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Abstract

We develop a higher order infeasible-interior-point method for semidefinite pro-
gramming and monotone- semidefinite linear complementarity problems. Our algo-
rithm is based on the predictor-corrector infeasible-interior-point algorithm using the
Alizadeh-Haeberly-Overton search direction proposed by Kojima, Shida and Shindoh.
Under the nondegenerate condition, the gap to solutions converges to zero arbitrary
higher (p + 1-th) order by our higher (p-th) order algorithm.
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1 Introduction

For lincar programming (LP) and monotone linear complementaut\ problems (LCPs),
higher order interior-point methods have been practically and theoretically discussed by sev-
eral researchers [3, 4, 13, 16, 24, 25, etc.]. Recently. Stoer, Wechs and Mizuno [24] showed
higher order convergent property of higher order interior- -point algorithms for sufficient
LCPs without assuming the strict complementarity condition. For semidefinite program-
ming (SDP) and monotone semidefinite linear complementarity problems (SDLCPs). while
first order feasible/infeasible-interior-point algorithms have been extensively developed in
the last 5 vears [1, 7, 9, 10, 11, 12, 14, 15, 18, 19, 21, 22, 28, etc.], only computational exper-
iments of higher order implementation such as “Mehrotra’s higher order corrections” were
‘reported by Alizadeh, Haeberly and Overton [2] and recently by Haeberly, Nayakkankuppam
and Overton [6].

For SDP and monotone SDLCPs as in the case of LP and LCPs, the computations of
the search direction and higher order derivatives at each iterate involve the inversion of a
single coefficient (common for any order of derivatives). In contrast with LP and monotone
LCPs, the inversion and/or the Schur complement of the coefficient are fully dense even
if the coefficient itself is sparse. Hence. this computation is quite expensive in the whole
computation cost of interior-point methods for SDP and monotone SDLCPs. Therefore,
especially for SDP and monotone SDLCPs, it is desirable to use as much information as
‘possible from one factorization. On the other hand. SDP and monotone SDLCPs have
several difficulties to establish higher order methods. For example, there are many distinct
search directions for SDP and monotone SDLCPs (see a survey paper [26]). In view of [10],
each search direction is considerable as an inexact search direction of other search directions.
Who can expect the inexact search direction enjoys higher order convergence ?



161

Our purpose in this paper is to establish higher order convergent property of higher
corder infeasible-interior-point method for SDP and monotone SDLCPs. Our higher order
algorithm is based on the long-step predictor-corrector infeasible-interior- -point algorithm
using the Alizadeh-Haeberly-Overton search direction [1] proposed by Kojima, Shida and
Shindoh [9]. In this paper, we shall show that the gap to solutions converges to zero
arbitrarily higher (p+1-th) order by our higher (p-th) order method under the nondegeneracy
condition. The result gives the theoretical background of the practical adv antage of the AHO
search direction and the numerical efficiency of higher order implementation “Mehrotra’s
higher order corrections” reported by Alizadeh, Haeberly and Overton [2] and Haeberlx'
Nayakkankuppam and Overton [6].

The paper is organized as follows. Section 2 is devoted to introducing several basic
notions, such as the monotone SDLCP we are concerned, the AHO search direction, the
weighted central trajectory, the nondegeneracy condition and the higher order approxima-
tion. In Section 3, we present our higher order algorithm for the monotone SDLCP. and
show its higher order convergence. We make concluding remarks in Section 4.

In this paper, we only discuss the local convergence property of our higher order algo-
rithm, and hence we assume that there cxists a solution of monotone SDLCP. For more
detailed discussion of the global conv ergence property and the infeasibility detection. see
the paper [9].

2 Preliminaries

2.1 Monotone Semidefinite Linear Complementarity Problem

Let S (S4 or S4.) denote the set of n x symmetric (posm\e semldeﬁmte or positive
definite, resp.) matrices. Let F be a maximal monotone affine subspace of § x S, i.e.,

n(n + 1)/2 -dimensional and (X — X" Y - Y')(= Tr (X — X')(Y = Y")) > 0 for any two
pairs (X,Y), (X',Y’) in F. We are concerned with the monotone SDLCP:

Find (X,Y) c 8+ X S+

SDLCP cieh that (X, Y) € F,(X, Y)(= Tr X¥) = 0. (1)

The monotone SDLCP (1) was introduced by Kojima, Shindoh and Hara [12], and is a
broad mathematical framework which contains LP, monotone LCPs and SDP.

Lemma 2.1. Let (X.,Y) € §; x S;. The following three statements are equivalent.

(1)' <X:Y>:
(2). XY =0,
(3) XY+YX=O.

Proof:  Since the parts [(2)=(3)] and [(3)=>(1)] are trivial, we shall show the non-trivial
part [(1)=(2)]. Since Tr X'?Y X'? = Tr XY = (X,Y) = 0 and X2V X2 is
positive semidefinite, we have that X'/ 2YX /2 = 0. Since the set of eigenvalues of XY
corresponds to that of X2y X2 e conclude the assertion. I
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2.2 Neighborhood of Infeasible Central Trajectory

Let (X°,Y?) = (v/uPI,/u0I) be an initial iterate with a positive constant 10, and (X,Y)
denotes an arbitrary pair of matrices in F. Let

FO) = {(X,¥)eF+0((X°Y")— (X~ v))},
Fo = {(X,Y) € F - (X,Y)} : linearity subspace of F.
Note that F(8) and F, do not depend on the choice of the pair (X,Y) in F. For each
€ (0,1), 8 € (0,1) and ¢ > 1/n, let

N(v,8) = {(X,Y) € F(0) N (Sis X Sps) : XY +YX >2(1—7)0u°1, }

(X,Y) < n(l+¢m)ou’

(the condition ¢ > 1/n is needed to ensure the global convergence [9, Lemmas 3.7 and 3.8]).
We confine all iterates {(X*,Y*)} in the set {(X Y)eN(v,0):0 > O} which forms a
neighborhood of the infeasible central trajectory '

(X.Y) € F(O) N (Sss x Siy) : XY = 0u°L,0 > 0}
— ((X,Y) € F(O)N(Sys x S1y): XY + Y X = 204°1.0 > 0}.

0 serves as a gap to solutions of the SDLCP (1) in the following sense:

Lemma 2.2. Let (X,Y) € N(v,0) for some § >0 and v € (0,1). Then (X,Y) € F(0)
and
on(l — 70’ < |XY + YX||p <2(X,Y) < 2n(1+ ()8’

where || - || denotes the Frobenius norm.

Proof:v Let v;(i = 1.--+,n) denote the eigenvalues of XY + Y X. Then v; > 2(1 —
7)0u® > 0. Since the matrix XY +Y X is symmetric and positive definite, we see that

2n(1-7)0p° < nmin{y;} < [ XY+Y X||r = (Z(yy) <>y =2X.Y) < 2n(14+¢7)0p°.

i=1 i=1

2.3 AHO Search Direction

For the path-following type interior-point algorithms for the SDP and monotone SDL-
CPs in the literature. several search directions have been proposed, such as the AHO.
the HRVW /KSH/AL the NT, the MT search direction and ete. (see a survey paper [26]).
In this paper, we utilize the AHO search direction [1].

Let (X*.Y*). € N(7%),0%) denote an iterate. The AHO search direction (dX,dY) is
defined as a solution of the system of equations;

X*Y +dXY* +YEIX + dY X* = 280+ — XFY* — YFEXE, } @)

(X*+dX,Y* +dY) € F(B0%).
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where # € [0,1]. The system (2) has the unique solution (dX,dY) in & X S whenever
XF -0, Yt~ 0O, Xtyk 4 yhxt >~ O ([23, 27], see also [20]). It should be noted that .
the existence of the AHO search direction is not guaranteed on the whole set S, x &,
of pair of positive definite matrices. Our algorithm generates a sequence {(X*, Y*)} in the
neighborhood {(X,Y) € N(v,0) : § > 0} (for some v € (0,1)) of the infeasible central
trajectory, so that the AHO search direction is well-defined at each iterate (X*, Y*).

Remark 2.3. Among the proposed search directions for SDP and monotone SDLCPs, the
AHO search direction has the following good properties:

e the AHO search direction (2) with B = 0 (the affine scaling AHO search direction) is a
pure Newton direction towards the set {(X,Y) € FN(Syx8,): XY +Y X = O},
which is an equivalent system of the solution set of the monotone SDLCP (1) (see
Lemma 2.1).

e the (first order) predictor-corrector algorithm using the AHO search direction pro-
posed in [9] possesses the locally quadratically conv ergent property under a mild as-
sumption (the strict complementarity condition and/or the nondegeneracy condition.
see Subsection 2.5 for definitions). 1

2.4 Infeasible Weighted Central Trajectory induced by AHO
Search Directions

For LP and monotone (L)CPs, the weighted central trajectory, which is induced by the so-
called affine scaling search directions, is a fundamental guide to lead solutions of problems
[5, 8]. The trajectory is a background of the stability aspects of practical interior-point
algorithms.

For SDP and monotone SD(L)CPs, Monteiro and Pang [17] studied the fundamental
1nteuor—pomt mapping which leads to a family of continuous trajectories. Let (X*,Y*) ¢
N (v*), %) be a current iterate. By using their interior-point mapping, we define the infea-
sible weighted central trajectory

{(X.Y) e F(r0") N (844 x S14) : XY + Y X = 7(X*'Y* + Y*XF).7 > 0},

through the current iterate (X*, Y*). From the definition, the AHO search direction (2)
with 3 = 0 (the affine scaling AHO search direction) is a tangent direction of the infeasible
weighted central trajectory, in other words, the infeasible weighted central trajectory is
induced by the affine scaling AHO search directions. It should be noted that, as the existence
of the AHO search direction, the infeasible weighted central trajectory is well-defined on
the neighborhood {(X.Y) € N'(7.,6) : 0 > 0}. but not on the whole set S, x S, of pairs
of positive definite matrices, in contrast with the cases of LP and monotone (L)CPs.

2.5 Nondegeneracy Condition

We introduce two generic assumptions.
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Condition 2.4. (Strict Complementarity Condition) There exists a solution pair
(X*,Y"*) of the monotone SDLCP (1) such that X* +Y™* € §4. '

Under the strict complementarlt\ condmon Kojima, Shida and Shlndoh [9] showed that
the gap 6 to solutions of the monotone SDLCP (1) quadratically converges to zero by their
first order algorithm. For higher order convergence, we impose a stronger condition, “the
nondegeneracy condition”: ”

Condition 2.5. (Nondegeneracy Condition) Let (X*,Y") be a solution of the mono-
tone SDLCP (1). Then, (U,V) = (0, 0) if

X'V+UY* +VX' +Y'U=0 and (U,V)€eF,

It is easy to see that the nondegeneracy condition is stronger than the strict complementarity
condition. Moreover, the condition implies the uniqueness of the solution (X™.Y™) of the
monotone SDLCP (1) (see [11, Section 5]). Under the nondegeneracy condition, the limiting
system of the AHO search direction (2) at the unique solution (X*,Y™) is nonsingular.

Remark 2.6. The nondegeneracy condition (Condition 2.5) may seem to be rather strong
or artificial for the AHO search direction. However, the condition is generi¢ and natural. In
[9, 11], Kojima, Shida and Shindoh used a different form of the nondegeneracy condition;

(U,V)=(0,0)if [X*V +UY* =0 and (U,V) € F, (3)

which is equivalent to Condition 2.5 (see [9, Lemma 6.3]). Note that the condition (3)
only ensures that the set {(X,Y) € S; x §; : XY = O} of complementary pairs of
positive semidefinite matrices transversally intersects the feasibility affine subspdce F at
the (unique) solution (X*,Y™).

For SDP, Haeberly pointed out that the nondegeneracy condition is equivalent to the -
combination of the primal-dual nondegeneracy condition introduced by Alizadeh, Haeberly
and.Overton [2] and the strict complementarity condition. 1

Lemma 2.7 belo“ is a key to estimate the norms of the AHO search direction and the
higher order derivatives.

Lemma 2.7. Assume that the nondegeneracy condition holds. Let (X,Y) be near (X*, Y™),
and C, D, E are symmetric matrices such that

max {HCHF, (quél})fefo{|)(D,E) — (D' E’)HF}} =

Then the system
XV4+UY+VX+YU=C (4
(U.V) € Fo+ (D, E). )

has a solution (U, V'), which is unique and ||(U,V)||r = (7).

 Proof: It is shown by the nonsingularity of the system (4) at the solution (X*,Y™) (the
nondegeneracy condition) and the continuity of data.
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2.6 Higher Order Approximation

Let (X*,Y*) € N (y®), 6%) be a current iterate. We consider the higher order approximation
of the solution svstem '
XY+YX=0,(X,Y)e F (5)

of the monotone SDLCP (1) along the infeasible weighted central trajeétory
{(X,Y) € F(r0*) N (844 x 811) : XY + Y X = r(X*Y* + Y*Xh), 7 > 0}
at (X*,Y*).
By differentiating the system

XY +YX =(1-a)(XYF+YFXH),
(X,Y) € F((1 - a)f*),

we obtain the system (2) of the AHO search direction (dX,dY) with 3 = 0. Let
(X*(@), Y*)), = (X5 Y*) + a(dX.dY)

denote a linear approximation of the solution system (5) of the monotone SDLCP (1) along
the infeasible weighted central trajectory at (X*, Y*).

Let p be an arbitrary positive integer greater than 1. Upto p-times dlﬂ"erenuatmg the
equation (6), the p-th order derivative (d? X, dPY") is described by
X'"PY + #XY* + YFPY XF + YFPXF = —R,(d XY, d'Y &P~ X) )
(d* X,dPY) € Fo. ' ,

where ‘R,, is an appropriate n x n-symmetric matrix valued function which has (271 — 4)
terms of ' X dP™'Y and d'YdP~'X fori =1,---,p— 1. For example,

R, = 2(dXdY +dYdX)
Ry = 3(£XdY +dX&Y + &Y dX + dY &2 X),
Ry, = 6(EXdY + Y d*X) + 4P XdY + dXPY + BY dX + dY PX).

Note that, for any order of derivatives, the system (7) has the same coeficient, which is
nonsingular in {(X,Y) € N(y,0) : 0 > 0}. By using the derivativ es, we define the p-th
order approximation (X*(a), Y*(a)), of solution system (5) of the monotone SDLCP ( )
along the infeasible weighted central trajectory at (X*, Y*) by

(X* (@), Y(a)), = (X*(a), Y'“( o)

P
= (X*Y*) + a(dX,dY) + (de PY)+ -+ —O-“,—(de,dPY). _ (®)

By Lemma 2.8 below, we have
XF(@),Y*(0)y + Y(@),X*(0), = (1 - a)(XFY* + YAXF) + O((65PH),  (9)

where O(7) is a symmetric matrix whose Frobenius norm converges to zero with the same
order as 7 N\, 0.
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Lemma 2.8. Assume that the nondegeneracy condition holds. Let (X*,Y*) € N (v, 6%).
Then, we have that ||(d* X ,dPY)||p = O((6%)?) for allp > 1.

Proof: 1t is easily shown by the induction with Lemmas 2.2 and 2.7. g

In this paper, the nondegeneracy condition is needed only to show Lemma 2.8, However,
the condition might be relaxed to the strict complementarity condition, since Kojima, Shida
and Shindoh showed Lemma 2.8 for p = 1 under the strict complementarity condition only
([9, Section 5)). : '

3 Higher Order Infeasible-Interior-Point Algorithm

~ Our higher order algorithm is completely based on the long-step predictor-corrector infeasible-
interior-point algorithm proposed by Kojima, Shida and Shindoh [9]. Therefore, the globally
convergent property and the locally quadratically convergent property (under the strict com-
plementarity condition) were guaranteed by [9]. In Steps 4 and 5 of Algorithin 3.1 below,
we use higher order approximation. '

Starting from (X% Y°,6° %) = (v/uPI.+/u’1,1,0), our algorithm generates a sequence
{(X*, Y* X5 Y% 0% 4%)} such that for every k =1,2--,

1=0°%> 0k > 651 >0,
1>7y>7%>0,
(X*,Y*) € N(oF, 6%).
(X5 YF) e N(y,6%).

(10)

Algorithm 3.1. (Higher Order Infeasible-Interior-Point Algorithm)

Step 1: Choose an accuracy parameter € > 0, a neighborhood parameter v € (0,1) and an
initial point (X° V) = (y/uOI. /pOI) with some p° > 0. Let §° = 1,0 < 6" < 1
and v° = 0.

Step 2 (Predictor Step): Compute the AHO search direction (dX,dY’) by solving the
svstem (2) with 8 = 0. Let ‘

o _ dXIeldY | )
- 0k 110 :
ak 2

N Ty Y -
(X*(0), Y¥(0)) € N (3, (1 = )6¥) } _

for every a € [0. ]

& = max {o;’ €[0.1]:

Choose a step length of € [@*, "] (the relation 0 < &% < &* < 1 was shown in [9,
Lemma3.7] .

Step 3: If 0% > 0%, let (X*,Y*) = (X*(a}), Y*(a¥)); and 051 = (1 — of)6*, and goto
Step 6. Otherwise goto Step 4.
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Step 4 (Higher Order Predictor Step): Compute the derivatives upto p-th order along
the infeasible weighted central trajectory at (X*, Y*). Let

a, = méx {a-" €0,1]: (X*(@). Y*(a), € N(7.(1 - 0)6¥) } .

for every a € [0, &]
Step 5: If of > afl’j, let of = of, (XE,YE) = (X*(aF), Y*(oF)); and 05+ = (1 — ok)9%,
Otherwise, let of = of, (X}, YF) = (X*(o¥), Y*(aF)), and 6F+! = (1 — o/)0*.
Step 6: If §*"! < ¢, then stop. Otherwise goto Step 7.

Step 7 (Corrector Step): Compute the AHO search direction (dX,dY) by solving (2)
“with 8 =1. Let

o dXEaY ,
¢ gr+1,0 :
A o ko
atmy - | (Gp1-gp)) s |
: (1,65) if v > 26k,
: k k k41
“}k‘“ = min{+y €[0,1]: (f{i ;EQ%XL]Y +adY) e N(v.0 ), }

| (12)

Choose a step length of € [0,1] and v**! such that
g c Y

AEHL < kL < s

(XE+akdX, Y* + okdY) € N(yF+1, gh+1)y, } (13)

(By [9, Lemma 3.8, the pair (a YY) = (aF, 5%+1) satisfies the relations (13)) . Let
(XFH YR — (XK, Y’?)+ac(dX,dY).

Step 8: Replace k by k + 1. Goto Step 1. : o 1
~ Note that Steps 4 and 5 do not affect the following properties shown in [9]:

e Algorithm 3.1 consistently generates a sequence {(X*, Y*, X* Y* g% %)} satisfying
(10)[9, Theorem 2.3],

e for ¢ > 0. Algorithm 3.1 stops in a finite number of iterates in Step 6 [9. Theorem 2.3].

e (for € = 0) under the strict complementarity condition, the gap 6 to solutions of the
monotone SDLCP (1) converges to zero quadratically [9, Theorem 5.1].

e under the nondegeneracy condition, we can take the unit step length of = 1 in Step
6 (Corrector Step) for every sufficiently large k [9, Theorem 6.2].

Theorem 3.2. Suppose that the nondegeneracy condition holds. Then the gap 8 to solutions

of the monotone SDLCP (1) converges zero Q-superlinearly with order p + 1 by Algorithm
3.1 (for e =0).

To show Theorem 3.2, we need the following Lemmas.
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Lemma 3.3. Suppose that the nondegenemcy condition holds. Then there exists a positive

constant  such that
0<~* <7<y for every k=0,1, -

Proof: By [9, Lemma 5.7], 6% = O(1). The assertion is derived by the definition (12) of

¥+

Lemma 3.4. For any positive ¢, the polynomial p(x) = (1 — z) — cz™ has only one positive
real root .., which is less than 1. Moreover, z, € (1—¢,1) forc € (0,1). (1—iy converges
to O with the same order as ¢ ™ 0.)

Proof: Since Dp(z) = —1 — enz™ ! < 0 for any nonnegative z, the function p is strictly

- decreasing on [0, 00). Therefore, the function p have only one positive real root x, which
is in (0,1) together with the fact that p(0) =1 > 0 and p(1) = —¢ < 0. For ¢ € (0,1), we
have that p(1—c) = ¢(1—(1—¢)") > 0 and p(1) = —c < 0. Hence, we have z, € (1—c,1).
(1—2y =caf" =0(c)) » |

Proof of Theorem 3.2: To show Theorem 3.2, we have only to show that 1 — o =
O((8%)P) for any sufficiently large k, since 0571 = (1 — o)@*. For the purpose. we shall
show that 1 — af = O((6*)?). By Lemmas 2.8 and 3.3, we have that

X*(a)pY* (o ) + Y (), X" (@)p — 2(1 = 7)(1 — )" T
=(1-a)X Ky + Y’“X’“) + O((afF)P+1) — 2(1 — 9) (1 — @)% p°I (14)
= 2(1 — a)(y — 7)0%°T — O((a*)PH),

nd

) (X¥ (), ¥*)y) = (1 = @)1+ C7)0p
< n(1 — a)(1 + )80 + O((al*P*) — (1 — a)(1 -+ Cv)6p (15)
< —n(1 - a)((y — ¥)8u’ + O((af*)PH1).

Therefore, by Lemma 3.4, we can take (1 — ak) = O((6%)?) to keep the left hand side
matrix of (14) positive definite and the left hand side of (15) negative, i.e., to keep the
p-th order approximation (X*(a), Yk( ), in Ny, (1—a)f).

In practice, an exact computation of ag is not possible. Since we only use the higher order-
approximation near the solution (X *, Y™*), we can guess the upperbound of the coefficient of
(a8)? in (9) (and therefore (14) and (15)) from the current point (X*,Y*), and therefore
we can choose an inexact af so that 1 — ok = O((6*)?) by using Lemma 3.4 with 2, = ok

4 Concluding Remarks

In this paper. we develop the higher order predictor-corrector infeasible-interior-point algo-.
rithm for the monotone SDLCP (1) along the infeasible weighted central trajectory induced
by the AHO search directions. The result gives the theoretical background of the practical
advantage of the AHO search direction and the numerical good performance of higher order
implementation “Mehrotra’s higher order corrections” reported by Alizadeh, Haeberly and
Overton [2] and Haeberly, Nayakkankuppam and Overton [6].
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To establish the higher order convergence of our higher order method, we need to impose
the nondegeneracy condition. However, Kojima, Shida and Shindoh [9] proved the quadrat-
ically convergent property of their first order algorithm under the strict complementarity
condition only by showing that the norm of the AHO search direction (dX,dZ) converges
to zero with the same order as 6 ™\, 0 (see Lemma 2.8). Hence, the higher order convergence
may be shown under the strict complementarity condition only.

We close the paper by listing two other open topics in the field:

e globally polynomial-time first order algorithm (using the AHO search direction) with
the locally quadratically convergent property under the strict complementarity condi-
tion or the nondegeneracy condition. Globally polynomial-time feasible interior-point
algorithms with families of search directions which contains the AHO search direction
were proposed by Monteiro [15] and Kojima, Shida and Shindoh [10], while the in-
feasible interior-point algorithm using the AHO search direction proposed by Kojima,
Shida and Shindoh [9] possesses the locally quadratically convergent property (our
algorithm is based on the algorithm).

e p-th order algorithm using non-AHO search direction with (p+1)-th order convergence
under the nondegeneracy condition or the strict complementarity condition. The case
= 1 is still open, in my knowledge. The superlinear.convergence of first order
algorithms using the HRVW /KSH/M search direction [7, 12, 14] was discussed in
[11, 22]. To ensure the superlinear convergence, the additional condition “tangential
convergence of sequence {(X*,Y*)} to the central surface {(X,Y) € 8.4 x S, :
XY = ulI,p > 0} is needed ([11, Section 6.2]). But the condition implies that we
shall asymptotically take the AHO search direction (note that almost all the proposed
search directions correspond if the current point lies on the central surface, see [10. 23]).
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