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1 Introduction

Although the regularity in one-phase free boundary problems has by now
been extensively studied, the methods used there prove in many cases to be
unsuitable for the corresponding two-phase problems.
Here we announce a result concerning the two-phase obstacle problem

$\Delta u=\frac{\lambda_{+}}{2}\chi_{\{u>0\}}-\frac{\lambda_{-}}{2}\chi_{\{u<0\}}$ (1)

The nonlinearities of this equation suggest that the solution should be locally

a $H^{2,\infty}$-function. We obtain this regularity in the form of a growth estimate
(Proposition 3.1). The proof uses new ideas as well as a monotonicity for-
mula introduced by the author in [7]. A consequence is that the Hausdorff
dimension of the free boundary $\partial\{u>0\}\cup\partial\{u<0\}$ is less than or equal to
$n-1$ (Corollary 4.1).
Note that our approach can also be used to derive Lipschitz continuity of
minimizers of the functional $v \vdasharrow\int_{\Omega}(|\nabla v|^{2}+\lambda_{+}\chi_{\{v>0\}}+\lambda_{-}\chi_{\{v<0\}})$ (Remark
4.1); Lipschitz continuity of minimizers of this functional has been proven

lpartially supported by a Grant-in-Aid for Scientific Research, Ministry of Education,

Japan

数理解析研究所講究録
1117巻 1999年 134-139 134



in [1] using a result on optimal Poincar\’e constants with respect to spherical
domains ([2]).

2 The equation

Let $n\geq 2$ and let $\Omega$ be a bounded open subset of $\mathrm{R}^{n}$ with Lipschitz boundary,
assume that $u_{D}\in H^{1,2}(\Omega)$ and let $A:=\{v\in H^{1,2}(\Omega) : v-u_{D}\in H_{0}^{1,2}(\Omega)\}$ .
Then the functional $E(v):= \int_{\Omega}(|\nabla v|^{2}+\lambda_{+}\max(v, 0)-\lambda_{-}\min(v, 0))$ , being
real-valued, non-negative, convex and weakly lower semicontinuous, attains
its infimum on the affine subspace $A$ of $H^{1,2}(\Omega)$ at the point $u\in A$ .
Throughout the whole paper $u$ shall denote this minimizer, however the
reader may replace the boundary condition in the definition of $A$ at his own
convenience, since from now on everything we do will be completely local.
Let us compute the first variation of the energy $E$ at the point $u$ . Using
$v:=u+\epsilon\phi$ as test function for the minimality of $u$ , where $\epsilon>0$ and
$\phi\in H_{0}^{1,2}(\Omega)\cap L^{\infty}(\Omega)$ , we obtain that

$\int_{\Omega}(2\nabla u\cdot\nabla\phi+\phi\lambda_{+}\chi_{\{u\geq-\epsilon\phi\}}-\phi\lambda_{-}\chi_{\{u\leq-\epsilon\phi\}})\geq-\epsilon\int_{\Omega}|\nabla\phi|^{2}$ ,

and, as $\epsilonarrow 0$ , that

$\int_{\Omega\cap\{u=0\}}(-\lambda_{+}\max(\phi, 0)+\lambda_{-}\min(\phi, 0))\leq$

$\int_{\Omega}(2\nabla u\cdot\nabla\phi+\phi\lambda_{+}\chi_{\{u>0\}}-\phi\lambda_{-}\chi_{\{u<0\}})$ (2)
$\leq\int_{\Omega\cap\{u=0\}}(\lambda_{+}\max(-\phi, 0)-\lambda_{-}\min(-\phi, 0))$

for every $\phi\in H_{0}^{1,2}(\Omega)$ . By the characterization of non-negative distributions
this implies that $v$ }$\Rightarrow\int(\nabla u\cdot\nabla\phi+\frac{\lambda+}{2}\emptyset)$ is locally in $\Omega$ represented by a
finite regular measure. Hence, (2) yields by Radon-Nikodym’s theorem that
$\Delta u\in L_{1\mathrm{o}\mathrm{c}}^{1}(\Omega)$ and it follows that $\Delta u=\frac{\lambda+}{2}\chi_{\{u>0\}}-\frac{\lambda_{-}}{2}\chi_{\{u<0\}}\mathrm{a}.\mathrm{e}$ . in $\Omega$ .
At this point we observe that any other function $v\in H^{1,2}(\Omega)$ with boundary
data $u_{D}$ on $\partial\Omega$ that satisfies the weak equation

$\int_{\Omega}(2\nabla v\cdot\nabla\phi+\phi\lambda_{+}\chi\{v>0\}-\phi\lambda_{-}\chi_{\{v<0\}})=0$ for every $\phi\in H_{0}^{1,2}(\Omega)$
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must coincide with $u$ : subtracting the weak equation for $u$ and inserting
$\phi:=v-u$ as test function we obtain that

$\int_{\Omega}2|\nabla(v-u)|^{2}\leq$

$\int_{\Omega}(2\nabla(v-u)\cdot\nabla(v-u)+\lambda_{+}(\chi_{\{v>0\}}-\chi_{\{u>0\}})(v-u)-\lambda_{-}(\chi_{\{v<0\}}-\chi_{\{u<0\}})(v-u))$

$=0$ . Thus the weak solution is unique and it is therefore no restriction to

confine our study to the minimizer $u$ .
In what follows, the term “solution” shall always denote a $H^{2,1}$-function
solving the strong equation $\Delta v=\frac{\lambda+}{2}\chi_{\{v>0\}}-\frac{\lambda_{-}}{2}\chi_{\{v<0\}}\mathrm{a}.\mathrm{e}$ . in a given open

set.
A powerful tool is now a monotonicity formula introduced in [7] by the author
for a class of semilinear free boundary problems. For the sake of completeness

let us state the two-phase obstacle problem case here:

Theorem 2.1 (the monotonicity formula) Suppose that $B_{\delta}(x_{0})\subset\Omega$ .
Then for all $0<\rho<\sigma<\delta$ the function

$\Phi_{x_{0}}(r):=r^{-n-2}\int_{B_{f}(x_{0})}(|\nabla u|^{2}+\lambda_{+}\max(u, 0)+\lambda_{-}\max(-u, 0))$

$-2r^{-n-3} \int_{\partial B_{f}(x_{0})}u^{2}d\mathcal{H}^{n-1}$ ,

defined in $(0, \delta)$ , satisfies the monotonicity formula

$\Phi_{x_{0}}(\sigma)$ – $\Phi_{x_{0}}(\rho)=\int_{\rho}^{\sigma}r^{-n-2}\int_{\partial B_{f}(x_{0})}2(\nabla u\cdot\nu-2\frac{u}{r})^{2}d\mathcal{H}^{n-1}dr-/^{>}\backslash 0$

3 Pointwise regularity and non-degeneracy

By $L^{p}$-theory the solution $u\in C_{1\mathrm{o}\mathrm{c}}^{1,\alpha}(\Omega)$ for every $\alpha\in(0,1)$ . The set $R$ $:=$

$\Omega\cap\{u=0\}\cap\{\nabla u\neq 0\}$ is therefore open relative to $\Omega\cap(\partial\{u>0\}\cup\partial\{u<0\})$

and the implicit function theorem implies that $R$ is a $C^{1,\alpha}$-surface for every
$\alpha\in(0,1)$ . The set of interest is therefore the set $S:=\Omega\cap\{\nabla u=0\}\cap(\partial\{u>$

$0\}\cup\partial\{u<0\})$ .
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Lemma 3.1 Let $\alpha-1\in \mathrm{N}$ , let $w\in H^{1,2}(B_{1}(0))$ be a harmonic function in
$B_{1}(0)$ and assume that $D^{j}w(0)=0$ for $0\leq j\leq\alpha-1$ .

Then $\int_{B_{1}(0)}|\nabla w|^{2}-\alpha\int_{\partial B_{1}(0)}w^{2}d\mathcal{H}^{n-1}\geq 0$ ,

and equality implies that $w$ is homogeneous of degree $\alpha$ in $B_{1}(0)$ .

The proof is based on the well-known fact that the mean frequency of a
harmonic function is a non-decreasing function of the radius.

The following proposition gives an estimate on the growth of the solution
near $S$ :

Proposition 3.1 There exists for each $\delta>0$ a constant $C<\infty$ such that

$\int_{\partial B_{f}(x_{0})}u^{2}d\mathcal{H}^{n-1}\leq Cr^{n-1+4}$

for every $r\in(0, \delta)$ and every $x_{0}\in S$ satisfying $B_{2\delta}(x_{0})\in\Omega$ .
Furthermore the estimate

$r^{1-n-4} \int_{\partial B_{f}(x_{0})}u^{2}d\mathcal{H}^{n-1}$

$\leq\frac{1}{2}r_{0^{-n-2}}\int_{B_{0},(x_{0})}(|\nabla u|^{2}+\lambda_{+}\max(u, 0)+\lambda_{-}\max(-u, 0))$

holds for every $0<r<r_{0}$ and $x_{0}\in S$ satisfying $B_{\mathrm{r}0}(x_{0})\subset\Omega$ .

Remark 3.1 Note that in the one-phase case $\lambda_{-}=0$ , $u_{D}\geq 0$ the first
estimate of Proposition 3.1 can be proved via $\dot{a}$ Harnack inequality argument:
introducing for $r>0$ the scaled function $u_{f}(x):= \frac{u(x_{0}+rx)}{r^{2}}$ and supposing that
$u(x_{0})=0$ and $B_{\mathrm{r}0}(x_{0})\subset\subset\Omega$ we obtain that $\triangle u_{r}=\frac{1}{2}\chi_{\{u_{\mathrm{r}}>0\}}$ in $B_{1}(0)$ for
$r\in(\mathrm{O}, r_{0})$ . Now the fact that $u\in H^{2,p}(B_{r_{0}}(x_{0}))$ allows us to apply Harnack’s
inequality Theorem 8.18 of [3] to deduce that $\sup_{B_{1}(0)}u_{r}\leq C(n)$ and, in the
$or^{*}iginal$ scaling, that $\sup_{B_{f}(x_{0})}u\leq C(n)r^{2}$
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Lemma 3.2 (non-degeneracy) For every $x_{0}\in\overline{\{u>0\}}\cup\overline{\{u<0\}}$ and ev-
$eryB_{2t}(x_{0})\subset\Omega$ the estimate

$\sup_{\partial B_{f}(x_{0})}|u|\geq\frac{1}{4n}\min(\lambda_{+}, \lambda_{-})r^{2}$ holds.

Proof.$\cdot$ We observe that it is sufficient to prove the statement for every $x_{0}\in$

$\{u>0\}$ such that $B_{2r}(x_{0})\subset\Omega$ . Assuming that $\sup_{\partial B_{f}(x_{0})}u\leq\frac{1}{4n}\lambda_{+}r^{2}$ , the
comparison principle yields that $u(x) \leq v(x):=\frac{1}{4n}\lambda_{+}|x-x_{0}|^{2}$ in $B_{r}(x_{0})$ .
This, however, contradicts the assumption $u(x_{0})>0$ .

4 A Hausdorff dimension estimate

From now on we assume that $\min(\lambda_{+}, \lambda_{-})>0$ . The results of the previous

section lead to the following consequences.

Lemma 4.1 Let $x_{0}\in S$ and let $u_{k}(x):= \frac{u(x_{0}+\rho_{k}x)}{\rho_{k^{2}}}$ be $a$ blow-up sequence,
$i.e$ . assume that $\rho_{k}arrow 0$ as $karrow\infty$ . Then $(u_{k})_{k\in \mathrm{N}}$ is for each open $D\subset\subset \mathrm{R}^{n}$

and each $p\in(1, \infty)$ bounded in $H^{2,p}(D)$ , and each limit $u_{0}$ with respect to a
subsequence $karrow\infty$ is a nontrivial homogeneous solution of degree 2 in $\mathrm{R}^{n}$

and satisfies the following:

for each compact set $K\subset \mathrm{R}^{n}$ and each open set $U\supset K\cap S_{0}$ there exists
$k_{0}<\infty$ such that $S_{k}\cap K\subset U$ for $k\geq k_{0}$ ; here $S_{0}:=\{\nabla u_{0}=0\}\cap(\partial\{u_{0}>$

$0\}\cup\partial\{u_{0}<0\})$ and $S_{k}:=\{\nabla u_{k}=0\}\cap(\partial\{u_{k}>0\}\cup\partial\{u_{k}<0\})$ .

Applying standard geometric measure theoretic tools we obtain the following
theorem:

Theorem 4.1 The Hausdorff dimension of the set $S$ is less than or equal to
$n-1$ .

Corollary 4.1 The Hausdorff dimension of $\partial\{u>0\}\cup\partial\{u<0\}$ is less
than or equal to $n-1$ .
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Remark 4.1 The procedure of Proposition 3.1 yields a new proof for the
regularity of a minimizer $\tilde{u}$ of the functional $v-+ \int_{\Omega}(|\nabla v|^{2}+\lambda_{+}\chi_{\{v>0\}}+$

$\lambda_{-}\chi_{\{v<0\}})$ .
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