
The Pompeiu and related problems

and boundary behavior
Takeyuki Nagasawa $(\Subset \tilde{\prime}\yen \#\pm 2)$

Mathemetical lnstitute, T\^ohoku University (東北大学大学院理学研究科)

1 Introduction
Let $\Omega\subset \mathrm{I}\mathrm{R}^{n}$ be a domain with appropriately smooth boundary $\partial\Omega$ , and $\nu$ be an exterior
unit normal vector $\partial\Omega$ of the boundary. We consider the overdetermined boundary value
problem
(1.1) $-\Delta u=\lambda u$ in $\Omega$ ,

(1.2) $u=c_{D}=\mathrm{a}$ real constant on $\partial\Omega$ ,

(1.3) $\frac{\partial u}{\partial\nu}=-C_{N}=\mathrm{a}$ real constant on $\partial\Omega$ .

Here $\lambda,$
$c_{D},$ $c_{N}$ are real constants.

The problem is to ask the shape of $\Omega$ when the above problem is solvable. In cases when
$c_{D}=c_{N}=0$ and $\lambda=c_{N}=0$ , the constant function $u\equiv c_{D}$ solves the problem for any $\Omega$ .
Therefore to rule out in those cases as exceptional situations, we assume

(1.4) $C_{D}^{2}+C_{N}^{2}\neq 0$ ,

and
(1.5) $\lambda\neq 0$ when $c_{N}=0$ .

Rayleigh conjectured in [5] that when $c_{D}\neq 0,$ $c_{N}=0$ , and $\Omega$ is a simply connected
bounded plane domain, the only disk has a solution. His conjecture, however, has not
solved yet. We have known that this is equivalent to the the Pompeiu problem $[3, 4]$ , which
comes from differential geometry (see [6, Problem 80]). There are many partial answers
(for examples, see references cited in [7]).

If we do not assume the simple connectivity or boundedness of $\Omega$ , many shapes are
possible to solve the problem. For examples, the half plane, a strip domain, a cylinder, and
domains written by their product, all of which have the constant mean curvature. Thus
we would like to show that the solvability implies the constancy of mean curvature. This
is true, if $u$ behaves “gently” in some sense near the boundary.
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Here we assume that $\partial\Omega$ is in the class of $C^{1}$ , and that there exists a real-valued solution
$u$ in the class of $C^{2}(\overline{\Omega})$ . We, however, impose no topological nor geometrical assumptions
on $\partial\Omega$ .

Kinderlehrer-Nirenberg [1] shows that the above assumptions imply that $\partial\Omega$ is real-
analytic. This also imples the analiticity of solutions $(\mathrm{e}\mathrm{g}. [2])$ , and we may assume

(1.6) $\partial\Omega$ is real analytic, and $u$ is real analytic in $\overline{\Omega}$ .

Furthermore we can define the mean curvature $h$ . We take the signature positive for convex
domains. What we want to see is conditions on the behavior of $u$ near boundary which
implies the constancy of $h$ . To see this, we must study the expressions of higher normal
derivatives of solutions of the Poisson equation in terms of boundary data and geometry of
boundary. We shall give the recurrence formula of expressions and the sketch of its proof
in \S 2 (Theorem 2.1). In \S 3 we apply it to (1.1) $-(1.3)$ to get necessary and sufficient
conditions of behavior of $u$ near boundary which implies the constancy of mean curvature
(Theorem 3.1). We shall also gain a condition for the constancy of the mean curvatures of
higher order (Theorem 3.2).

2 The expression of higher normal derivatives
We denote the principal curvatures of $\partial\Omega$ by $\kappa_{i}(i=1,2, \ldots, n-1)$ , which signature

is taken positive when $\Omega$ is convex. Put $h= \frac{1}{n-1}\sum_{i=1}^{n-}\kappa_{i}1$ , the mean curvature. Let $(g_{ij})$

and $(h_{ij})$ be the first and second fundamental forms of $\partial\Omega$ respectively induced by the
immersion $\partial\Omegaarrow \mathrm{I}\mathrm{R}^{n}$ . The inverse matrix and the determinant of $(g_{ij})$ are denoted by $(g^{ij})$

and $g$ respectively. We use notation $h_{i}^{j}$ and $h_{ij}$ to mean $h_{i}^{j}=h_{ik}g^{kj},$ $h^{ij}=h_{k}\ell g^{ik}g^{j\ell}$ . For
$p\in$ IN we use notation $h^{(p)_{j^{i}}}$ to mean

$h^{(P)}lj=hii^{1}hi_{1}..hi_{p-}i_{2}.j1$
’

$H^{(\mathrm{P})}=h^{()_{i}}pi$ , $h_{ij}^{(p)k}=h(_{\mathrm{P}})igkj$

’
$h^{(p)ij}=h^{()kj}\mathrm{P}kgi$ .

For convenience we put

$h^{(0)j}l=\delta_{i}^{j}$ , $h_{ij}^{(0)}=gij$ , $h^{(0)ij}=g^{ij}$ .

Then it is easy to see
$h(p)_{k}ih(q)kj=h(p+q)ij$

for $p,$ $q=0,1,2,$ $\ldots$ . Put

$\Delta_{p}v=\frac{1}{\sqrt{g}}\frac{\partial}{\partial x_{i}}(\sqrt{g}h^{(p)j}i\frac{\partial v}{\partial x_{j}})$ , $\langle\nabla_{p}v, \nabla_{p}w\rangle=h(p)ij_{\frac{\partial v}{\partial x_{i}}}\frac{\partial w}{\partial x_{j}}$.
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By use of the principal curvatures we find

$H^{(p)}=n \sum_{i=1}^{1}-\kappa^{\mathrm{P}}i$

’

and
$\langle\nabla_{p}v, \nabla wp\rangle=\sum_{i}^{1}n-=1\kappa_{i^{\frac{\partial v}{\partial x_{i}}\frac{\partial w}{\partial x_{i}}}}p$

at the center of the system. Note neither $\Delta_{p}$ is necessarily elliptic nor $\langle\nabla_{p}v, \nabla_{p}w\rangle$ is positive
definite, except $p=0$ .

The following recurrence formula holds not only $\mathrm{f}.\cap \mathrm{r}$ the solution to $(1.1)-(1.3)$ but also
for solutions of the Poisson equation. We need not assume the constancy of boundary data.

Theorem 2.1 Put $\Delta u=f$ . Then it holds that

$\frac{\partial^{k}u}{\partial\nu^{k}}=\sum_{0\ell=}^{2}(k-k-2)![\frac{(-1)^{\ell+1}}{(k-\ell_{-}2)!}H^{(+1)_{\frac{\partial^{k-\ell_{-}}1u}{\partial\nu^{k-\ell_{-1}}}}}f$

$+(-1)^{k-1} \{\frac{(-1)^{\ell}(k-\ell_{-}1)}{\ell!}\Delta_{k-\ell_{-}}2^{\frac{\partial^{\ell}u}{\partial\nu^{l}}}$

$- \sum_{m=0}^{\ell}\frac{(-1)^{m}(k-\ell-2)}{(^{\ell-m+}1)m!}\langle\nabla_{k-\ell_{-}3}H(\ell-m+1),$ $\nabla_{k-l3}-\frac{\partial^{m}u}{\partial\nu^{m}}\rangle\}]+\frac{\partial^{k-2}f}{\partial\nu^{k-2}}$

on $\partial\Omega$ for $2\leq k\leq k^{*}$ . We interpret $(k-P-2)\langle\nabla k-l-3^{\cdot}, \nabla k-l-3^{\cdot}\rangle=0$ for $\ell=k-2$ . $k^{*}$ is
determined by the regularity of $f$ , the Dirichlet and Neumann data, and $\partial\Omega$ .

Sketch of Proof. At first we assume $u$ and $\partial\Omega$ are real analytic. Then power series
appearing in $\rho$ in the sequel converges for sufficiently small $\rho$ . The radii of convergence are
dominated by the radius of curvature. Its proof is quite standard, so we omit it. Hence we
can calculate in formal way.

Let $\Omega_{\rho}$ be the interior parallel set of $\Omega$ with distance $\rho$ . If $\rho>0$ is sufficiently small, then
$\partial\Omega_{\rho}$ has the same regularity as that of $\partial\Omega$ . We denote the exterior unit normal vector of
$\partial\Omega_{\rho}$ by $\nu_{\rho}$ . The first fundamental form of $\partial\Omega_{\rho}$ is denoted by $(g_{ij}(\rho))$ . We will denote other
quantities on $\partial\Omega_{\rho}$ in the same manner. Let $p$ be a point on $\partial\Omega_{\rho}$ . We may assume that the
direction of $x_{n}$-axis is that of $\nu_{\rho}$ at $p$ , and $x’=(X_{1\cdot\cdot-1},., X_{n})$ is a local coordinate system
around $p$ . $\partial\Omega_{\rho}$ has a local representation

$x_{n}=\varphi(_{X’})$ .
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And assume that $\Omega_{\rho}$ is located locally in $\{x_{n}<\varphi(x’)\}$ . By use of the principal coordinate
system, the Laplace-Beltrami operator on $\partial\Omega_{\rho}$ is $\Delta_{g(\rho)}=n-\sum_{i=1}^{1}\nabla\partial x_{i}\nabla_{\partial x}$ : at $p$ , and we have

$\Delta_{g(\beta})u_{\rho}=\Delta u-\frac{\partial^{2}u}{\partial x_{n}^{2}}-\frac{\partial u}{\partial x_{n}}\sum_{i=0}^{n-1}\kappa i(p)=f-\frac{\partial^{2}u}{\partial\nu_{\rho}^{2}}-H(\rho)\frac{\partial u}{\partial\nu_{\rho}}$ .

Here $\kappa_{i}(p)’ \mathrm{s}$ are the principal curvatures at $p\in\partial\Omega_{\rho}$ . Consequently it holds that

$\frac{\partial^{2}u}{\partial\nu_{\rho}^{2}}=-H(\rho)\frac{\partial u}{\partial\nu_{\rho}}-\Delta.g(\rho)u\rho+f$

on $\partial\Omega_{\rho}$ . Operating $(-1)^{k-}2 \frac{d^{k-2}}{d\rho^{k-2}}|\rho=0$
’ we have

(2.1) $\frac{\partial^{k}u}{\partial\nu^{k}}=(-1)^{k-1}\frac{d^{k-2}}{d\rho^{k-2}}(H(\rho)\frac{\partial u}{\partial\nu_{\rho}}\mathrm{I}|_{\rho=0}+(-1)^{k-1_{\frac{d^{k-2}}{d\rho^{k-2}}}}(\Delta)u_{\rho)}g(\beta|_{\rho=0}+\frac{\partial^{k-2}f}{\partial\nu^{k-2}}\cdot$

In a consequence of Riemannian geometry we have easily

(2.2) $g_{ij}(\rho)=g_{i}j-2\rho h_{ij}+\rho^{2}h_{i}^{(2)}j$
’

(2.3) $g^{ij}( \rho)=\sum_{=p0}^{\infty}(p+1)\rho^{\mathrm{P}}h(p)ij$ ,

(2.4) $g( \rho)=g\exp(-2\int_{0}^{\rho}H(\rho)d\rho)$ ,

(2.5) $h_{ij}(\rho)=h_{i}j-\rho h^{(}ij2)$ ,

(2.6) $h_{i}^{j}( \rho)=\sum_{0p=}^{\infty}\beta ph^{()j}p+1\iota$
’

(2.7) $h^{ij}( \rho)=p\sum^{\infty}\frac{(p+1)(p+2)}{2}=0\rho h^{(}pp+1)ij$ ,

and
(2.8) $H( \rho)=\sum_{=p0}^{\infty}\rho^{\mathrm{p}}H^{(+1}p)$ .

To obtain the assertion of theorem we may substitute $(2.3)-(2.8)$ into (2.1). This completes
the proof for analytic case.

In non-analytic case, we may replace all of above power series in $\rho$ by the Taylor expan-
sions of finite order with remainder terms. The calculations can be proceeded. exactly

$\mathrm{t}\mathrm{h}\mathrm{e}\square$

same manner up to $k=k^{*}$ .
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3Applications to the Pompeiu and related problems
We always assume $(1.4)-(1.6)$ . In a consequence of Theorem 2.1, if $u$ solves $(1.1)-(1.3)$ ,
then we have
(3.1) $\frac{\partial^{2}u}{\partial\nu^{2}}=-\lambda c_{D}+c_{N}H^{(1)}$ ,

and
(3.2) $\frac{\partial^{3}u}{\partial\nu^{3}}=\lambda c_{D}H(1)-C_{N}(H^{(2)}+H^{(1)^{2}}-\lambda)$ .

Needless to say, we can obtain the expressions of more higher derivatives.
We denote the interior parallel set of $\Omega$ with distance $\rho$ and its exterior unit normal

vector by $\Omega_{\rho}$ and $\nu_{\rho}$ again. For sufficiently small $\rho>0,$ $\Pi_{\rho}$ is the projection from $\partial\Omega$ to
$\partial\Omega_{\rho}$ given by $\Pi_{\rho}(x)=x-\rho\nu(x)\in\partial\Omega_{\rho}$ for $x\in\partial\Omega$ . By use of (3.1) with (1.3), we have

$- \frac{1}{\rho}(c_{N}+\frac{\partial u}{\partial\nu_{\rho}}\mathrm{I}=\frac{1}{\rho}(\frac{\partial u}{\partial\nu}-\frac{\partial u}{\partial\nu_{\rho}})arrow\frac{\partial^{2}u}{\partial\nu_{p}^{2}}=-\lambda_{C_{D}}+C_{N}H^{(}1)$ as $\rho\downarrow 0$ .

Therefore it holds that for $x,$ $y\in\partial\Omega$

(3.3) $\lim_{\rho\downarrow 0}\frac{1}{\rho}(\frac{\partial u}{\partial\nu_{\rho}}(\Pi_{\rho}(x))-\frac{\partial u}{\partial\nu_{\rho}}(\Pi_{\rho}(y)))=-C_{N}(H^{(1)}(X)-H^{(1})(y))$ .

In a similar manner when $c_{N}=0,$ $(3.1)$ and (3.2) give us

$\lim_{\rho\downarrow 0}\frac{1}{\rho}(\frac{\partial^{2}u}{\partial\nu_{\rho}^{2}}(\Pi_{\rho}(X))-\frac{\partial^{2}u}{\partial\nu_{\rho}^{2}}(\Pi_{\rho}(y)))=-\lambda C_{D}(H(1)(X)-H(1)(y))$ .

Since $\frac{\partial u}{\partial\nu}$ is constant on $\partial\Omega$ , we can apply L’Hospital’s law to get

$\lim_{\rho\downarrow 0}\frac{1}{\rho^{2}}(\frac{\partial u}{\partial\nu_{\rho}}(\Pi_{\rho}(X))-\frac{\partial u}{\partial\nu_{\rho}}(\Pi_{p}(y)))=\lim_{\rho\downarrow 0}\frac{1}{2\rho}(\frac{\partial^{2}u}{\partial\nu_{\rho}^{2}}(\Pi_{\rho}(x))-\frac{\partial^{2}u}{\partial\nu_{\rho}^{2}}(\Pi_{\rho}(y)))$ .

Hence we obtain

(3.4) $\lim_{\rho\downarrow 0}\frac{1}{\rho^{2}}(\frac{\partial u}{\partial\nu_{\rho}}(\Pi_{\rho}(X))-\frac{\partial u}{\partial\nu_{\rho}}(\Pi(\rho y)))=-\frac{\lambda c_{D}}{2}(H^{(1)}(x)-H^{(1})(y))$ .

We remark that $x$ and $y$ need not belong to the same connected component of $\partial\Omega$ in the
above relations $(3.3)-(3.4)$ . Consequently we get a sufficient condition for the constancy
of mean curvature of $\partial\Omega$ .

Theorem 3.1 Suppose $\Omega$ admits a solution $u$ of $(1.1)-(1.3)$ . Then the following condi-
tions are equivalent to to the global constancy of mean curvature of $\partial\Omega$ .
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1. When $c_{N}\neq 0,$ $\lim_{\rho\downarrow 0}\frac{1}{\rho}(\frac{\partial u}{\partial\nu_{\rho}}(\Pi_{p}(X))-\frac{\partial u}{\partial\nu_{\rho}}(\Pi(\rho y)))=0$ for any $x,$ $y\in\partial\Omega$ .

2. When $c_{N}=0,$ $\lim_{\rho\downarrow 0}\frac{1}{\rho^{2}}(\frac{\partial u}{\partial\nu_{\rho}}(\Pi_{\rho}(x))-\frac{\partial u}{\partial\nu_{p}}(\Pi_{\rho}(y)))=0$ for any $x,$ $y\in\partial\Omega$ .

In particular, if $\Omega$ is bounded and the solution $u$ behaves as above, then $\Omega$ is a sphere.
We can generalize $(3.3)-(3.4)$ as follows.

Theorem 3.2 $s_{uppo}\mathit{8}e\Omega$ admits a solution $u$ of $(1.1)-(1.3)$ . Let $k$ be an integer satisfying

$k\geq\{$

1 when $c_{N}\neq 0$ ,

2 when $c_{N}=0$ .
Then the following are equivalent to each other.

1. $\lim_{\rho\downarrow 0}\frac{1}{\rho^{k}}(\frac{\partial u}{\partial\nu_{\rho}}(\Pi_{p}(X))-\frac{\partial u}{\partial\nu_{\rho}}(\Pi_{\beta}(y)))=0$ for any $x,$ $y\in\partial\Omega$ .

2. $\frac{\partial^{i}u}{\partial\nu^{i}}$ is globally constant for $1\leq i\leq k+1$ .

3. $H^{(j)}$ is globally constant for

$1\underline{<_{\backslash }}j\leq\{$

$k$ when $c_{N}\neq 0$ ,

$k-1$ when $c_{N}=0$ .

We prove the above by induction on $k$ . The assertion for $k=1$ when $c_{N}\neq 0$ , and for
$k=2$ when $c_{N}=0$ holds, because it is Theorem 3.1. Therefore the proof is completed if
we show the next fact which is generalization of $(3.3)-(3.4)$ .
Lemma 3.1 Assume the assertion of Theorem 3.2 holds for some $k=\ell-1$ . If

$\lim_{\rho\downarrow 0}\frac{1}{\rho^{\ell-1}}(\frac{\partial u}{\partial\nu_{\rho}}(\Pi_{p}(X))-\frac{\partial u}{\partial\nu_{\rho}}(\Pi(\rho y)))=0$,

then

$\lim_{\rho\downarrow 0}\frac{1}{\rho^{\ell}}(\frac{\partial u}{\partial\nu_{\rho}}(\Pi_{\rho}(_{X}))-\frac{\partial u}{\partial\nu_{\rho}}(\Pi(\beta y))\mathrm{I}=\frac{(-1)^{f}}{\ell!}(\frac{\partial^{\ell+1}u}{\partial\nu^{\ell+1}}(x)-\frac{\partial^{\ell+1}u}{\partial\nu^{\ell+1}}(y)\mathrm{I}$

$=\{$

$- \frac{c_{N}}{\ell}(H(\ell)(X)-H^{(\ell)}(y))$ when $c_{N}\neq 0$ ,

$\frac{\lambda c_{D}}{\ell}(H^{(l-1)}(X)-H^{(^{\ell_{-}1}})(y))$ when $c_{N}=0$ .
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Proof. By the $\mathrm{a}\mathrm{s}\mathrm{s}\mathrm{u}\mathrm{m}\mathrm{p}\mathrm{t}\mathrm{i}_{\mathrm{o}\mathrm{n}\frac{\partial^{i}u}{\partial\nu^{i}}}$ is globally constant for $1\leq i\leq P$ . Therefore we can apply

L’Hospital’s law $\ell$ times to obtain

$\lim_{\rho\downarrow 0}\frac{1}{\rho^{\ell}}(\frac{\partial u}{\partial\nu_{\rho}}(\Pi_{\rho}(X))-\frac{\partial u}{\partial\nu_{\rho}}(\Pi_{\rho}(y)))=\frac{(-1)^{\ell}}{p!}(\frac{\partial^{\ell+1}u}{\partial\nu^{\ell+1}}(x)-\frac{\partial^{\ell+1}u}{\partial\nu^{\ell+1}}(y))$ .

Since $H^{(j)}$ is also globally constant for $1\leq j\leq\ell-1$ when $c_{N}\neq 0$ , for $1\leq j\leq P-2$ when
$c_{N}=0$ , we have

$\frac{\partial^{\ell+1}u}{\partial\nu^{\ell+1}}=\{$

$-(-1)^{l}(\ell-1)!cH^{(^{\ell}})N+\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{s}\mathrm{t}$. when $c_{N}\neq 0$ ,

$(-1)^{\ell}(\ell_{-}1)!\lambda_{C}H^{(^{\ell 1}}-)D+\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{s}\mathrm{t}$ . when $c_{N}\neq 0$

by careful use of Theorem 2.1. $\square$

Since $H^{(j)}$ can be written by the elementary symmetric polynomials of principal cur-
vatures (sometimes called the mean curvatures of higher order), the constancy of $H^{(j)}$ for
$1\leq j\leq n-1$ implies that of $H^{(k)}$ for all $k\in \mathrm{I}\mathrm{N}$ . Therefore we obtain a following saturation
property.

Corollary 3.1 Put

$n^{*}=\{$

$n-1$ when $c_{N}\neq 0$ ,

$n$ when $c_{N}=0$ .
Then

$\lim_{\rho\downarrow 0}\frac{1}{\rho^{n^{*}}}(\frac{\partial u}{\partial\nu_{\rho}}(\Pi_{\rho}(X))-\frac{\partial u}{\partial\nu_{\rho}}(\Pi(py)))=0$

is equivalent to

$\lim_{\rho\downarrow 0}\frac{1}{\rho^{k}}(\frac{\partial u}{\partial\nu_{\rho}}(\Pi_{p}(x))-\frac{\partial u}{\partial\nu_{\rho}}(\Pi_{\rho}(y)))=0$ for all $k\in \mathrm{I}\mathrm{N}$ .
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