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Moderate Nonconvexity = Convexity + Quadratic Concavity
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1 Introduction.

This short note is concerned with two types of optimization problems. The one is a nonlinear
program:

maximize du subject to u € Gy and f(u) <0 (Vf(-) € F) (1)
Here
d : a constant column vector in the /-dimensional Euclidean space RY,
d’ : the transposition of d,
u : a variable vector in R’
Gy : a convex subset of R,
F 1 aclass of finitely or infinitely many real valued functions on RY.

We may start with a more general nonlinear program having a nonlinear objective function
fo(w), but we can always reduce such a problem to a nonlinear program with a linear
objective function. In fact, if we replace fo(w) by a scalar variable uy € R and add the
inequality up — fo(u) < 0 to the constraints, we have a nonlinear program of the form (1).

The other problem is a general quadratic program:

- maximize ¢’@ subject to & € €y and g(x) < 0. (2)
Here
c : a constant column vector in R™,
@ : a variable vector in R",
q(-) : a concave quadratic function on R* ,
Co : a convex subset of R".

The problem (2) is a special case of d.c. (difference of two convex functions) programs.
Conversion of general nonlinear programs into d.c. programs has been extensively studied
in the field of global optimization. See, for example, [2, 3, 9]. In theory, it is known that
any closed subset G of R’ can be represented as

G={u€ R :¢(u)~|lu|* <0}



14

using some convex function ¢(-) : R — R. See Corollary 3.5 of [9]. Hence, given any closed
subset G of R‘, we can reduce a maximization of a linear function dTu over G into the

problem (2) by taking

u T —— d 7L
; ER,C—<0>ER,

o) =t - Jull®, Co={z € B": §(u) =t < 0}.

n={0+1 &= (3)

In general, however, this conversion is neither practical nor implementable because an ex-
plicit algebraic representation of such a convex function ¢(-) : R® — R is not available.

The purpose of this short note is to add an observation that if the nonconvexity of every
f(+) € F is moderate, then we can reduce the nonlinear program (1) to a general quadratic
program of the form (2). Recently Kojima and Tungel [4] proposed a class of successive
convex relaxation methods for nonconvex quadratic programs. See also [5, 8]. In applying
their methods to an optimization problem, it is necessary and also essential to transform the
problem into an optimization problem having a linear objective function, finitely or infinitely
many quadratic inequality constraints and an additional compact convex constraint set.
Since (2) is a special case of such optimization problems whenever the constraint set Co
is compact, our observation opens up a possibility of applying their methods to general
nonlinear programs. See also Remark (B) of Section 4.

We introduce a class Fpconv(G) of peri-convex functions on a con.véx subset G of R
For every f : R* — R, let
o(f,G) = inf{oe >0:f(-)+ o] -||* is convex on G}.

Then f : R = R lies in Fpconv(G) if and only if o(f,G) < co. Obviously, if f(-) : R - R
is convex on G, then it is in the class F} cony(G). In addition, the class Fconv(G) contains
“moderately nonconvex” functions. But, for example, the function —|| - || : B* — R is not
peri-convex for any convex open neighborhood of 0 € R‘. We also note that if f(-) s a
peri-convex function on a subset G of R’ then it is continuous in the interior of G.

In Section 2,

e we show that if every f(:) € F is peri-convex on Gy then we can reduce the nonlinear
program (1) to a general quadratic program of the form (2).

In Section 3, we present some properties of peri-convex functions. In particular,

e we characterize peri-convex functions in terms of proximal subdifferentiability [1], and

e we show that “moderately nonlinear” functions are peri-convex.

2 Reduction of the Nonlinear Program (1) to the Gen-
eral Quadratic Program (2).

Assume that F C Fpconv(Go) and that o(f,G) < o5 < +oo for each f(-) € F. Then the

functions

g(305. ) = () +osl - 1P: R = R (f(-) € F) (4)
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Then g(-; 04, f) : R* = R are convex on G. Now we rewrite the nonlinear program (1) as

subject to  u € Gy, t — |ju||*> <0,

maximize d u }
g(u;0p, f) — ot <O (Vf(-) € F).

Defining

t 0
a(@) =t — ul?, (5)
hz;op,f) = g(us o4, f) — o5t (f(-) € F),.
Co={z € B": weGo, hwioy, f)<0(f()eF) },

n:f—{-l,m:(u ER”,c:(d)ER”,

we- thus obtain the quadratic program (2), which is equivalent to the nonlinear program
(1) as we will see in the theorem below. By definition, the functions h(;o6,f) : R* - R
(f(-) € F) are convex on the convex set Gy x R. This ensures that C, is a convex subset of
R". It should be also noted that the function A(-; oy, f) : R* — Ris C* (k times continuously
differentiable) whenever f(-) : R* = R is so.

Theorem 2.1. Define the functions ¢(-) : R* — R, h( 04, f) : R* = R (f(-) € F) and
the convex subset Co as in (5). Then u* € R* is a mazimum solution of (1) if and only if

r* = ( ;i € R" is a mazimum solution of (2) for some t* € R.

Proof:  Suppose that z* = ( ;: ) € R" is a maximum solution of the problem (2).
Then

u' € Go and f(u") = h(z*;04, )+ osg(x*) <0 (Vf(-) € F).

It follows that u* is a feasible solution of (1) which attains the same objective value
d"u* = cTa* as the problem (2).

Now assume that u* € R’ is a maximum solution of the problem (1). Let
= |Ju'|]* and 2* = ( ; ) € R

Then we see that

w* € Go, &)=t —||u*]? =0, Ta* = d'u,
Wa“o5,f) = g(uwop,f) = oit” = fu) <0 (Vf(-) € F).

Thus @~ is a feasible solution of (2) that attains the same objective value as the problem

(1).
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3 Some Characterizations of Peri-Convex Functions.

We first give a characterization of a peri-convex function f(-) : R® — R in terms of the
proximal subdifferentiabilty [1]. We say that a function f(-) : R* — R is proximal subdif-
ferentiable at w € R’ if there exist an open neighborhood U of u, a nonnegative number o,
and a ¢ € R such that

f(v) = f(u) > ¢" (v —w) — ollv — u|* (Vo € V). (6)

We call ¢ a proximal subgradient of f(-) at u. See [1]. Note that in the definition of the
proximal subdifferentiability of f(-) at u € R’ above, not only the proximal subgradient ¢
but also the nonnegative number o can depend on the point w € R’ under consideration.
Tt follows from definition that if f(-) : RY — R is proximal subdifferentiable at w € R’ then
it is lower semi-continuous at w € R’ but not necessarily continuous at u € RY; for example

the function f(-) : R — R defined by

u if u<0,
flu) = { u?+1 otherwise (7)

is proximal differentiable at every w € R but not continuous at u = 0. Let G C R*. We say
that f(-) is uniformly proximal subdifferentiable on G if we can take a common nonnegative
number ¢ independent of points u € G, and that f(-) is uniformly-and-globally proximal
subdifferentiable on G if in addition the inequality (6) holds for every v € G. (In both
cases, ¢ can be dependent on the point w € G). The function f(-) : R — R defined in
(7) is uniformly proximal subdifferentiable on R but neither peri-convex nor uniformly-and-
globally proximal subdifferentiable on any interval containing 0.

Proposition 3.1. Let G be a conver subset of R and f(-) : R* = R.

(i) If f() is continuous and uniformly prozimal subdifferentiable on G, then it is peri-
convez on G.

(i3) If f(-) is peri-convex on inl(G), the interior of G, then it is uniformly-and-globally
prozimal subdifferentiable on int(G).

Proof: (i) By assumption, there exists a nonnegative number o such that given any
u € (G, the inequality

f(v) = f(u) 2 (v —u) = ollv —u|* (Yo € U.). (8)

holds for some ¢, € R’ and some open neighborhood U, of w. We will show that g(-) =
f(-) 4 ol - ||* is convex on G. Assume on the contrary that there exist @, © € G and
A € (0, 1) for which

g((1 = N+ A0) > (1 - A)g(u) + Ag(?) (9)



holds. We see by (8) that for every w € G and v € U,,

9(v) —g(w) = (f(v)+olol?) - (f(u) + oful?)
= f(v) = f(u) + o|lv])? - of|u|?
> ¢I(v—u)=olv—ul?+olv)® - ofu|’

(Cu +20u) (v - u)
Define
B = g((1 N + A8) — (1 — Ng(@) + Ag(8)) (VA € [0,1]).
Then A : [0, 1} — R turns out to be a continuous function satisfying
h(0) = k(1) =0 and h(A) > 0.
Here the last inequality follows from (9). Let

hx max{h(A): A €0, 1]}, A* = {Ae 0, 1] : A(X) = h*},
A= min{A: A€ A}, and v = (1- A)a + Ao,
Then we know that

Hl

0< N < 17
0 > h(X) —R(X*) (YA €0, X*),
0> A(A) — A(X") (VA € [A%, 1)),

(L=XMu+ A €Uy, if A €0, 1] is sufficiently close to A~
and that for every A € [0, 1] sufficiently close to \*,
0 =2 A(A)—A(N) |

=  g((I=XNm+Iv)—g((1 - A)w+ \*D)
—(A=X") (g(v) — g(u))

2 (A=), + 20u")T (B - @)
—(A=A") (g(v) — g(u)) (by (10))

= (=) ((Cor +20u)T (8 — @) — (g(v) - g(@))) .
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(10)

(11)

Therefore we obtain that 0 = h(A)—h(X*) for every A € [0, 1] sufficiently close to A*.This

contradicts to (11).

(ii) By assumption, there is a nonnegative number o such that the function f(-)+o]-||?
is convex on int((). Hence the function f(-) + o - ||* is subdifferentiable on int(G); for

every u in int(G), there is a & € R’ such that
£(0) + olloll? ~ (f(w) + oful) > €7 (v — u) (Vo € int(C).
See, for example, Theorem 23.4 of [7]. It follows that
£(0) — F(w) 2 (€ — 200)7 (v — w) - olfo — ul? (Yo € inl(G)).

This implies that f(-) is uniformly proximal subdifferentiable on int(G). y
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Corollary 3.2. Let G be an open conver subset of R* and f(-) : R* — R be continuous.
Then the following (I), (II) and (III) are equivalent.

(I) f(-) is uniformly prozimal subdifferentiable on G.
(II) f(-) is uniformly-and-globally prozimal subdifferentiable on G.
(III) f(-) is peri-convex on G.

Proof: In view of (i) and (i) of Proposition 3.1, we know that (I) == (III) and (III)
= (IT), respectively. Also the implication (II) == (I) is obvious from definition. Thus
the equivalence of (I), (II) and (III) follows.

When a peri-convex function f(-) : R® = R is C' (continuously differentiable) or C?
(twice continuously differentiable), we can characterize it in terms of its gradient vector
V() or its Hessian matrix V*f(-), respectively.

Proposition 3.3. Let G be a convez subset of R‘. If f(-) : R* — R is C! on an open
neighborhood of G, then the following (a), (b) and (c) are equivalent.

(a) f(-)+ ol -||* is convex on G.

(b) f(v) = f(u) 2 Vf(u) (v —u)—olv—ul? (Yu, ved).

(c) (VF(v) = V(u)(v—u)>=20|v—ul® (Vu, veq)
If f(:) : R* — R is C* on an open neighborhood of G, then (a), (b), (c), and (d) below are

equivalent.

(d) For every u € G, V2f(u) + 201 is positive semidefinite on the linear subspace L
spanned by G — {u®}, where u® € G, ie., v (V?f(u) +20I)v > 0 for every v in the
linear subspace L.

Proof: It is well-known that if g(-) : R® — R is C" on an open neighborhood of G’ then
the following (a)’ (b)’ and (c)’ are equivalent.

(a)’ ¢g(:) is convex on G.

(b g(v) — g(w) > Vo(u)(v—u) (Vu, v € G).

(¢) (Vg(v) = Vg(u))T (v —u) 20 (Vu, v € G).

If f(-): R® = R is C? on an open neighborhood of G, then (a)’, (b)’, (c)’, and (d)’ below

are equivalent.

(d)’ For every u € G, Vig(u)-is positive semidefinite on the linear space spanned by
G — {u°}, where u® € G.
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See, for example, Chapter 6 of [6]. When g(-) = f(-) +1|-]|* : R® = R, we can rewrite the
conditions (a)’, (b)’, (¢)’ and (d)’ as (a), (b), (c) and (d), respectively. Thus the desired

results follow. g

Suppose that a function f: R* — R is C*. If its gradient vector is Lipschitz continuous
on a convex subset G of Rf, i.e.,

a(f,G)Esup{“vf(u)_v,f(v)” ueG, veQG, u;év} < 00,

llu — ol

then we may regard such a f(:) as a “moderately nonlinear” function on G. The corollary
below ensures that if f(-) : R® — R is moderately nonlinear on G then it belongs to

fp.conv(G)-

Corollary 3.4. Let G be a convex subset of R*. Assume that f(-) : R® — R is C* on an
G

a(_];,_z < 0 < +o0. Then the function f(-) + of| - ||

convex on G, and f(-) —o|| - ||* is concave on G .

open neighborhood of G and that

Proof: 'To prove the convexity of f(-) 4+ o| - ||* on @, we will derive the relation in (c) of

Proposition 3.3. Let u, v € G. If u = v then the relation obviously holds. Suppose that
© # v. Then

(Vi) = Vi) (v—u) > —|Vf(v)= V)| v ul
’ . HVf('l) Vf(’lt)” HU _ ’U,H2
o —u|
2 —a(f,G)llv - u|?
> ~20lv —u|]?

Thus the relation in (c) of Proposition 3.3 holds for any u, v € G.

Since —f(-) : R — R satisfies the same assumption in the corollary, we know that
—f(-) + || - ||? is convex on G, which implies that f(-) — o - ||? is concave on G g

It 1s known that any twice continuously differentiable function f(-): R = R has a d.c.
decomposition: f(u) = g(u) — h(u) (Yu € R*). Here g(-) : R -+ R and h(:) : R® — R are
convex functions. See, for example, Corollary 1.1 of [3]. The assertion of Corollary 3.4 may
be regarded as a variation of this result.

4 Concluding Remarks.

(A) When we utilize the conversion from f(-) € F to g(:;a4, f) in (4) in practice, we
need to know oy > o(f,G) (f(-) € F) in advance. In addition, the conversion may

not be practical unless o¢ (f(-) € F) are bounded above from a not too large positive .
number.
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(B) Suppose that the constraint set Gy is not only convex but also compact and that every

f(-) € F is continuous on Go. We then see that @ = ( ;u ) is a feasible solution of

the problem (2) if and only if w € Gy and g(u; 0y, f) < o4t < ofllull* (Vf(-) € F)
hold. Therefore, taking a £ > max{||u||> : w € Gy}, we can add the inequality ¢ < 7
to the representation of Cy in (5) such that

COZ{wERn 'U'GGO7 h(w;o-faf) (f()E"F)v tSﬂ

Whenever at least one o} is positive, this modification makes the constraint set Cy of
the problem (2) compact. When all s are zero, then the nonlinear program (1) itself
is a convex program, and we can eliminate the variable ¢ and the inequality constraint
t — ||w||? in (5). In this case, the nonlinear program (1) and the induced quadratic
programs (2) coincide with each other. Specifically

Co={u € Go: f(u) <0 (Vf(-) € F)}

is a compact convex subset of R’.
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