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Abstract

The concepts of M-convex and L-convex functions were proposed by Murota in 1996
as two mutually conjugate classes of discrete functions over integer lattice points. M/L-
convex functions are deeply connected with the ‘well-solvability in nonlinear combinatorial
optimization with integer variables. In this paper, we extend the concept of M-convexity
and L-convexity to polyhedral convex functions, aiming at clarifying the well-behaved struc-
ture in well-solved nonlinear combinatorial optimization problems in real variables. The ex-
tended M/L-convexity often appear in nonlinear combinatorial optimization problems with
piecewise-linear convex cost. We investigate the structure of polyhedral M-convex and L-
convex functions from the dual viewpoint of analysis and combinatorics, and provide some
properties and characterizations. It is also shown that polyhedral M/L-convex functions
have nice con_]ugacy relationship.

1 Introduction

In the area of combinatorial optimization, there exist many “well-solved” problems, i.e., the
problems which have nice combinatorial structure and which can be solved efficiently (see, [2,
12]). Many researchers have been trying to identify the well-behaved structure in combinatorial
optimization problems.

The concept of matroid, introduced by Whitney [28], plays an important role in the field
of combinatorial optimization (see [27, 29]). Matroidal structure is closely related to the well-
solvability of combinatorial optimization problems such as those on graphs and matroids, and
can be found in fairly large number of efficiently solvable problems. Matroidal structure yields
the tractability of problems in the following way:

e Global optimality is equivalent to local optimality, whlch implies the success of
the so-called greedy algorithm for the problem of optimizing a linear function over
a single matroid. :

e A nice duality theorem, Edmonds’ intersection theorem [6], guarantees the exis-
tence of a certificate for the optimality in the matroid intersection problem in terms
of dual variables.

* This work is supported by Grant-in-Aid of the Ministry of Education, Science, Sports and Culture of Japan.
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In 1970, Edmonds introduced the concept of polymatroid by extending that of matroid to
sets of real vectors ([6], see also [27]). A polymatroid P C RY is a polyhedron given as

P={zeRY| Y a(w) < p(X) (VX CV)}
weV
by a submodular set function p : 2V — R with certain additional conditions, where R denotes
the set of nonnegative reals, and p is called submodular if

p(X)+p(Y) 2 p(XNY)+p(XUY) (VXY CV) | (1)

Polymatroids share nice combinatorial properties of matroids: for example, the greedy algorithm
for matroids still works for polymatroids, and a duality holds for the polymatroid intersection
problem. Fujishige, emphasizing the essential role of submodularity of p, generalized the concept
of polymatroid to that of submodular system [9].

In recent years, nonlinear combinatorial optimization problems are investigated more of-
ten due to theoretical interest and necessity in practical application. The nonlinear resource
allocation problem and the convex cost submodular flow problem are examples of nonlinear
combinatorial optimization problems. Both of the problems have nice combinatorial structures,
which lead to efficient combinatorial algorithms. These results, however, do not completely fit
in the framework of matroid, polymatroid, and submodular system.

The concepts of M-convex and L-convex functions, introduced by Murota [16, 17, 19], afford
a nice framework for well-solved nonlinear combinatorial optimization problems. M-convex -
function is a natural extension of the concept of valuated matroid introduced by Dress—Wenzel
[4, 5] (see also [14, 15]) as well as a quantitative generalization of the set of integral points in an
integral base polyhedron [9]. L-convex function is an extension of submodular set function.

Let V be a finite set. A function f : Z¥ — R U {+oo} is called M-convex if it satisfies
(M-EXC[Z]): '

(M-EXC[Z]) Vz,y € domgz f, Vu E suppt(z — y), Jv € supp~(z — y) such that
F@)+ fy) 2 f@ = xu+X0) + Fy + Xu — X0),

where domz f = {z € ZV | —00 < f(z) < +oo}, suppt(z —y) = {w € V | z(w) > y(w)},
supp~(z —y) = {w € V | z(w) < y(w)}, and xu € {0,1}" is the characteristic vector of w € V.
A function g : ZV — R U {+o0} is called L-convex' if it satisfies (LF1[{Z]) and (LF2[Z]):

(LF1[Z]) g(p) +9(9) 29pAg)+9(pVa)  (Vp,q € domzy), ,
(LF2[Z]) | Ir € R such that g(p + A1) = g(p) + A\r (Vp € domzg, A € Z),

where p A q,pV q (€ RY) denote the vectors with (p A ¢)(v) = min{p(v),q(v)}; (pV q)(v) =
max{p(v),¢(v)} (v € V), and 1 (¢ RV) is the vector with each component being equal to one.
M/L-convex functions have nice properties:

e local optimality is equivalent to global optimality.

o M/L-convex functions can be extended to ordinary convex functions.

e M/L-convex functions are conjugate to each other.

e a (discrete) separation theorem and a Fenchel-type duality theorem hold for a pair
of M-convex/M-concave (L-convex/L-concave) functions.

t In the original definition [19], an L-convex function is assumed to be integer-valued.
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The minimization of M/L-convex functions can be done in polynomial time [7, 25]. Application
of M-convex functions can be found in system analysis through polynomial matrices [18, 20],
and in mathematical economics [3].

M-convexity and L-convexity appear in various nonlinear combinatorial optimization prob-
lems with integer variables. Such nice combinatorial properties, however, are enjoyed not only
by combinatorial optimization problems in integer variables but also by those in real variables.
We dwell on this point by considering the minimum cost flow/tension problems.

Let G = (V, A) be a directed graph with a specified vertex subset 7' C V. Suppose we are
given a family of piecewise-linear convex functions f, : R — R U {+00} (a € A), each of which
represents the cost of flow on the arc a. A function £ : A — R is called a flow. The boundary
9¢:V — R of a flow £ is given by

Z{f ) | a(€ A) leaves v} — Z{g ) | a(€ A) enters v} (veV).

Then, the cost function f : RT — R U {200} of the minimum.cost flow that realizes a sup-
ply/demand vector € R” is defined by

o~ - eT)
= inf RA, oe(w) = | °W W RT). (2
in {aze%f“(&(a)) | {€RY, () { 0 wev\r) [ @ER). @

Suppose we are giiren another family of piecewise-linear convex functions 9o : R = RU{+o0}
(a € A), each of which represents the cost of tension on the arc a. Any function p:V-Ris
called a potential. Given a potential p, its coboundary dp : A — R is defined by

0p(&) = p(u) —p(v)  (a=(u,v) € A).

Then, the cost function g : RT & R U {£o0} of the minimum cost tension that realizes a
potential vector p’ € RY is written as

9(p') = inf{}_ gu(~dp(a) |p € RY, p(w) =p'(w) (weT)} (' €RT). (3)
acA :

It is well-known that the minimum cost flow/tension problems with piecewise-linear convex cost

can be solved efficiently by various combinatorial algorithms (see [24]). It can be shown that

both f and g are polyhedral convex functions, which is a direct extension of results in Iri [11]

and Rockafellar [24] for the case of |T| = 2.

We consider here the cost functions fz and gz for the integer version of the minimum cost
flow/tension problems:

. ’ ) —z(w) (weT) :
fz(z) = mf{aezAfa(f(a)) | £ € Z4, 9t(w) = { 0 wev\T) } (z € 27,

92(p") = inf{}_ gu(~p(a)) |p€ 2, p(w) =p'(w) weT)} (o' e2Z”).
acA .
It is shown in [19, 21] that fz satisfies (M-EXC[Z]) and gz satisfies (LF1[Z]) and (LF2[Z]), i.e
fz are gz are M-convex and L-convex, respectively.
These results indicate that the polyhedral convex functions f and g defined by (2) and (3)
must have nice combinatorial properties like M-convexity and L-convexity, respectxvely We can
show that f satisfies the property (M-EXC)
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(M-EXC) Vz,y € dom f, Vu € supp™ (z —y), 3v € supp™(z —y), I > 0 such that
F@)+f) 2 flz—alw—x)) + Fy+alw —x0) (0 <Va< o),
which is a generalization of (M-EXC[Z]), and g satisfies (LF1) and (LF2):

(LF1) g(p) +9(g) > 9(pAg)+g(®Vaq) (Yp,q € domyg),
(LF2) 3r € R such that g(p + A1) = g(p) + M (Vp € domg,VA € R),

which can be obtained by generalizing (LF1[Z]) and (LF2[Z]), where dom f = {reRY | ~00<
f(z) < +00}, domg = {p € RV | —00 < g(p) < +o0}. |

The observation above indicates the possibility of extending the concepts of M-convexity
and L-convexity to polyhedral convex functions. This can be done in the following way. For
a polyhedral convex function f : RV — R U {400}, we call f M-convex if dom f # @ and f
satisfies the property (M-EXC). Similarly, for a polyhedral convex function g : RY — RU{+o0}
we call g L-convex if dom g # () and g satisfies (LF1) and (LF2).

The aim of this paper is to investigate the structures of polyhedral M-convex and L-convex
functions from the dual viewpoint of analysis-and combinatorics, and to provide a nice framework
for well-solvable nonlinear combinatorial optimization problems in real variable. The organiza-
tion of this paper is as follows. The details and proofs of theorems can be found in the full paper
[22].

To investigate polyhedral M/L-convex functions, we need to consider the set version of M/L-
convexity. A polyhedron B C RY is called M-convex if it is not empty and satisfies (B-EXC):

(B-EXC) Vz,y € B, Vu € supp™ (z — y), 3v € supp™ (z — y), Jap > 0 such that
w"’a(Xu_Xv)EBay+a(Xu—Xv)€B (0 £ Va < ag).

As is explained later in Theorem 2.1, an M-convex polyhedron is nothing but the base polyhedron
of a submodular system [9]. Similarly, a polyhedron D C RY is called L-convex if it is not empty
and satisfies (LS1) and (LS2):

(LS1) pAg, pVgeD (Vp, ge D), (LS2)peD=>p+I1€D (VAER).

We show the polyhedral description of M/L-convex polyhedra in Section 2.

Section 3 shows fundamental properties of polyhedral M/L-convex functions. We give some
properties on local structure of polyhedral M/L-convex functions such as directional deriva-
tives, subdifferentials, minimizers, etc. In Section 3, we also investigate positively homogeneous
polyhedral M/L-convex functions, which are important subclasses of polyhedral M/L-convex
functions. It is shown that positively homogeneous polyhedral M/L-convex functions have one-
to-one correspondences with certain set functions, and also with L/M-convex polyhedra.

For a function f : RV — RU{+00}, its conjugate function f* : RV — R U {%oo} is defined
by : _ ‘ '
f'(P) = sup {(p,z) — f(z)} (pe Rv)v

zeRV ’ :
where (p,z) = Y {p(v)z(v) | v € V}. It is shown in [19, 21] that there is a conjugacy rela-
tionship between M/L-convex functions over the integer lattice. In Section 4, we show that
the conjugacy relationship also exists for polyhedral M/L-convex functions. Section 4 also pro-
vides various characterization of polyhedral M/L-convex functions by local structures such as
directional derivative, the set of minimizers, and subdifferentials.
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2 M-convex and L-convex Polyhedra

2.1 M-convex Polyhedra

We denote by My the family of M-convex polyhedra, i.e.,
Mo ={B CRY|B: M-convex polyhedron}.

It is well-known as a folklore that what we call an “M-convex polyhedron” is nothing but the
base polyhedron of a submodular system [9] (see also Theorem 2.1). We use the term “M-convex
polyhedron” for denotational symmetry to “L-convex polyhedron.”

We shall show that an M-convex polyhedron is described by a submodular set function. We
denote the class of (normalized) submodular set functions by |

§ = {p:2¥ 5 RU{+c0} | p: submodular, p(@) =0, p(V) < +o00}.
For any nonempty B C RV, we define pp : 2V — R U {400} by

pa(X) =supz(X) (X CV).
Tz€B

For a set function p: 2" — R U {+00}, we define B(p) C R by
B(p) = {z € R” | &(X) < p(X) (X C V), (V) = p(V)}.

The following fact has been known to experts (cf. [1], [6], [27, Chapter 18]), but the precise
statement cannot be found in the literature. :

Theorem 2.1. (i) For B € My, we have pp € S and B(pp) = B.

(ii) For p € S, we have B(p) € My and pg(,) = p.

(iii) The mappings B — pp (B € Mg) and p — B(p) (p € S) provide one-to-one correspondences
between My and S, and are the inverse of each other.

2.2 L-convex Polyhedra

We denote by Ly the family of L-convex polyhedra, i.e.,
Lo={DCRY|D: L-convex polyhedron}.

We show the system of inequalities which describes the polyhedral structure of L-convex
polyhedra. A function vy : V x V — R U {+oo} with v(v,v) = 0 (Vv € V) is called a distance
function. For a distance function v we define the set D(y) C RV by

D(y) = {p € RV | p(v) — p(u) < 7(u,v) (u,v € V)}.

Given a nonempty set D C RV, the function vp : V xV — RU {+0o0} is defined by

7o (u,v) = sup{p(v) — p(u)}.
peED

Note that yp is a distance function, and D C D(vp) holds in general.
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We consider the triangle inequality
y(v1,v2) + ¥(va,vs) = ¥(v1,v3) (Yuvi,v2,v3 € V) (4)
for distance functions, and let 7" be the family of distance functions with triangle inequality, i.e.,
T={y|7:VxV—=RU{+oo}, 7(v,v) =0 (v € V), 7 satisfies (4)}.

Theorem 2.2 (i) For D € Lo, we have yp € T and D(yp) = D.

(ii) For v € T, we have D(vy) € Lo and Yp(y) =7 ‘

(iii) The mappings D — yp (D € Lo) and v = D(y) (y € T) provide a one-to-one correspon-
dence between Lq and T, and are the inverse of each other.

3 Polyhedral M-convex and L-convex Functions

3.1 Polyhedral M-convex Functions

We denote

M = {f]|f:RY = RU{+oc}, polyhedral M-convex},
oM = {f|f:RY = RU{+ooc}, positively homogeneous polyhedral M-convex}.

It may be obvious from the definition that polyhedral M-convex functions are quantitative
extension of M-convex polyhedra.

Theorem 3.1 (i) For a function f : RY — {0,400}, we have f € M <= dom f € Mo.
(ii) For f € M, we have dom f € M.

We consider two slightly different exchange axioms, where the former is weaker and the latter
is stronger than (M-EXC).

(M-EXCy) Vz,y € dom f, Vu € suppt(z — y), Jv € supp™(z — y), Ja > 0 such
that

fl@)+ fly) = fle = alu — xo) + ¥+ alxu — x0))-
(M-EXC;) Vz,y € dom f, Yu € supp™ (z — y), Jv € supp™ (z — y) such that

F@)+ f) > flz— olxu—x0)) + ¥+ alxu — X)) (0< Ve < {z(u) — y(u)}/2k),

where k = |supp™(z — y)|.

Theorem 3.2 For a polyhedral convex function f : RY — RU{+oo} with dom f # 0, (M-EXC)
<= (M-EXCy) <= (M-EXG;).

Global optimality of a polyhedral M-convex function is characterized by local optimality. For
a polyhedral convex function f : RV — RU {400} and z € dom f, define f'(z;-,-) : V xV —
R U {400} by
o) — lirg £E T 200 = 10)) = £(2)
T a0 o

(u,v € V).
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Theorem 3.3 Let f € M and z € dom f. Then, f(z) < f(y) (Vy € RY) < f/(z;v,u) >0
(Vu,v € V). '

For a polyhedral convex function f : RY — R U{+00} and z € dom f, the subdifferential
O0f (z) of f at z is defined by

0f (=) ={p R | f(y) 2 f(2) + (p,y — z) (Vy e RV)}.

Directional derivative functions and subdifferentials of a polyhedral M-convex function have
nice structures such as M /L-convexity, and they can be explicitly described by certain distance
- functions with triangle inequality (cf. Theorem 3.4 (i)).

For any distance function y: V XV = RU {+oc} (i.e., y(v,v) = 0 for all v € V), we define
fv:RY =5 RU{£oo} by

Fr(@) =mf{ 3 Xy (w,0) | Y Awlxo = Xu) =2, Mw 20 (w,v€V)} (zeRY). (5)
u,v€EV u,vEV

Theorem 3.4 Let f € M and z € dom f.
- (i) The function v : V x V = R U {+00} defined by

To(w,v) = f'(ziv,u) (w0 €V)

satisfies yz(v,v) =0 (Vv € V) and the triangle inequality (4), i.e., vz € T.
(ii) We have f'(z;-) = f,, and f'(z;-) € oM.
A}
L-convexity appears in subdifferentials of a polyhedral M-convex function.

Theorem 3.5 Let f € M and z € dom f.
(i) of (z) € Lo, and Bf(z) is represented as

0f(z) =D(72) = {p € R | p(v) —p(u) < f'(z;v,u) (u,v € V)}

7

(i) For any y € RY we have f(y) — f(z) > sup (p,y—x) = fy (y — ).
pEDf() :

The next theorem shows that each face of the epigraph of a polyhedral M-convex function
is an M-convex polyhedron when it is projected to RY. For any p € RV, the function flp] :
RY — R U {+o0} is defined by f[p](z) = f(z) + (p,z) (z € RV).

Theorem 3.6 For f € M and p € RV, we have argmin f[—p] € My if inf f[—p] > —oo.
The class of polyhedral M-convex functions is closed under various fundamental operations.

Theorem 3.7 Let f, f1, fo € M.
(1) For a € RY, the functions f(a — ) and f(a + ) are polyhedral M-convez in .
(2) For any U C V, the function fy : RV — R U {+o0} defined by

fuv) =Ff,0ny) (yeRY)
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is polyhedral M-convesz if dom fy # 0.
(3) For a family of piecewise-linear convez functions ¢, : R = RU{+o0} (v € V), the function
fr RV —RU {+oo} deﬁned by

vEV

i polyhedral M-convez if dom f # 0. In particular, the function f[—p] : RY —» RU {+} is
polyhedral M-conwvez for any p € RV.
(4) For anya:V - RU{—occ} and b: V - RU {+oo} with a < b, the restrzctzon f[ab of f

given by
@) = { f@) (@€ lab]),

+o0o (z & [a,b])
is polyhedral M-convez if dom f N [a,b] # 0.

We show the relationship of positively homogeneous polyhedral M-convex functions to dis-
tance functions with triangle inequalities, and also to L-convex polyhedra.

For a positively homogeneous polyhedral convex function f : RV — R U {+oo} with 0 €
dom f, define yf : V x V — RU {+00} by

v(w,v) = f(00,u) (= flxo — Xxu))  (wv€EV)
Recall the definition of f, in (5).

Theorem 3.8 (i) For f € oM, we have v; € T and f4, = f.

(ii) For v € T, we have fy € oM and ¢, = .

(iil) The mappings f — v¢ (f € oM) and v+ fy (v € T) provide a one-to-one correspondence
between oM and T, and are the inverse of each other.

For any S C RV with § # 0, the support function &5 : RV — R U {400} of § is defined by
0%(p) = sup(p,z)  (p€RY).
. z€S .
For any positively homogeneous function f : RY — R U {+00}, we define the set Sy C RY by
S;={zeRY|(p,z) < f(p) (pER")}.

Theorem 3.9 (i) For f € oM, we have Sy € Ly and 5gf = f.

(ii) For D € Ly, we have 6}, € oM and Sgx = D.

(iii) The mappings f — Sf (f € oM) and D = 6}, (D € Lo) provide a one-to-one correspondence
between oM and Ly, are the inverse of each other.

3.2 Polyhedral L-convex Functions

We denote

L = {g]g: RV - RU {+oo}, polyhedraliL—convex},
oL = {g]g:RY = RU{+00}, positively homogeneous polyhedral L-convex}.

As is obvious from the definition, polyhedral L-convex functions are quantitative generalization
of L-convex polyhedra.
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Theorem 3. 10 (i) For a functzon g:RY 5 {0,400}, g€ L «= domge ﬁo
(ii) For g € L, we have dom g € L.

~ Global optimality of a polyhedral L-convex function is characterized by local optimality.

Theorem 3.11 Let g € £ and p € domg. Then, g(p) < g(q) (Vg € RY) if and only if
g (ixx) 20 (VX CV) and ¢'(p;xv) =r =0, where r is in (LF2).

Given a set function p: 2 — R U {+00}, we define g, : R¥ — R U {+oo} by

9p(p) = i(Pj —pj+1)p(V;) + prp(V), (6)

where p; > py > -+ > p; are distinct values in {p(v)}vev, and V; = {v € V | p(v) > p;}
(4 =1,---,k). The function gp is called the Lovdsz extension of p.

Theorem 3.12 If p € S, then g,(p) = sup{(p,z) | = € B(p)} (Vp € RV).

Theorem 3.13 (Lovész [13]) Let p: 2 — R U {+oc} be a function such that p(®) = 0 and
p(V) < +o0o. Then, p €S <> g, is conves.

Directional derivative functions and subdifferentials of a polyhedral L-convex function have
nice structures such as M/L-convexity, and they can be explicitly described by certain submod-
ular functions (cf. Theorem 3.14 (i)).

Theorem 3.14 Let g € £ and p € domg.
(i) The function py : 2V — RU {+co} defined by

X)) =gdmxx) (XCV)

satisfies py(0) =0, —o0 < pp(V) < +o0, and the submodular inequality (1), i.e., pp € S.
(ii) We have ¢'(p;-) = gy, and ¢'(p;-) € oL.

M-convexity appears in subdifferentials of a polyhedral L-convex function.

Theorem 3.15 Let g € £ and p € domg.
(i) 0g9(p) € My, and 8g(p) is represented as

8g(p) =B(pp) = {z € RV | o(X) < g'(p;xx) (VX C V), (V) = ¢'(p; xv)}-
(i) For any ¢ € RV we have 9(p+9) — 9(p) 2 sup{{g,z) | = € Bg(p)} = g5, (0)-

The next theorem shows that each face of the epigraph of a polyhedral L-convex function is
an L-convex polyhedron when it is projected to RV

Theorem 8.16 For g€ L and z € RV, we have arg min g[—z] € Ly if inf g[—z] > —oco.

The class of polyhedral L-convex functions are closed under various fundamental operations.
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Theofem 3.17 Letg,91,92 € L.
(1) For z € RV, the function g[—z] : RV — RU {+oo} is polyhedral L-conves.
(2) Fora € RV and B € R, the function g(a + Bp) is polyhedral L-convez in p.
(3) ForanyU CV, the function gV : RV — R U {Zo0} given by
U — U
flly)= iof f.2) WeR )
is polyhedral L-convez ifg¥ > —oo0. |
(4) For a family of piecewise-linear convez function 1, : R = R U {+oc} (v € V), the function
§:RY = R U {*oo} defined by

g(p) = inf {g(q) + D_ %u(p(v) —q(v))} (€ RY)
g€R veV

* is polyhedral L—cénv_ea: if § > —oo and domg # 0.

(5) g1+ g2 € L if domg; Ndom gy # 0.

We show . the relationship of positively homogeneous polyhedral L-convex functions with
submodular functions, and with M-convex polyhedra.

For a positively homogeneous polyhedral convex function g : R - RU {+oo} with 0 €
dom g, define a set function py : 2 — R U {+00} by

pe(X) =¢'(0;xx) (=9(xx)) (X ECV).
Recall the definition of g, in (6).

Theorem 3.18 (i) For g € oL, we have py € S and g,, = g.

(ii) For p € S, we have g, € 0L and pg, = p-

(iii) The mappings g — pg (g € 0L) and p — g, (p € S) provide a one-to-one correspondence
between oL and S, and are the inverse of each other.

Theorem 3.19 (i) For g € oL, we have Sg € Mg and 05 =g.

(ii) For B € My, we have 0} € oL and Ss;, = B.

(iii) The mappings g — Sy (9 € oL) and B = 05 (B € Mo) provide a one-to-one correspondence
between oL and My, and are the inverse of each other. '

From Theorem 3.18, we see that a polyhedral convex function is positively homogeneous
polyhedral L-convex if and only if it is the Lovéasz extension of a submodular set function.

Corollary 3.20 oL = {g, | p € S}

4 Conjugacy and Characterizations
Polyhedral M-convex and L-convex functions are éonjugate to each other.

Theorem 4.1 For f € M and g € L, we have f* € L and g* € M. More specifically, the
mappings f — f° (f € M) and g — g° (g € L) provide a one-to-one correspondence between
M and L, and are the inverse of each other.
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Polyhedral M/L-convex functions are characterized by local polyhedral structures such as
directional derivative functions, subdifferentials, and the sets of minimizers.

Theorem 4.2 Let f : RV — RU{+00} be a polyhedral convez function with dom f # 0. Then,

() feM < (i) fl(z;") €oM (Vz €dom f) < (iii) 9f(x) € Lo (Vz € dom f)
<= (iv) argmin f[-p] € Mo (Vp € RV with inf f[—p] > —o0).

Theorem 4.3 Let g: RV — RU{+oo} be a polyhedral convex function with domg # (. Then,

() g.e L < (ii) g (p;-) €oL (Vpedomg) <= (iii) dg(p) € Mo (Vp € domg)
' < (iv) argming[-2] € £y (Vo € RY with inf g[—z] > —o0).
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