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On the Two-Phase Obstacle Problem

G. S. Weiss!
Tokyo Institute of Technology, O-okayama 2-12-1,
Meguro-ku, Tokyo-to, 152 Japan

1 Introduction

Although the regularity in one-phase free boundary problems has by now
been extensively studied, the methods used there prove in many cases to be
unsuitable for the corresponding two-phase problems.

Here we announce a result concerning the two-phase obstacle problem

A A

Au = “‘2‘X{u>0} - "2—‘X{u<o} . (1)

The nonlinearities of this equation suggest that the solution should be locally
a H>*-function. We obtain this regularity in the form of a growth estimate
(Proposition 3.1). The proof uses new ideas as well as a monotonicity for-
mula introduced by the author in [7]. A consequence is that the Hausdorff
dimension of the free boundary 8{u > 0} Ud{u < 0} is less than or equal to
n — 1 (Corollary 4.1).

Note that our approach can also be used to derive Lipschitz continuity of
minimizers of the functional v = fo,(|Vv|* + A x>0} + A-X{v<o}) (Remark
4.1); Lipschitz continuity of minimizers of this functional has been proven
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in [1] using a result on optimal Poincaré constants with respect to spherical
domains ([2]).

2 The equation

Let n > 2 and let Q be a bounded open subset of R” with Lipschitz boundary,
assume that up € H?() and let A := {ve H(Q) : v—up € H*(Q)}.
Then the functional E(v) := f(|Vv|* + A, max(v,0) — A_ min(v, 0)), being
real-valued, non-negative, convex and weakly lower semicontinuous, attains
its infimum on the affine subspace A of H?(Q) at the point u € A.
Throughout the whole paper u shall denote this minimizer, however the
reader may replace the boundary condition in the definition of A at his own
convenience, since from now on everything we do will be completely local.
Let us compute the first variation of the energy E at the point u . Using
v := u + €¢ as test function for the minimality of w , where ¢ > 0 and
¢ € Hy?(Q) N L*®(R) , we obtain that

/Q(2Vu Vo + ¢ Ay X{u>—ep} — ¢ A X{us—ap}) > —G/S; |V¢|2,

and, as € — 0, that

Jon{u=0}(—A+ max(¢4,0) + A_ min(¢,0)) <
Ja(2Vu-Vo + d Ay xqus0p — ¢ A Xqu<o}) (2)
< fnm{uzo}(’\+ max(—¢,0) — A_ min(‘_"f’, 0))

for every ¢ € H&’Z(Q) - By the characterization of non-negative distributions
this implies that v — [(Vu-V¢ + i\§’t¢) is locally in € represented by a
finite regular measure. Hence, (2) yields by Radon-Nikodym’s theorem that
Au € L () and it follows that Ay = %‘“— X{u>0} — ’\T‘ X{u<0} a.e. in 2.
At this point we observe that any other function v € H2?(Q) with boundary
data up on 0N that satisfies the weak equation

L@V0- V6 + 624 X0y — @2 xgocty) = 0 for every ¢ € HY* ()
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must coincide with u : subtracting the weak equation for v and inserting
¢ = v — u as test function we obtain that

/QZIV('U —u)]* <

/Q(zv('v—u)'V(”—U)+/\+(X{v>0}-—X{u>0})(v—u)—)\—(X{v<0}-X{u<0})(U~u))
= 0. Thus the weak solution is unique and it is therefore no restriction to
confine our study to the minimizer u .

In what follows, the term “solution” shall always denote a H?*!'-function
solving the strong equation Av = 1\5—. X{v>0} — %‘— X{v<0} &.€. in a given open
set. , _

~ A powerful tool is now a monotonicity formula introduced in [7] by the author
for a class of semilinear free boundary problems. For the sake of completeness
let us state the two-phase obstacle problem case here:

Theorem 2.1 (the monotonicity formula) Suppose that Bs(zo) C Q.
Then for all 0 < p < 0 < § the function

O, (r) == r“"”sz - (qu|2 + A; max(u,0) + A_max(—u, 0))

—2p7 3 / w2 dH™
OBy (o)

defined in (0,0) , satisfies the monotonicity formula

— — [7 2 P ) ST
D, (0) — Pyp) = /p r /BBT(ZO)Z(VU v 2r> dH" " dr >0 .

3 Pointwise regularity and non-degeneracy

By LP-theory the solution u € C%(Q) for every a € (0,1) . The set R :=
QN{u = 0}N{Vu # 0} is therefore open relative to QN (d{u > 0}Ud{u < 0})
and the implicit function theorem implies that R is a C1*-surface for every
a € (0,1). The set of interest is therefore the set S := QN{Vu = 0}N(0{uv >

0}ud{u<0}).
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Lemma 3.1 Leta—1€ N, let w € H"*(B(0)) be a harmonic function in
B1(0) and assume that D’w(0) =0 for0< j < a—1.

Then / |Vw|* — a/ wdH™ ! > 0,
B1(0) 9B (0)
and equality implies that w is homogeneous of degree o in B;(0) .

The proof is based on the well-known fact that the mean frequency of a
harmonic function is a non-decreasing function of the radius.

The following proposition gives an estimate on the growth of the solution
near S : |

Proposition 3.1 There exists for each § > 0 a constant C < co such that

/ w? A < O pnolte
aBr(zo)

for every r € (0,9) and every zoy © S satisfying Bas(zo) € ) .
Furthermore the estimate

pl-n—4 / u? dH™ 1
9B, (zo)
1

< sr 2 [ Vul® + A ,0) + A_max(—u,0
< 37 B () (I ul” + Ay max(u,0) + A_max(—u ))

holds for every 0 < r < ry and zo € S satisfying B,,(zo) C Q.

Remark 3.1 Note that in the one-phase case \_ = 0, up > 0 the first
estimate of Proposition 3.1 can be proved via a Harnack inequality argument:
introducing for r > 0 the scaled function u,(z) := ﬂ%ﬂl and supposing that
u(zo) = 0 and B, (x) CC Q we obtain that Au, = %X{ur>0} in B1(0) for
r € (0,70). Now the fact that u € H?P(B,,(x)) allows us to apply Harnack’s
inequality Theorem 8.18 of [3] to deduce that supp, g ur < C(n) and, in the

original scaling, that supg . u < C(n)r?.



138

Lemma 3.2 (non-degeneracy) For every zo € {u > 0} U {u < 0} and ev-
ery By, (z0) C (2 the estimate

sup |u| > L min(Ay,A_) 72 holds.
8B, (z0) 4n

Proof: We observe that it is sufficient to prove the statement for every o €

{u > 0} such that By, (7o) C . Assuming that supsp (o) % < z;A+ 77, the

comparison principle yields that u(z) < v(z) = 54 |z — zo|® in B, (zo) .

This, however, contradicts the assumptioh u(zg) > 0.

4 A Hausdorff dimension estimate

From now on we assume that min(A,A_) > 0. The results of the previous
section lead to the following consequences.

Lemma 4.1 Let zo € S and let ug(z) := ﬂ% be a blow-up sequence,
i.e. assume that p, — 0 as k — oco. Then (Uk)keN is for each open D CC R"
and each p € (1,00) bounded in H*P(D), and each limit uy with respect to a
subsequence k — 0o is a nontrivial homogeneous solution of degree 2-in R"
and satisfies the following:

for each compact set K C R™ and each open set U DO K NSy there exists
ko < oo such that Sy N K C U for k > kg ; here Sy := {Vuy =0} N (3{ue >

0} U d{up < 0}) and Sy, := {Vu, = 0} N (0{ur > 0} U 8{ux < 0}).

Applying standard geometric measure theoretic tools we obtain the following
theorem:

Theorem 4.1 The Hausdorff dimension of the set S is less than or equal to
n—1. | |

Corollary 4.1 The Hausdorff dimension of 8{u > 0} U 0{u < 0} is less
than or equal ton — 1. ‘
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Remark 4.1 The procedure of Proposition 3.1 yields a new proof for the
regularity of a minimizer @ of the functional v — [4(|Vv|® + AL X{v>0} +
_/\——X{v<0}) .
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