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1 Introduction.

This short note is concerned with two types of optimization problems. The one is a nonlinear
program:

lnaximize $d^{T}u$ subject to $u\in G_{0}$ and $f(u)\leq 0(\forall f(\cdot)\in \mathcal{F})$ (1)

Here

$d$ : a constant $\mathrm{c}\mathrm{o}1_{\mathrm{U}\mathrm{m}}11$ vector in the $\parallel_{-}\mathrm{d}\mathrm{i}_{\mathrm{l}\mathrm{n}\mathrm{e}}\mathrm{n}\mathrm{S}\mathrm{i}\mathrm{o}\mathrm{n}\mathrm{a}1$ Euclidean space $R^{\ell}$ ,
$d^{T}$ : the transposition of $d$ ,

$u$ : a variable vector in $R^{l}$ ,
$G_{0}$ : a convex subset of $R^{l}$ ,

$\mathcal{F}$ : a class of finitely or infinitely many real valued functions on $R^{p}$ .

We may start with a more general nonlinear program having a nonlinear objective function
$f_{0}(u)$ , but we can always reduce such a problem to a nonlinear program with a linear
objective function. In fact, if we replace $f_{0}(u)$ by a scalar variable $u_{0}\in R$ and add the
inequality $u_{0}-f_{0}(u)\leq 0$ to the constraints, we have a nonlinear program of the form (1).

The other problem is a general quadratic program:

. maximize $c^{T}x$ subject to $x\in C_{0}$ and $q(x)\leq 0$ . (2)

Here

$c$ : a constant column vector in $R^{n}$ ,
$x$ : a variable vector in $R^{n}$ ,

$q(\cdot)$ : a concave quadratic function on $R^{n}$ ,
$C_{0}$ : a convex subset of $R^{n}$ .

The problem (2) is a special case of $\mathrm{d}.\mathrm{c}$ . (difference of two convex functions) programs.
Conversion of general nonlinear programs into $\mathrm{d}.\mathrm{c}$ . programs has been extensively studied
in the field of global optimization. See, for example, [2, 3, 9]. In theory, it is known that
any closed subset $G$ of $R^{\ell}$ can be represented as

$G=\{u\in R^{l2} : \phi(u)-||u||\leq 0\}$

数理解析研究所講究録
1114巻 1999年 13-21 13



using some convex function $\phi(\cdot)$ : $R^{l}arrow R$ . See Corollary 3.5 of [9]. Hence, given any closed
subset $G$ of $R^{l}$ , we can reduce a maximization of a linear function $d^{T}u$ over $G$ into the
problem (2) by taking

$n=q(x)=t-||\ell+1,$
$x=,\in R^{n},c=.\in R^{n}u||2c0=\{x\in Rn.\phi(u)-t\leq 0’\}$

.
$\}$ (3)

In general, however, this conversion is neither practical nor implementable because an ex-
plicit algebraic representation of such a convex function $\phi(\cdot)$ : $R^{l}arrow R$ is not available.

The purpose of this short note is to add an observation that if the nonconvexity of every
$f(\cdot)\in \mathcal{F}$ is moderate, then we can reduce the nonlinear program (1) to a general quadratic
program of the form (2). Recently Kojima and Tun\cael [4] proposed a class of successive
convex relaxation methods for nonconvex quadratic programs. See also $[5, 8]$ . In applying
their methods to an optimization problem, it is necessary and also essential to transform the
problem into an optimization problem having a linear objective function, finitely or infinitely
many quadratic inequality constraints and an additional compact convex constraint set.
Since (2) is a special case of such optimization problems whenever the constraint set $C_{0}$

is compact, our observation opens up a possibility of applying their methods to general
nonlinear programs. See also Remark (B) of Section 4.

We introduce a class $\mathcal{F}_{\mathrm{p}.\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{v}}(G)$ of peri-convex functions on a convex subset $G$ of $R^{f}$ .
For every $f$ : $R^{p}arrow R$ , let

$\sigma(f, G)$ $\equiv$ $\inf$ { $\sigma\geq 0$ : $f(\cdot)+\sigma||\cdot||^{2}$ is convex on $G$}.

Then $f$ : $R^{l}arrow R$ lies in $\mathcal{F}_{\mathrm{P}^{\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{v}}}.(G)$ if and only if $\sigma(f, G)<\infty$ . Obviously, if $f(\cdot)$ : $R^{\ell}arrow R$

is convex on $G$ , then it is in the class $\mathcal{F}_{\mathrm{p}.\mathrm{c}\circ \mathrm{n}\mathrm{v}}(G)$ . In addition, the class $\mathcal{F}_{\mathrm{p}_{\mathrm{C}\mathrm{O}}\mathrm{n}\mathrm{V}}.(G)$ contains
‘cmoderately nonconvex” functions. But, for example, the function $-||\cdot||$ : $R^{l}arrow R$ is not
peri-convex for any convex open neighborhood of $0\in R^{p}$ . We also note that if $f(\cdot)\mathrm{s}$ a
peri-convex function on a subset $G^{\gamma}$ of $R^{\ell}$ , then it is continuous in the interior of $G$ .

In Section 2,
$\bullet$ we show that if every $f(\cdot)\in \mathcal{F}$ is peri-convex on $G_{0}$ then we can reduce the nonlinear

program (1) to a general quadratic program of the form (2).

In Section 3, we present some properties of peri-convex functions. In particular,
$\bullet$ we characterize peri-convex functions in terms of proximal subdifferentiability [1], and

$\bullet$ we show that $‘\zeta \mathrm{m}\mathrm{o}\mathrm{d}\mathrm{e}\mathrm{r}\mathrm{a}\mathrm{t}\mathrm{e}\mathrm{l}\mathrm{y}$ nonlinear” functions are peri-convex.

2 Reduction of the Nonlinear Program (1) to the Gen-
eral Quadratic Program (2).

Assume that $\mathcal{F}\subset \mathcal{F}_{\mathrm{p}\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{v}}(G_{0})$ and that $\sigma(f, G)\leq\sigma_{J}<+\infty$ for each $f(\cdot)\in \mathcal{F}$. Then the
functions

$yc(\cdot;\sigma_{f}, f)=f(\cdot)+\sigma f||\cdot||2$ $R$: $parrow R(f(\cdot)\in \mathcal{F})$ (4)
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Then $g(\cdot)\sigma_{f},$ $f)$ : $R^{l}arrow R$ are convex on $G_{0}$ . Now we rewrite the nonlinear program (1) as

maximize $d^{T}u$

subject to $u\in G_{0},$ $t-||u||^{2}\leq 0$ ,
$g(u;\sigma_{f)}f)-\sigma ft\leq 0(\forall f(\cdot)\in \mathcal{F})$ .

$\}$

Defining

$n=\ell+1,$ $x=\in R^{n},$ $c=\in R^{n}$ ,

$q(x)=t-||u||^{2}$ ,

$C_{0=}\{x\in R^{n}$ : $u\in G_{0},$ $h(x_{i}.\sigma_{f}, f)\leq 0(f(\cdot)\in \mathcal{F})\},$

$\}$ (5)
$h(x;\sigma_{f}, f)=g(u;\sigma f., f)-\sigma_{f}t(f^{\mathrm{v}}(\cdot)\in \mathcal{F})$ ,

we thus obtain the quadratic program (2), which is equivalent to the nonlinear program
(1) as we will see in the theorem below. By definition, the functions $h(\cdot;\sigma_{f}, f)$ : $R^{n}arrow R$

$(f(\cdot)\in \mathcal{F})$ are convex on the convex set $G_{0}\mathrm{x}R$ . This ensures that $C_{0}$ is a convex subset of
$R^{n}$ . It should be also noted that the function $h(\cdot;\sigma_{f}, f)$ : $R^{l}arrow R$ is $C^{k}(k$ times continuously
differelltiable) whenever $f(\cdot)$ : $R^{l}arrow R$ is so.

Theorem 2.1. Define the functions $q(\cdot)$ : $R^{n}arrow R,$ $h(\cdot;\sigma_{f}, .f\cdot)$ : $R^{n}arrow R(f(\cdot)\in \mathcal{F})$ and
the convex subset $C_{0}$ as in (5). Then $u^{*}\in R^{l}$ is a maximum solution of (1) if and only if
$x^{*}=\in R^{n}$ is a maximum solution of (2) for some $t^{*}\in R$ .

Proof: Suppose that $x^{*}=\in R^{n}$ is a maximum solution of the problem (2).
Then

$u^{*}$ $\in$ $G_{0}$ and $f(u^{*})=h(x^{*}; \sigma f, f)+\sigma_{J}q(x^{*})\leq 0(\forall f(\cdot)\in \mathcal{F})$.

It follows
$T*\mathrm{t}\mathrm{h}\mathrm{a}\mathrm{t}u^{*}$

is a feasible solution of (1) which attains the salne objective value
$d^{T}u^{*}=cx$ as the problem (2).

Now assume that $u^{*}\in R^{l}$ is a maximum solution of the problem (1). Let

$t^{*}$ $=$ $||u^{*}||^{2}$ and $x^{*}=\in R^{n}$ .

Then we see that

$u^{*}$ $\in$ $G_{0},$ $q(x^{*})=t^{*}-||u|*|^{2}=0,$ $c^{T}x^{*}=d^{\tau}u*$ ,
$h(x^{*}; \sigma Ji.f)$ $=$ $g(u^{*};\sigma_{J}, f)-\sigma_{J}t*f=(u^{*})\leq 0(\forall f(\cdot)\in \mathcal{F})$ .

Thus $x^{*}$ is a feasible solution of (2) that attains the same objective value as the problenl
(1). 1
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3Some Characterizations of Peri-Convex Functions.

We first give a characterization of a peri-convex function $f(\cdot)$ : $R^{f}arrow R$ in terms of the
proximal subdifferentiabilty [1]. We say that a function $f(\cdot)$ : $R^{\mathit{1}}arrow R$ is proximal subdif-
ferentiable at $u\in R^{l}$ if there exist an open neighborhood $U$ of $u$ , a nonnegative number a,
and a $\zeta\in R^{f}$ such that

$f(v)-f(u)\geq\zeta^{\tau_{(v-}2}u)-\sigma||v-u||(\forall v\in U)$ . (6)

We call $\zeta$ a proximal subgradient of $f(\cdot)$ at $u$ . See [1]. Note that in the definition of the
proximal subdifferentiability of $f(\cdot)$ at $u\in R^{f}$ above, not only the proximal subgradient $\zeta$

but also the nonnegative number $\sigma$ can depend on the point $u\in R^{\ell}$ under consideration.
It follows from definition that if $f(\cdot):R^{\ell}arrow R$ is $\mathrm{P}^{\mathrm{r}\mathrm{o}\mathrm{X}\mathrm{i}_{\ln}\mathrm{a}1}$ subdifferentiable at $u\in R^{l}$ then
it is lower semi-continuous at $u\in R^{\ell}$ but not necessarily continuous at $u\in R^{\ell}$ ; for example
the function $f(\cdot):Rarrow R$ defined by

$f(u)=\{$
$u$ if $u\leq 0$ ,
$u^{2}+1$ otherwise

(7)

is proximal differentiable at every $u\in R$ but not continuous at $u=0$ . Let $G\subset R^{l}$ . We say
that $f(\cdot)$ is uniformly proximal subdifferentiable on $G$ if we can take a common nonnegative
number $\sigma$ independent of points $u\in G,.$ and that $f(\cdot)$ is uniformly-and-globally proximal
subdifferentiable on $G$ if in addition the inequality (6) holds for every $v\in G.$ (In both
cases, $\zeta$ can be dependent on the point $u\in G$ ). The function $f(\cdot)$ : $Rarrow R$ defined in
(7) is uniformly proximal subdifferentiable on $R$ but neither peri-convex nor uniformly-and-
globally proximal subdifferentiable on any interval containing $0$ .

Proposition 3.1. Let $G$ be a convex subset of $R^{l}$ and $f(\cdot):R^{l}arrow R$ .

(i) If $f(\cdot)$ is continuous and uniformly proximal subdifferentiable on $G$ , then it is peri-
convex on $G$ .

(ii) If $f(\cdot)$ is peri-convex on int$(G)_{j}$ the interior of $G$ , then it is $unif_{\mathit{0}}rmly-and- gl_{ob}ally$

proximal subdifferentiable on int$(G)$ .

Proof: (i) By assumption, there exists a nonnegative number a such that given any
$u\in G$ , the inequality

$f(v)-f(u)\geq\zeta_{u}^{T}(v-u)-\sigma||v-u||^{2}(\forall v\in U_{u})$ . (8)

holds for some $\zeta_{u}\in R^{p}$ and some open neighborhood $U_{u}$ of $u$ . We will show that $g(\cdot)\equiv$

$f(\cdot)+\sigma||\cdot||^{2}$ is convex on $G$ . Assume on the contrary that there exist $\overline{u},\overline{v}\in G$ and
$\overline{\lambda}\in(0,1)$ for which

$g((1-\overline{\lambda})\overline{u}+\overline{\lambda}\overline{v})>(1-\overline{\lambda})g(\overline{u})+\overline{\lambda}g(\overline{v})$ (9)
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holds. We see by (8) that for every $u\in G$ and $v\in U_{u}$ ,

$g(v)-g(u)$ $=$ $(f(v)+\sigma||v||2)-(f(u)+\sigma||u||2)$

$=$ $f(v)-f(u)+\sigma||v||^{2}-\sigma||u||^{2}$

$\geq$ $\zeta_{u}^{T}(v-u)-\sigma||v-u||^{2}+\sigma||v||^{2}-\sigma||u||2$

$=$ $(\zeta_{u}+2\sigma u)\tau(v-u)$ (10)

Define

$h(\lambda)\equiv g((1-\lambda)\overline{u}+\lambda\overline{v})-((1-\lambda)g(u)+\lambda g(\overline{v}))(\forall\lambda\in[0,1])$ .

Then $h:[0,1]arrow R$ turns out to be a continuous function satisfying

$h(\mathrm{O})=h(1)=0$ and $h(\overline{\lambda})>0$ .

Here the last inequality follows from (9). Let

$h*$ $\equiv$ $\max\{h(\lambda) : \lambda\in[0,1]\},$ $\Lambda^{*}\equiv\{\lambda\in[0,1] : h(\lambda)=h^{*}\}$ ,
$\lambda^{*}$

$\equiv$ $\min\{\lambda : \lambda\in\Lambda^{*}\}$ , and $u^{*}\equiv(1-\lambda^{*})\overline{u}+\lambda^{*}\overline{v}$ .

Then we know that

$0<\lambda^{*}<1$ ,
$0>h(\lambda)-h(\lambda^{*})(\forall\lambda\in[0, \lambda^{*}).$ (11)
$0\geq h(\lambda)-h(\lambda^{*})(\forall\lambda\in[\lambda^{*}, 1])$ ,
$(1-\lambda)\overline{u}+\lambda\overline{v}\in U_{u}*$ if $\lambda\in[0,1]$ is sufficiently close to $\lambda^{*}$ ,

and that for every $\lambda\in[0,1]$ sufficiently close to $\lambda^{*}$ ,

$0$ $\geq$ $h(\lambda)-h,(\lambda^{*})$

$=$ $g((1-\lambda)\overline{u}+\lambda\overline{v})-g((1-\lambda^{*})\overline{u}+\lambda*\overline{v})$

$-(\lambda-\lambda*)(g(\overline{v})-g(\overline{u}))$

$\geq$ $(\lambda-\lambda*)(\zeta u+2*\sigma u)*T(\overline{v}-\overline{u})$

$-(\lambda-\lambda*)(g(\overline{v})-g(\overline{u}))$ (by (10))
$=$ $(\lambda-\lambda^{*})((\zeta_{u^{*}}+2\sigma u)^{\tau_{(-\overline{u}}}*)-(g(\overline{v})-\mathit{9}(\overline{u})\overline{v}))$ .

Therefore we obtain that $0=h(\lambda)-h(\lambda^{*})$ for every $\lambda\in[0,1]$ sufficiently close to $\lambda^{*}$ .This
contradicts to (11).

(ii) By assumption, there is a nonnegative number $\sigma$ such that the function $f(\cdot)+\sigma||\cdot||^{2}$

is convex on int $(G)$ . Hence the function $f(\cdot)+\sigma||\cdot||^{2}$ is subdifferentiable on int $(G)$ ; for
every $u$ in int $(G)$ , there is a $\xi\in R^{l}$ such that

$f(v)+\sigma||v||^{2}-(f(u)+\sigma||u||^{2})\geq\xi^{T}(v-u)(\forall v\in \mathrm{i}\mathrm{n}\mathrm{t}(G))$.

See, for example, Theorem 23.4 of [7]. It follows that

$f(v)-f(u)\geq(\xi-2\sigma u)^{\tau}(v-u)-\sigma||v-u||^{2}(\forall v\in \mathrm{i}\mathrm{n}\mathrm{t}(G))$ .

This implies that $f(\cdot)$ is uniformly proximal subdifferentiable on int $(G)$ . 1
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Corollary 3.2. Let $G$ be an open convex subset of $R^{p}$ and $f(\cdot)$ : $R^{l}arrow R$ be continuous.
Then the following (I), (II) and (III) are equivalent.

(I) $f(\cdot)$ is uniformly proximal subdifferentiable on $G$ .

(II) $f(\cdot)$ is $unif_{\mathit{0}}rmly- and- gl_{\mathit{0}}bally$ proximal subdifferentiable on $G$ .

(IIIj $f(\cdot)$ is peri-convex on $G$ .

Proof: In view of (i) and (ii) of Proposition 3.1, we know that $(\mathrm{I})\Rightarrow(\mathrm{I}\mathrm{I}\mathrm{I})$ and (III)
$\Rightarrow(\mathrm{I}\mathrm{I})$ , respectively. Also the implication (II) $\Rightarrow(\mathrm{I})$ is obvious from definition. Thus
the equivalence of (I), (II) and (III) follows. 1

When a peri-convex function $f(\cdot)$ : $R^{l}arrow R$ is $C^{1}$ (continuously differentiable) or $C^{2}$

(twice continuously differentiable), we can characterize it in terms of its gradient vector
V$f(\cdot)$ or its Hessian matrix $\nabla^{2}f(\cdot)$ , respectively.

Proposition 3.3. Let $G$ be a convex subset of $R^{l}$ . If $f(\cdot)$ : $R^{n}arrow R$ is $C^{1}$ on an open
neighborhood of $G$ , then the following $(a)_{f}(b)$ and $(c)$ are equivalent.

$(a)f(\cdot)+\sigma||\cdot||^{2}$ is convex on $G$ .

$(b)f(v)-f(u)\geq\nabla f(u)\tau(v-u)-\sigma||v-u||2(\forall u, v\in G^{\mathrm{t}})$ .

$(c)(\nabla f(v)-\nabla f(u))T(v-u)\geq-2\sigma||v-u||^{2}(\forall u, v\in G)$ .

If $f(\cdot)$ : $R^{l}arrow R$ is $C^{2}$ on an open neighborhood of $G_{f}$ then $(a),$ $(b),$ $(c)_{f}$ and $(d)$ below are
equivalent.

$(d)$ For every $u\in G,$ $\nabla^{2}f(u)+2\sigma I$ is $positiv\epsilon$ semidefinite on the linear subspace $L$

spanned by $G-\{u^{0}\}_{i}$ where $u^{0}\in G$ , i.e., $v^{T}(\nabla^{2}f(u)+2\sigma I)v\geq 0$ for every $v$ in the
linear subspace $L$ .

Proof: It is well-known that if $g(\cdot):R^{\ell}arrow R$ is $C^{1}$ on an open neighborhood of $G$ then
the following $(\mathrm{a})’(\mathrm{b})$

’ and $(\mathrm{c})$
’ are equivalent.

$(\mathrm{a})’ g(\cdot)$ is convex on $C_{7}$ .

$(\mathrm{b})’ g(v)-g(u)\geq\nabla g(u)^{\tau}(v-u)(\forall u, v\in G)$ .

$(\mathrm{c})’(\nabla g(v)-\nabla g(u))^{T}(v-u)\geq 0(\forall u, v\in G)$.

If $f(\cdot):R^{n}arrow R$ is $C^{2}$ on an open neighborhood of $G$ , then $(\mathrm{a})’,$ $(\mathrm{b})’,$ $(\mathrm{c})’$ , and $(\mathrm{d})$
’ below

are equivalent.

$(\mathrm{d})$
’ For every $u\in G,$ $\nabla^{2}g(u)$ is positive semidefinite on the linear space spanned by

$G-\{u^{0}\}$ , where $u^{0}\in G$ .
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See, for example, Chapter 6 of [6]. When $g(\cdot)=f(\cdot)+||\cdot||^{2}$ : $R^{l}arrow R$ , we can rewrite the
conditions $(\mathrm{a})’,$ $(\mathrm{b})’,$ $(\mathrm{c})$

’ and $(\mathrm{d})$
’ as (a), (b), (c) and (d), respectively. Thus the desired

results follow. 1

Suppose that a function $f$ : $R^{l}arrow R$ is $C^{1}$ . If its gradient vector is Lipschitz continuous
on a convex subset $G$ of $R^{f},$ $i.e.$ ,

$\alpha(f, G)\equiv\sup\{\frac{||\nabla f(u)-\nabla f(v)||}{||u-v||}$ : $u\in G,$ $v\in G,$ $u\neq v\}<\infty$ ,

then we may regard such a $f(\cdot)$ as a (
$‘ \mathrm{m}\mathrm{o}\mathrm{d}\mathrm{e}\mathrm{r}\mathrm{a}\mathrm{t}\mathrm{e}\mathrm{l}\mathrm{y}$ nonlinear’; function on $G$ . The corollary

below ensures that if.$f(\cdot)$ : $R^{l}arrow R$ is moderately nonlinear on $G$ then it belongs to
$\mathcal{F}_{\mathrm{p}.\mathrm{c}\circ \mathrm{n}\mathrm{v}}(G)$ .

Corollary 3.4. Let $G$ be a convex subset of $R^{\ell}$ . $Assum\epsilon$ that $f(\cdot)$ : $R^{\ell}arrow R$ is $C^{1}$ on an
open neighborhood of $G$ and that $\frac{\alpha(f,G)}{2}\leq\sigma<+\infty$ . Then the $functi_{\mathit{0}}n.f(\cdot)+\sigma||\cdot||^{2}$ is
convex on $G$ , and $f(\cdot)-\sigma||\cdot||^{2}$ is concave on $G$ .

Proof: To prove the convexity of $f(\cdot)+\sigma||\cdot||^{2}$ on $G$ , we will derive the relation in (c) of
Proposition 3.3. Let $u,$ $v\in G$ . If $u=v$ then the relation obviously holds. Suppose that
$u\neq v$ . Then

$(\nabla.f(v)-\nabla f(u))^{T}(v-u)$ $\geq$ $-||\nabla f(v)-\nabla f(u)||||v-u||$

$=$ $- \frac{||\nabla f(v)-\nabla f(u)||}{||v-u||}||v-u||^{2}$

$\geq$ $-\alpha(f, G)||v-u||2$

$\geq$ $-2\sigma||v-u||^{2}$

Thus the relation in (c) of Proposition 3.3 holds for any $u,$ $v\in G$ .

Since $-f(\cdot)$ : $R^{p}arrow R$ satisfies the same assumption in the corollary, we know that
$-f(\cdot)+\sigma||\cdot||^{2}$ is convex on $G$ , which implies that $f(\cdot)-\sigma||\cdot||^{2}$ is concave on $G$ 1

It is known that any twice continuously differentiable function $f(\cdot)$ : $R^{p}arrow R$ has a $d.c$ .
decomposition: $f(u)=g(u)-h(u)(\forall u\in R^{l})$ . Here $g(\cdot)$ : $R^{\ell}arrow R$ and $h(\cdot)$ : $R^{f}arrow R$ are
convex functions. See, for example, Corollary I.l of [3]. The assertion of Corollary 3.4 may
be regarded as a variation of this result.

4 Concluding Remarks.

(A) When we utilize the conversion $\mathrm{f}_{1\mathrm{r}\mathrm{o}\ln}f_{(}’\cdot$ ) $\in \mathcal{F}$ to $g(\cdot;\sigma_{j}, .f)$ in (4) in practice, we
need to know $\sigma_{j}\geq\sigma(f, G)(f(\cdot)\in \mathcal{F})$ in advance. In addition, the conversion may
not be practical unless $\sigma_{f}\cdot(f(\cdot)\in \mathcal{F})$ are bounded above from a not too large positive
number.
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(B) Suppose that the constraint set $G_{0}$ is not only convex but also compact and that every

$f(\cdot)\in \mathcal{F}$ is continuous on $G_{0}$ . We then see that $x=$ is a feasible solution of

the problem (2) if and only if $u\in Go$ and $g(u;\sigma_{f}, f)\leq\sigma_{f}t\leq\sigma_{f}||u||^{2}(\forall f(\cdot)\in \mathcal{F})$

hold. Therefore, taking a $\overline{t}\geq\max\{||u||^{2} : u\in G_{0}\}$ , we can add the inequality $t\leq\overline{t}$

to the representation of $C_{0}$ in (5) such that

$C_{0=}\{_{X}\in R^{n} : u\in G_{0}, h(x;\sigma_{f}, f)(f(\cdot)\in \mathcal{F}), t\leq\overline{t}\}$ .

Whenever at least one $\sigma_{f}$ is positive, this modification makes the constraint set $C_{0}$ of
the problem (2) compact. When all $\sigma_{f}’ \mathrm{s}$ are zero, then the nonlinear program (1) itself
is a convex program, and we can eliminate the variable $t$ and the inequality constraint
$t-||u||^{2}$ in (5). In this case, the nonlinear program (1) and the induced quadratic
programs (2) coincide with each other. Specifically

$c_{0}=\{u\in G0 : f(u)\leq 0(\forall f(\cdot)\in \mathcal{F})\}$

is a compact convex subset of $R^{\ell}$ .
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