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Abstract

In each iteration of an interior-point method for semidefinite $\mathrm{p}\mathrm{r}\mathrm{o}\mathrm{g}\mathrm{r}\mathrm{a}\mathrm{m}\mathrm{m}\mathrm{i}_{\mathrm{I}\mathrm{l}}\mathrm{g}$. the

maximum step-length that can be taken by the iterate while maintaining the positive

semidefiniteness constraint need to be estimated. In this note, we show how the

maximum step-length can be estimated via the Lanczos iteration, a standard iterative
method for estimating the extremal eigenvalues of a matrix. We also give a posteriori

error bounds for the estimate.

1 Introduction
Suppose $X$ is an $n\cross n$ symmetric positive definite matrix that is the current primal

iterate of an interior point method in semidefinite programming $(\mathrm{S}\mathrm{D}\mathrm{P})$. and $\Delta X$ is
the search direction to be taken. To define the next iterate, we need to estimate
the maximum value the step-length $\alpha$ can take while satisfying the positive semidef-
initeness condition $X+\alpha\Delta X\succeq 0$ . In a primal-dual interior-point $\mathrm{m}\mathrm{e}\star_{v}\mathrm{h}\mathrm{o}\mathrm{d}$ , the same
need to be done for the dual variable $Z$ , but we shall concentrate only on the primal

variable $X$ in this note. We refer the reader to [1], [3], [8], [10], [16], among others,

for details on interior-point methods for SDP.
Let $\alpha_{\max}$ denotes the maximum allowed step-length. So far as we are aware of,

there are two methods used to estimate $\alpha_{\max}$ in all the current implementations of
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interior-point methods for SDP; see [2], [5], [6], [7], [8], [14] and [17]. The first method
to estimate $\alpha_{\max}$ is to check the positive semidefiniteness condition via Cholesky
factorization by backtracking. That is, starting with $\alpha=1$ , the method sucoessively
reduce $\alpha$ by a fixed factor (say, 0.8) until the condition is satisfied. The $1^{\cdot}\mathrm{e}\mathrm{s}\mathrm{u}\mathrm{l}\mathrm{t}\mathrm{i}\mathrm{n}\mathrm{g}$

value of $\alpha$ is then a lower bound for $\alpha_{\max}$ .
The second method is to compute $\alpha_{\max}$ exactly by finding the maximum eigenvaluc

of an $n\cross n$ symmetric matrix via the QR algorithm [9]. The mechanism is as follows.
Suppose $X=R^{T}R$ is the Cholesky factorization of $X$ . Let

$B=-.R^{-T}\Delta XR^{-1}$ .

Then it is readily shown that the condition $X+\alpha\Delta X\succeq 0$ is equivalent to $I-\alpha B\succeq()$ .
In other words, $\alpha$ times the maximum eigenvalue of $B$ should be no greater than 1.
Thus when $\lambda_{1}(B)$ , the maximum eigenvalue of $B$ , is positive, we have

$\alpha_{\max}=\frac{1}{\lambda_{1}(B)}$ . (1)

(Note that if $\lambda_{1}(B)$ is non-positive, then $\alpha_{\max}$ can be chosen to be any positive real
number.)

The first method requires $Kn^{3}/3$ flops, where $K$ is the number of Cholesky factor-
ization performed in the backtracking process. The second method requires a total of
$3n^{3}$ flops in forming the symmetric matrix $B$ and computing $\lambda_{1}(B)$ via the QR algo-
rithm. Typically, the first method is much cheaper since $K$ is usually no greater than

. three when the reduction factor in the backtracking process is fixed at a reasonable
value such as 0.8. The main drawback is that its estimate of $\alpha_{\max}$ is too conservative,
which sometimes unnecessarily dampen the progress of the interior-point iteration.
On the other hand, the second method gives accurate $\alpha_{\max}$ , but it is too costly. From
our computational experience on the SDPLIB problems [4] using the MATLAB soft-
ware SDPT3 version 1.3 [17], calculating the step-lengths using the second methocl
for both the primal and dual variables in a Mehrotra predictor-corrector interior-
point algorithm can sometimes take up to 40% of the total CPU time spent in each
interior-point iteration.

Now observe that in order to estimate $\alpha_{\max}$ accurately, all we need is to have a
tight upper bound $\rho$ for $\lambda_{1}(B)$ . It is not necessary to know the exact value of $\lambda_{1}(B)$

in order to ensure that $X+\alpha\triangle X\succeq 0$ . (Note that if $\rho$ is non-positive, then again
$\alpha_{\max}$ can be chosen to be any positive real number.) This flexibility gives us the
freedom to use estimates of $\lambda_{1}(B)$ in estimating $\alpha_{\max}$ . We propose to estimate $\lambda_{\overline{1}}(B)$

by using the Lanczos iteration, which is a well known iterative method in numerical
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linear algebra for finding the extremal eigenvalues of a matrix. But since iterative
methods for estimating eigenvalues of matrices are not generally well known to the
optimization community, the purpose of this note is to bring them to the attention of

the community. We show that the Lanczos iteration can be applied nicely to estimate
the maximum step-length allowed in each iteration of an interior-point for SDP, and
provide computable error bounds on the accuracy of the estimation.

The main advantage of using the Lanczos iteration to estimate $\lambda_{1}(B)$ lies in the

fact that only $\mathcal{O}(n^{2})$ flops are required if the Cholesky factor $R$ of $X$ is given. $\mathrm{R}\cdot \mathrm{o}\mathrm{m}$

our computational experience, the Lanczos iteration can typically deliver a reasonably

good estimate of $\lambda_{1}(B)$ (say, with an absolute error of less than $10^{-3}$ ) in less than 20
Lanczos steps. Since each step of the Lanczos iteration takes about $4n^{2}$ flops for our
matrix $B$ , the total number of flops required in estimating $\lambda_{1}(B)$ is $\mathcal{O}(n^{2})$ , plus the

cost of computing the Cholesky factor of $X$ . Comparing the work required among
the three methods discussed in this note, the proposed method is the cheapest.

We shall label the eigenvalues of $B$ in decreasing order:

$\lambda_{1}(B)\geq\lambda_{2}(B)\geq\lambda_{3}(B)\geq\cdots$ .

The vector 2-norm $||\cdot||$ will be used throughout.

2 Lanczos iteration
The Lanczos iteration [13, pp. 183-186] is an orthogonal projection method for esti-
mating eigenvalues of a symmetric matrix. Suppose $A$ is a general symmetric $n\cross n$

matrix. Given an initial $n$-vector $q_{1}$ with $||q_{1}||=1$ , the Lanczos iteration constructs
an $n\cross j$ matrix $Q_{j}=[q_{1}q_{2}\cdots q_{j}]$ whose columns form an orthonormal basis for the
Krylov subspace $\langle q_{1}, Aq_{1}, \ldots , A^{j-1}q_{1}\rangle$ , successively for each $j$ . In doing this, it ako

constructs a $j\cross j$ symmetric tridiagonal matrix $T_{j}$ that satisfies the equations:

$AQ_{j}$ $=$ $Q_{j}T_{j}+t_{j+1,jq_{j+1}}e_{j}^{T}$ , (2)

$Q_{j}^{T}AQ_{j}$ $=$ $T_{j}$ , (3)

where $e_{j}$ denotes the $j\mathrm{t}\mathrm{h}$ standard unit vector in $R^{n}$ . It is known that the extremal
eigenvalues of $T_{j}$ are usually good approximations to the extremal eigenvalues of
$A$ even when $j$ is substantially smaller than $n$ . But the quality of approximations
deteriorate as one proceeds ffom the extremal to the interior eigenvalues of $T_{j}$ . This
observation can be explained by the Kaniel-Paige convergence theory [9, p. 480] which
established the rate at which each eigenvalue of $T_{j}$ will converge to an eigenvalue
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of $A$ when $j$ increases, together with a priori error bounds on the approximations.
(Note that, however, these theoretical error bounds are not useful in practice since
they depend on quantities that are not computable in the iteration process. For
practical purpose, we need to use a posteriori error bounds that are presented in the
next section.) The theory implied that the extremal eigenvalues of $T_{j}$ will generally
converge the fastest to the extremal eigenvalues of $A$ . Thus for our matrix $B$ , we
can expect to estimate $\lambda_{1}(B)$ accurately by carrying $\mathit{0}$ut a small number of steps the
Lanczos iteration.

To obtain the estimate of $\lambda_{1}(B)$ , we compute the eigenvalues and eigenvectors of
the $j\cross j$ matrix $T_{j}$ by the standard QR algorithm. The cost is only marginal when
$j$ is much smaller than $n$ . Suppose the eigenvalues of $T_{j}$ are labeled in decreasing
order:

$\tilde{\lambda}_{1}\geq\tilde{\lambda}_{2}\geq\tilde{\lambda}_{3}\geq\cdots$ ,

with corresponding eigenvectors (normalized to have unit norm)

$\tilde{y}_{1}$ , $\tilde{y}_{2}$ , $\tilde{y}_{3},$ $\cdots$ .

We use $\tilde{\lambda}_{1}$ to estimate $\lambda_{1}(B)$ and $\tilde{u}_{1}:=Q_{j\tilde{y}_{1}}$ as a corresponding approximate eigen-
vector for $B$ . We do the same to estimate $\lambda_{2}(B)$ when necessary.

There are various $\mathrm{w}\mathrm{a}\}^{r}\mathrm{S}$ to implement the Lanczos iteration. One of the most com-
mon implementation uses the 3-term recurrence relation to compute the orthonormal
vectors, and the algorithm takes the following form [13]:

Choose a vector $q_{1}$ with $||q_{1}||=1$ .
For $j=1,2,$ $\ldots$ ,

$w=Aq_{j}$

if $j>1$

$w=w-t_{j,j-1q_{j-1}}$

end
$t_{jj}=w^{T}q_{j}$

$w=w-t_{jjq_{j}}$

$t_{j+1,j}=||w||=t_{j,j+1}$

$q_{j+1}=w/t_{j+1,j}$

end

Note that when $A$ is the matrix $B=-R^{-T}\Delta XR^{-1},$ $Aq_{j}$ can be computed by solving
two triangular systems and a matrix-vector multiplication with a total cost of $4n^{2}$
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flops. In fact, each.step of the Lanczos iteration also costs about $4n^{2}$ flops, since all
the other arithmetic operations cost at most $10n$ flops.

In exact arithmetic, the vectors $q_{1},$ $q_{2},$ $\ldots,$ $q_{j+1}$ generated in the algorithrn above

are guaranteed to be mutually orthogonal. But in finite precision arithmetic however,

they loss their global orthogonality very rapidly, and $\mathrm{r}\mathrm{e}$-orthogonalization is $\mathrm{r}\mathrm{e}(1^{11\mathrm{i}\mathrm{r}\mathrm{e}\mathrm{d}}$

in order to maintain their orthogonality. For the ease of implementation, we use
full $\mathrm{r}\mathrm{e}$-orthogonalization when necessary. We refer the reader to [12] for partial re-
orthogonalization techniques. The Lanczos iteration with full $\mathrm{r}\mathrm{e}$-orthogonalization is

as follows.

Choose a vector $q_{1}$ with $||q_{1}||=1$ .
For $j=1,2,$ $\ldots$ ,

$w=Aq_{j}$

$\phi=||w||$

if $j>1$

$w=w-t_{j,j-1q_{j-1}}$

end
$t_{jj}=w^{T}q_{j}$

$w=w-t_{jjq_{j}}$

if $||w||\leq 0.8\phi$

For $i=1,2,$ $\ldots,j$ ,
$\eta=w^{T}q_{i}$

$w=w-\eta q_{i}$

$t_{ij}=t_{ij}+\eta$

end
end
$t_{j+1,j}=||w||=t_{j,j\perp_{1}}$

$q_{j+1}=w/t_{j+1,j}$

end

For each $j$ , the $\mathrm{r}\mathrm{e}$-orthogonalization step incurs an extra cost of $4jn$ flops if it is
performed. But if $j$ is small, the extra cost incurred will not be significant conlpared

to the cost of matrix-vector multiplication $Bq_{j}$ .

3 Error bounds

Consider for $i=1,2$ , the estimate $(\tilde{\lambda}_{i},\tilde{u}_{i})$ generated by the Lanczos iteration discussed
in the last section for the eigen-pair corresponding to $\lambda_{i}(B)$ of the matrix $B$ . We will
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now establish a posteriori error bounds for the estimate of $\lambda_{1}(B)$ . Let

$r_{i}=B\tilde{u}_{i}-\tilde{\lambda}_{i}\tilde{u}_{i}$ , $i=1,2$ . (4)

(Note that $||\tilde{u}_{i}||=1.$ ) Then the inequalities in the following proposition hold.

Proposition 3.1

$\tilde{\lambda}_{1}\leq\lambda_{1}(B)\leq\tilde{\lambda}_{1}+||r_{1}||$ .

Proof. The inequalities follow from standard theorems in perturbation theory for
eigenvalue analysis. The left-hand side inequality follows from the $\mathrm{C}\mathrm{o}\mathrm{u}\mathrm{r}\mathrm{a}\mathrm{n}\mathrm{t}- \mathrm{F}^{1}\mathrm{i}\mathrm{s}\mathrm{h}\mathrm{e}\mathrm{r}$

characterization [9, p. 411] of $\lambda_{1}(B)$ by noting $\mathrm{t}\mathrm{h}\mathrm{a},\mathrm{t}$ from (3), $\tilde{\lambda}_{1}$ is the Rayleigh
quotient $\tilde{u}_{1}^{T}B\tilde{u}_{1}/\tilde{u}_{1}^{T}\tilde{u}_{1}$ . The right-hand side inequality follows from the Bauer-Fike
theorem [9, p. 342] for a symmetric matrix. $\square$

A tighter a posteriori upper bound on $\lambda_{1}(B)$ is sometimes possible by appealing
to the Kato-Temple theorem [11], [15]. The result is given next.

Proposition 3.2 Suppose $\tilde{\lambda}_{1}>\tilde{\lambda}_{2}+||r_{2}||$ . Then

$\lambda_{1}(B)\leq\tilde{\lambda}_{1}+\frac{||r_{1}||^{2}}{\tilde{\lambda}_{1}-\tilde{\lambda}_{2}-||r_{2}||}$ .

Noie the quadratic dependence on $||r_{1}||$ .

Proof. Using the fact that $\lambda_{2}(B)\leq\tilde{\lambda}_{2}+||r_{2}||$ , the assumption of the proposition
implies that $\tilde{\lambda}_{1}\in(\lambda_{2}(B), \lambda_{1}(B)]$ . Fhrthermore, $\tilde{\lambda}_{1}-\lambda_{2}(B)>\tilde{\lambda}_{1}-\tilde{\lambda}_{2}-||r_{2}||$. By a
corollary [13, p. 81] of the Kato-Temple theorem, the inequality in the proposition
holds. $\square$

Combining both propositions, we propose an upper bound $\rho$ for $\lambda_{1}(B)$ as follows:

$\rho=\{$

$\tilde{\lambda}_{1}+||r_{1}||$ , if $\tilde{\lambda}_{1}\leq\tilde{\lambda}_{2}+||r_{2}||$ ;

$\tilde{\lambda}_{1}+\min(||r_{1}||,$ $\frac{||r_{1}||^{2}}{\tilde{\lambda}_{1}-\tilde{\lambda}_{2}-||r_{2}||})$ , otherwise.
(5)

Thus if $||r_{1}||$ is a moderately small number (say, $10^{-3}$ ), then $\rho$ will be a good estimate
of $\lambda_{1}(B)$ and hence $1/\rho$ will also provide a good estimate of the maximum step-length
that can be taken from the interior-point iterate $X$ .
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