5] where, in particular, an elegant solution to the English central
- complementary game, see Fig. 1. is given. '

& &
23 XS ©0& L X 00
®e —» O 00 —» OOG
® O o0 )@,

Figure 9: A 3-purge and a 6-purge

Fig. 10 illustrates the sequences of 3- and 6-purges needed to reach ¢ from ¢ on the Bis
board. The 3-purges (respectively 6) correspond to light (respectively dark) grey colored holes.
This solution can be easily generalized to any B, with n = 1 mod 2, n = 0 mod 3 and n > 5.

103
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Figure 10: A solution to the 15 x 15 central square complementary game
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