On the Two-Phase Obstacle Problem

G. S. Weiss¹

Tokyo Institute of Technology, O-okayama 2-12-1, Meguro-ku, Tokyo-to, 152 Japan

1 Introduction

Although the regularity in one-phase free boundary problems has by now been extensively studied, the methods used there prove in many cases to be unsuitable for the corresponding two-phase problems.

Here we announce a result concerning the two-phase obstacle problem

$$\Delta u = \frac{\lambda_+}{2} \chi_{\{u>0\}} - \frac{\lambda_-}{2} \chi_{\{u<0\}} \quad . \tag{1}$$

The nonlinearities of this equation suggest that the solution should be locally a $H^{2,\infty}$ -function. We obtain this regularity in the form of a growth estimate (Proposition 3.1). The proof uses new ideas as well as a monotonicity formula introduced by the author in [7]. A consequence is that the Hausdorff dimension of the free boundary $\partial \{u > 0\} \cup \partial \{u < 0\}$ is less than or equal to n-1 (Corollary 4.1).

Note that our approach can also be used to derive Lipschitz continuity of minimizers of the functional $v \mapsto \int_{\Omega} (|\nabla v|^2 + \lambda_+ \chi_{\{v>0\}} + \lambda_- \chi_{\{v<0\}})$ (Remark 4.1); Lipschitz continuity of minimizers of this functional has been proven

¹partially supported by a Grant-in-Aid for Scientific Research, Ministry of Education, Japan

in [1] using a result on optimal Poincaré constants with respect to spherical domains ([2]).

2 The equation

Let $n \geq 2$ and let Ω be a bounded open subset of \mathbb{R}^n with Lipschitz boundary, assume that $u_D \in H^{1,2}(\Omega)$ and let $A := \{v \in H^{1,2}(\Omega) : v - u_D \in H^{1,2}_0(\Omega)\}$. Then the functional $E(v) := \int_{\Omega} (|\nabla v|^2 + \lambda_+ \max(v, 0) - \lambda_- \min(v, 0))$, being real-valued, non-negative, convex and weakly lower semicontinuous, attains its infimum on the affine subspace A of $H^{1,2}(\Omega)$ at the point $u \in A$.

Throughout the whole paper u shall denote this minimizer, however the reader may replace the boundary condition in the definition of A at his own convenience, since from now on everything we do will be completely local.

Let us compute the first variation of the energy E at the point u. Using $v := u + \epsilon \phi$ as test function for the minimality of u, where $\epsilon > 0$ and $\phi \in H_0^{1,2}(\Omega) \cap L^{\infty}(\Omega)$, we obtain that

$$\int_\Omega (2
abla u\cdot
abla \phi\,+\,\phi\,\lambda_+\,\chi_{\{u\geq -\epsilon\phi\}}\,-\,\phi\,\lambda_-\,\chi_{\{u\leq -\epsilon\phi\}})\,\geq\,-\epsilon\int_\Omega |
abla \phi|^2\,,$$

and, as $\epsilon \to 0$, that

$$\int_{\Omega \cap \{u=0\}} (-\lambda_{+} \max(\phi, 0) + \lambda_{-} \min(\phi, 0)) \leq \\
\int_{\Omega} (2\nabla u \cdot \nabla \phi + \phi \lambda_{+} \chi_{\{u>0\}} - \phi \lambda_{-} \chi_{\{u<0\}}) \\
\leq \int_{\Omega \cap \{u=0\}} (\lambda_{+} \max(-\phi, 0) - \lambda_{-} \min(-\phi, 0))$$
(2)

for every $\phi \in H_0^{1,2}(\Omega)$. By the characterization of non-negative distributions this implies that $v \mapsto \int (\nabla u \cdot \nabla \phi + \frac{\lambda_+}{2} \phi)$ is locally in Ω represented by a finite regular measure. Hence, (2) yields by Radon-Nikodym's theorem that $\Delta u \in L^1_{\text{loc}}(\Omega)$ and it follows that $\Delta u = \frac{\lambda_+}{2} \chi_{\{u>0\}} - \frac{\lambda_-}{2} \chi_{\{u<0\}}$ a.e. in Ω . At this point we observe that any other function $v \in H^{1,2}(\Omega)$ with boundary data u_D on $\partial\Omega$ that satisfies the weak equation

$$\int_{\Omega} (2\nabla v \cdot \nabla \phi + \phi \lambda_{+} \chi_{\{v > 0\}} - \phi \lambda_{-} \chi_{\{v < 0\}}) = 0 \text{ for every } \phi \in H^{1,2}_{0}(\Omega)$$

must coincide with u : subtracting the weak equation for u and inserting $\phi := v - u$ as test function we obtain that

$$\int_{\Omega} 2 |
abla (v-u)|^2 \; \leq \;$$

 $\int_{\Omega} (2\nabla(v-u) \cdot \nabla(v-u) + \lambda_+ (\chi_{\{v>0\}} - \chi_{\{u>0\}})(v-u) - \lambda_- (\chi_{\{v<0\}} - \chi_{\{u<0\}})(v-u))$ = 0. Thus the weak solution is *unique* and it is therefore no restriction to

= 0. Thus the weak solution is *unique* and it is therefore no restriction to confine our study to the minimizer u.

In what follows, the term "solution" shall always denote a $H^{2,1}$ -function solving the strong equation $\Delta v = \frac{\lambda_+}{2} \chi_{\{v>0\}} - \frac{\lambda_-}{2} \chi_{\{v<0\}}$ a.e. in a given open set.

A powerful tool is now a monotonicity formula introduced in [7] by the author for a class of semilinear free boundary problems. For the sake of completeness let us state the two-phase obstacle problem case here:

Theorem 2.1 (the monotonicity formula) Suppose that $B_{\delta}(x_0) \subset \Omega$. Then for all $0 < \rho < \sigma < \delta$ the function

$$egin{aligned} \Phi_{x_0}(r) &:= r^{-n-2} \int_{B_r(x_0)} \left(|
abla u|^2 \,+\, \lambda_+ \max(u,0) \,+\, \lambda_- \max(-u,0)
ight) \ &- 2 \, r^{-n-3} \, \int_{\partial B_r(x_0)} u^2 \, d\mathcal{H}^{n-1} \ , \end{aligned}$$

defined in $(0, \delta)$, satisfies the monotonicity formula

$$\Phi_{x_0}(\sigma) - \Phi_{x_0}(\rho) = \int_{\rho}^{\sigma} r^{-n-2} \int_{\partial B_r(x_0)} 2\left(\nabla u \cdot \nu - 2\frac{u}{r}\right)^2 d\mathcal{H}^{n-1} dr \ge 0 .$$

3 Pointwise regularity and non-degeneracy

By L^p -theory the solution $u \in C^{1,\alpha}_{\text{loc}}(\Omega)$ for every $\alpha \in (0,1)$. The set $R := \Omega \cap \{u = 0\} \cap \{\nabla u \neq 0\}$ is therefore open relative to $\Omega \cap (\partial \{u > 0\} \cup \partial \{u < 0\})$ and the implicit function theorem implies that R is a $C^{1,\alpha}$ -surface for every $\alpha \in (0,1)$. The set of interest is therefore the set $S := \Omega \cap \{\nabla u = 0\} \cap (\partial \{u > 0\} \cup \partial \{u < 0\})$. **Lemma 3.1** Let $\alpha - 1 \in \mathbb{N}$, let $w \in H^{1,2}(B_1(0))$ be a harmonic function in $B_1(0)$ and assume that $D^jw(0) = 0$ for $0 \le j \le \alpha - 1$.

Then
$$\int_{B_1(0)} |\nabla w|^2 - \alpha \int_{\partial B_1(0)} w^2 d\mathcal{H}^{n-1} \geq 0$$
,

and equality implies that w is homogeneous of degree α in $B_1(0)$.

The proof is based on the well-known fact that the mean frequency of a harmonic function is a non-decreasing function of the radius.

The following proposition gives an estimate on the growth of the solution near S:

Proposition 3.1 There exists for each $\delta > 0$ a constant $C < \infty$ such that

$$\int_{\partial B_r(x_0)} u^2 \, d\mathcal{H}^{n-1} \leq C \, r^{n-1+4}$$

for every $r \in (0, \delta)$ and every $x_0 \in S$ satisfying $B_{2\delta}(x_0) \in \Omega$. Furthermore the estimate

$$r^{1-n-4}\int_{\partial B_r(x_0)}u^2\,d\mathcal{H}^{n-1}$$

 $\leq \frac{1}{2} r_0^{-n-2} \int_{B_{r_0}(x_0)} \left(|\nabla u|^2 + \lambda_+ \max(u,0) + \lambda_- \max(-u,0) \right)$

holds for every $0 < r < r_0$ and $x_0 \in S$ satisfying $B_{r_0}(x_0) \subset \Omega$.

Remark 3.1 Note that in the one-phase case $\lambda_{-} = 0$, $u_{D} \geq 0$ the first estimate of Proposition 3.1 can be proved via a Harnack inequality argument: introducing for r > 0 the scaled function $u_{r}(x) := \frac{u(x_{0}+rx)}{r^{2}}$ and supposing that $u(x_{0}) = 0$ and $B_{r_{0}}(x_{0}) \subset \subset \Omega$ we obtain that $\Delta u_{r} = \frac{1}{2} \chi_{\{u_{r}>0\}}$ in $B_{1}(0)$ for $r \in (0, r_{0})$. Now the fact that $u \in H^{2,p}(B_{r_{0}}(x_{0}))$ allows us to apply Harnack's inequality Theorem 8.18 of [3] to deduce that $\sup_{B_{1}(0)} u_{r} \leq C(n)$ and, in the original scaling, that $\sup_{B_{r}(x_{0})} u \leq C(n) r^{2}$.

Lemma 3.2 (non-degeneracy) For every $x_0 \in \overline{\{u > 0\}} \cup \overline{\{u < 0\}}$ and every $B_{2r}(x_0) \subset \Omega$ the estimate

$$\sup_{\partial B_r(x_0)} |u| \geq \frac{1}{4n} \min(\lambda_+, \lambda_-) r^2 \quad holds.$$

Proof: We observe that it is sufficient to prove the statement for every $x_0 \in \{u > 0\}$ such that $B_{2r}(x_0) \subset \Omega$. Assuming that $\sup_{\partial B_r(x_0)} u \leq \frac{1}{4n}\lambda_+ r^2$, the comparison principle yields that $u(x) \leq v(x) := \frac{1}{4n}\lambda_+ |x - x_0|^2$ in $B_r(x_0)$. This, however, contradicts the assumption $u(x_0) > 0$.

4 A Hausdorff dimension estimate

From now on we assume that $\min(\lambda_+, \lambda_-) > 0$. The results of the previous section lead to the following consequences.

Lemma 4.1 Let $x_0 \in S$ and let $u_k(x) := \frac{u(x_0 + \rho_k x)}{\rho_k^2}$ be a blow-up sequence, i.e. assume that $\rho_k \to 0$ as $k \to \infty$. Then $(u_k)_{k \in \mathbb{N}}$ is for each open $D \subset \mathbb{R}^n$ and each $p \in (1, \infty)$ bounded in $H^{2,p}(D)$, and each limit u_0 with respect to a subsequence $k \to \infty$ is a nontrivial homogeneous solution of degree 2 in \mathbb{R}^n and satisfies the following:

for each compact set $K \subset \mathbb{R}^n$ and each open set $U \supset K \cap S_0$ there exists $k_0 < \infty$ such that $S_k \cap K \subset U$ for $k \ge k_0$; here $S_0 := \{\nabla u_0 = 0\} \cap (\partial \{u_0 > 0\} \cup \partial \{u_0 < 0\})$ and $S_k := \{\nabla u_k = 0\} \cap (\partial \{u_k > 0\} \cup \partial \{u_k < 0\})$.

Applying standard geometric measure theoretic tools we obtain the following theorem:

Theorem 4.1 The Hausdorff dimension of the set S is less than or equal to n-1.

Corollary 4.1 The Hausdorff dimension of $\partial \{u > 0\} \cup \partial \{u < 0\}$ is less than or equal to n-1.

Remark 4.1 The procedure of Proposition 3.1 yields a new proof for the regularity of a minimizer \tilde{u} of the functional $v \mapsto \int_{\Omega} (|\nabla v|^2 + \lambda_+ \chi_{\{v>0\}} + \lambda_- \chi_{\{v<0\}})$.

References

- [1] H. W. Alt, L. A. Caffarelli, A. Friedman, Variational Problems with Two Phases and their Free Boundaries, Transactions AMS 282, 1984.
- [2] S. Friedland, W. K. Hayman, Eigenvalue Inequalities for the Dirichlet Problem on Spheres and the Growth of Subharmonic Functions, Comment. Math. Helv. 51, 1976.
- [3] D. Gilbarg, N. S. Trudinger: Elliptic partial differential equations of second order, Springer, Berlin-Heidelberg-New York-Tokyo (1983)
- [4] E. Giusti, Minimal Surfaces and Functions of Bounded Variation, Birkhäuser, Boston-Basel-Stuttgart, 1984.
- [5] C. B. Morrey, Multiple Integrals in the Calculus of Variations, Springer, Berlin-Heidelberg-New York, 1966.
- [6] G. S. Weiss, Partial Regularity for a Minimum Problem with Free Boundary, to appear in J. Geom. Analysis 9-2
- [7] G. S. Weiss, Partial Regularity for Weak Solutions of an Elliptic Free Boundary Problem, Commun. Partial Differ. Equations 23, 1998.