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Abstract
Synbolic dynamics is applied to the one-dimensional three-body prob-

lem. The sequence of collisions along an orbit is expressed as a symbol
sequence of three symbols. We find systematically sequences of collisions
which are unallowable. There is an infinite number of periodic sequences
which suggets an infinity of periodic orbits other than the Schubart orbit.
Under reasonable assumptions on unallowable sequences, we prove that
symbol sequences form a Cantor set.
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1 Introduction
One-dimensional three-body systems starting from general initial conditions have
been extensively studied by Mikkola and Hietarinta(1989; 1990; 1991). Tanikawa
&Mikkola(1999; hereafter referred to as Paper I) introduced symbol sequences
and found that triple-collision orbits can be obtained easily as boundaries of
different symbol sequences. (For the application of symbol sequences to the three-
body problem, see also Zare&Chesley, 1998). They found that the region of the
phase space so far considered chaotic is stratified by regions separated by triple-
collision curves, i.e., curves formed by initial conditions leading to triple collision.

The present paper is the extension of Paper I. Our purpose here is to un-
derstand more deeply the structure of the phase space of the one-dimensional
three-body problem and to get an insight into its dynamics. Instead of consider-
ing orbits themselves, we consider the set of symbol sequences constructed from
the sequences of binary collisions along orbits. Our main results are as follows.
We divide the surface of section into five regions with different types of symbol
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sequence and use the symmetry of the surface of section. Then we find that there
are unallowable sequences of collisions. Next, we find that the surface of section is
rather simply stratified by bands of points with symbol sequences with increasing
or decreasing order when con.sidered as decimal numbers. Based on this fact, the
existence of periodic orbits and other orbits are shown. Finally, based on the
numerical results, we prove that the set of allowable symbol sequences form a
Cantor set in the set of all symbol sequences.

2 Formulation of the Problem
We put three mass points $m_{1},$ $m_{0}$ , and $m_{2}(m_{0}=m1=m_{2})$ in this order on a line.
Fix the masses and the gravitational constant to one. Then the Hamiltonian of
the problem is given (1, Mikkola&Hietarinta, 1989) by

$H= \frac{1}{2}\sum_{i=0}w_{i}22-\sum_{i<j}\frac{1}{|_{X_{i^{-}}}x_{j}|}$ . (2.1)

where $w_{i}$ are momenta conjugate to the coordinates $x_{i}$ on the line. We have
$x_{1}\leq x_{0}\leq x_{2}$ . Introducing new coordinates by

$q_{1}=x_{0}-X1$ ,
(2.2)

$q_{2}=x_{2}-x0$ ,

we get the new Hamiltonian as

$H=p_{1}^{2}+p_{2^{-}}^{2}p_{1p_{2}}- \frac{1}{q_{1}}-\frac{1}{q_{2}}-\frac{1}{q_{1}+q_{2}}$ . (2.3)

We fix the total energy to-l and start the integration at $q_{1}(0)=q_{2}(0)=R$ .
This means that two outer particles are placed in an equal distance from the
central. Then the value of potential is fixed to 2. $5/R$. The kinetic energy $T$ is

d.etermined by
$T=2.5/R-1$ . (2.4)

Initial zero velocities correspond to $R=1/2.5$ .
If we introduce a parametrization

$\sqrt{3}(p_{1}-p2)=$ $2\sqrt{T}\sin\theta$ ,
$(p_{1}+p2)=$ $2\sqrt{T}\cos\theta$ , (2.5)

then $(\theta, R)$ specify the initial value. Velocities are given by $R$ and $\theta$ as

$\dot{q}_{1}=2p_{1^{-}}p_{2}=2\sqrt{T}\cos(\theta-\pi/3)$

$\dot{q}_{2}=2p_{2^{-}}p_{1}=2\sqrt{T}\cos(\theta+\pi/3)$ . (2.6)
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The function $S=p_{1}Q^{2}1+p_{2}Q_{2}^{2}$ generates the additional transformation with the
new coordinates $Q_{1}=\sqrt{q_{1}},$ $Q_{2}=\sqrt{q_{2}}$ and new momenta $P_{i}=2Q_{i}p_{i}$ . If accom-
panied with the time transformation $t’=q1q2$ the regularized new Hamiltonian

$\Gamma=\frac{1}{4}(P_{1}^{2}Q^{2}2+P_{2}^{2}Q21^{-}P1P2Q_{1}Q2)-Q_{1}^{2}-Q_{2}^{2}-Q12Q^{2}2/(Q_{1}2Q_{2}+)2-Q2Q_{2}21E,$ $(1)$

is obtained. Here $E$ is the (initial) numerical value of the Hamiltonian. The
equations of motion following from this Hamiltonian can be integrated numeri-
cally with conventional methods, such as the Bulirsch-Stoer integrator (Bulirsch
&Stoer 1966).

We start integration from the state $q_{1}=q_{2}$ with $0\leq\theta<\pi$ . For our fixed
energy, initial states can be expressed in a surface of section $H$ :

$H=\{(\theta, R)|0\leq\theta<\pi, 0\leq R\leq 2.5\}$ .

To obtain the global structure, we cover surface of section $H$ with a mesh of
grid size $(\triangle R, \triangle\theta)=$ $(0.002, 0^{\mathrm{o}}.1)$ and integrate orbits starting at each vertices
of grids forward until the 66th binary collision is obtained. The total number of
orbits amounts to $2.25\cross 10^{6}$ . To obtain particular local structure, we perform
additional integrations with finer mesh.

3 Symbol Sequences and Surface of Section
There can be three types of collision along an orbit: binary collisions between $m_{1}$

and $m_{0}$ and between particles $m_{0}$ and $m_{2}$ and a triple collision. Let us denote a
binary collision between $m_{0}$ and $m_{1}$ by ’1’ and a binary collision $m_{2}$ and $m_{0}$ by
’2’, and a triple collision by ’0’. A symbol sequence is constructed in such a way
that when $m_{0}$ and $m_{1}$ collide, the symbol ’1’ is added to the sequence and when
$m_{2}$ and $m_{0}$ collide the symbol ’2’ is concatenated.

Let us express an orbit as a sequence of $0,1$ and 2 as follows:

$(. . . n_{-2}n_{-1}.n_{0}n_{1}n2\cdots)$

where $n_{i},$ $i\in \mathrm{Z},$ $i\neq 0$ are either $0,1$ , or 2.
We follow the orbit starting from the initial condition defined in \S 2 to the

future and to the past. Then $n_{0}$ represents the first collision. $n_{1}$ and $n_{2}$ repre-
sent the type symbol of the second and third next binary collisions, and so on.
Similarly, $n_{-1},$ $n_{-2},$ $\ldots$ represent the type symbol of the past collisions.

Let $\Sigma$ denote the set of all $\mathrm{b}\mathrm{i}$-infinite sequences $s=$ $(. . . n_{-2}n_{-1}.n0n1n_{2}\ldots)$ .
We define a metric on $\Sigma$ setting $\mathrm{d}(s, s)=0$ and $\mathrm{d}(s^{12}, s)=3^{-|m|}$ if $s^{1}\neq s^{2}$ and
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$|m|$ is the least integer such that $s_{m}^{1}\neq s_{m}^{2}$ (Block&Coppel, 1992). Then $\Sigma$ is a
compact metric space. Let us define

$\Sigma_{2}=$ { $s\in\Sigma|s_{i}=1$ or 2}.
Then it is known that $\Sigma_{2}$ is a Cantor set(Robinson, 1995). In other words, symbol
sequences corresponding to orbits which repeat binary collisions form a Cantor
set in the whole sequence space $\Sigma$ .

The shift operator $\sigma$ is defined by

$\sigma(\ldots n_{-2}n-1\cdot n0n1n_{2}\ldots)=$ $(. . . n_{-2}n_{-1}n0\cdot n_{1}n_{2}\ldots)$

on $\Sigma$ .

Remark. We cannot directly obtain orbits which start $\mathrm{a}\mathrm{n}\mathrm{d}/\mathrm{o}\mathrm{r}$ end at triple
collision. In our numerical study, though we assigned symbol ’0’ to triple collision,
we actually work in the space $\Sigma_{2}$ . Symbol sequences containing ’0’ can be obtained
only as a boundary of symbol sequences not containing ’0’. This has been the
main result of paper I.

The correspondence between a symbol in a sequence and a point in the surface
of section is not $\mathrm{o}\mathrm{n}\mathrm{e}- \mathrm{t}_{\mathrm{o}^{-}\mathrm{o}\mathrm{n}\mathrm{e}}$ . It follows from the following propositions that if the
orbit appears again on the surface $H$ , then the preceding and succeeding binary
collisions occur with $m_{1}$ and $m_{0}$ and with $m_{2}$ and $m_{0}$ , respectively. To put it
differently, the period(present) can only be inserted between successive ’1’ and ’2’
in this order. An orbit does not appear on $H$ as long as binary collisions between
the same particles are repeated.

Proposition 3.1. A trajectory in the $(q_{1}, q_{2})$ -plane crosses transversely the ho-
mographic line except at $(\theta, R)=(0,0)$ , if it does at all.

Proof. If $q_{1}=q_{2}$ and $\dot{q}_{1}=\dot{q}_{2}$ , the solution is homographic and always on the
homographic line. So the trajectory initially outside the homographic line

$\mathrm{n}\mathrm{e}\mathrm{v}\mathrm{e}\mathrm{r}\square$

become tangent to the line except the case of triple collision.

$\mathrm{P}\mathrm{r}\mathrm{o}\mathrm{p}_{0}\mathrm{s}\mathrm{i}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}\backslash 3.2$ . If a trajectory crosses the homographic line on the $(q_{1}, q_{2})-$

plane, a binary collision occurs before the trajectory again crosses it.

Proof. Suppose that a trajectory crosses the homographic line from $(q_{1}<q_{2})$ -side
to $(q_{1}>q_{2})$-side at $\mathrm{t}=t_{0}$ , i.e., $q_{1}=q_{2}$ and $\dot{q}_{1}>\dot{q}_{2}$ at $t=t_{0}$ . Then there exists a
small $\epsilon>0$ such that $q_{1}>q_{2}$ and $\dot{q}_{1}>\dot{q}_{2}$ at $t=t_{0}+\epsilon$ . This implies that there
needs a finite time in order to again cross the homographic line. Suppose that
the first crossing occurs at $t=t^{*}>\mathrm{t}_{0}$ without binary collision during $(t_{0}, t^{*})$ . We
can use the continuity argument in this case. At $t=t^{*}$ , we should have $q_{1}=q_{2}$

and $\dot{q}_{1}<\dot{q}_{2}$ by Proposition 3.1. In order to have this, we should have $q_{1}>q_{2}$
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Figure 1: Stratified structure of the surface of section. Reproduction of Fig.5
in Paper I. Shown are the Schubart region(black), triple collision curves, and
immediate escape reions(blank).

and $\dot{q}_{1}=\dot{q}_{2}$ at some $t^{**},$ $t_{0}<t^{**}<t^{*}$ . We should have in turn $\ddot{q}_{2}>\ddot{q}_{1}$ at least at
some time between $t_{0}$ and $t^{**}$ . This implies $q_{2}<q_{1}$ at the same instant, which

$\square \mathrm{i}\mathrm{s}$

a contradiciton.

Finally, the surface of section has a symmetry due to the reversibility of the
problem. The past orbit starting at point $(\theta, R)$ is realized by the future orbit
starting at point $(\pi-\theta, R)$ with particle names $m_{1}$ and $m_{2}$ exchanged. Thus, to
obtain the orbits for-oo $<t<\infty$ of all the points of the surface of section, we
need only to integrate their orbits for $0\leq t<\infty$ .

4 Orbits and Symbol sequences

4.1 Global structure of the Surface of Section
In paper I, we observed that the surface of section $H$ is divided into smaller
parts by points with different symbol sequences. In fact, $H$ is divided into two
regions of points having symbol sequence 1.22. ${ }$. . and 1.21. ... It is divided into
four by symbol sequence 1.222. .., 1.221. . ., 1.211.. ., and 1.212. . .. It is divided
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into seven by sequences 1.2222. . ., 1.2221. . ., 1.2212. . ., 1.2122. . ., 1.2121. . .,
1.2112..., and 1.2111. . .. An so on. The boundary of regions of different symbol
sequences form curves and this curve turned out to be initial conditions of triple
collision. We called these curves triple collision curves. Thus the surface of
section is divided into increasing number of smaller parts with increasing number
of digits of symbol sequences. (see Fig.1, a reproduction of Fig.5 in paper I.)

In paper I, we did not consider the organization or distribution of various
regions with respect to different symbol sequences. In the present paper, our
target is to know the detailed structure of the surface of section and get an
insight into the dynamics of the one-dimensional three-body problem. The first
important observation is that there is a large structure in $H$ . Four curves seem to
emanate from the corner of the black region, i.e. the ’Schubart region’ surrounding
the stable periodic orbit called the Schubart orbit, and reach the bottom boundary
of the surface of section. In Fig. 1, these four curves are obtained as a subset of
scattered orbits starting just outside the Schubart region.

In order to confirm that these are actually curves, we performed orbit in-
tergrations with initial conditions along short segments across these supposed
curves. The grid size is as small as $0^{\mathrm{o}}.001$ for horizontal search, and it is 0.0001
for vertical search. A point is considered to be on the curves if the corresponding
symbol sequence is of the form $1.(21)^{n}$ with $n\geq 36$ . Near the boundary of the
Schubart region, more digits are required. Moreover, there we interpolated the
position of the curve when more than one grid points satisfy the condition.

The result ,is shown in Fig. $2(\mathrm{a})$ . Four curves seem smoothly connected to
the boundary of the Schubart region. We denote the regions separated by these
curves by $S,$ $\mathcal{L},$ $C,$ $\mathcal{R}$ , and $\mathcal{T}$, meaning the Schubart region, left, center, right,
and top regions, respectively. The corresponding symbol sequences are given in
Table I. Here, for example, (21) means 2121. . . 21 ($n$ times).

Table I. Symbol sequences in the surface of section.

Region Sequence$(n\geq 0)$

$S$
$\backslash$

(21) $.(21)^{\infty}$

$\mathcal{L}$ ... $1.(21)^{2}n22\cdots$

$C$ . .. $1.(21)^{21}n+1\cdots$

$\mathcal{R}$ $\ldots 1.(21)^{21}n+22\cdots$

$T$ $\ldots 1.(21)^{22}n+1\cdots$

Remark. The division into $S,$ $\mathcal{L},$ $C,$ $\mathcal{R}$ , and $\mathcal{T}$ is based on the numerical result
that triple collision curves do not cross the boundaries of these regions. One
should be careful that the division seen in Fig. $2(\mathrm{a})$ may not be exact near the
boundary of $S$ . There is a pair of period-2 points around the Schubart region.
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$3\mathrm{U}$ 100
thetatheto

$3\mathrm{U}$ $1\mathrm{O}\mathrm{O}$ 150theto

Figure 2: (a) Division of the surface of section. (b) Overlapping regions of the
surface of section and its reverse.

These points at the corners of the Schubart region and the outermost KAM curve
of the Schubart region are expected disjoint. Near the boundary of the Schubart
region, $\mathcal{L},$ $C,$ $\mathcal{R}$, and $T$ may be intermingled in a complicated manner. In this
paper, we will not draw any conclusion related to this area.
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4.2 Unallowable symbol sequences

As we pointed out in \S 3, the surface of section has a symmetry. The past history
of the orbit starting at $(\theta, R)$ is realized by the future of the orbit starting at
$(\pi-\theta, R)$ and vice versa. Thus, in order to get the $\mathrm{b}\mathrm{i}$-infinite symbol sequence
of an orbit starting at $(\theta, R),$ $(\mathrm{i})$ we calculate the future orbit starting at $(\theta, R)$

and record its future symbol sequence 1.2$c_{2}c_{3}\ldots,$
$(\mathrm{i}\mathrm{i})$ calculate the future orbit

starting at $(\pi-\theta, R)$ and record its future symbol sequence $1.2s_{2}s_{3}\ldots,$ $(\mathrm{i}\mathrm{i}\mathrm{i})$ make
a past symbol sequence.. . $\overline{s}_{3}\overline{s}_{2}1.2$ where $\overline{s}=1$ or 2 according as $s=2$ or 1, and
(iv) concatenate two symbol sequences as... $\overline{s}_{3}\overline{s}_{2}1.2C_{2^{C_{3}}}\ldots$ .

The above procedure suggests us to check whether or not a given symbol
sequence is $all_{ow}able$ ( $\mathrm{i}.\mathrm{e}.$ , realizable as a sequence of collisions). If an arbirary fu-
ture symbol sequence can be concatenated with an arbitray past symbol sequence,
then any $\mathrm{b}\mathrm{i}$-infinite symbol sequence is allowable.

Let us reverse the surface of section $H$ with transformation $\thetaarrow\pi-\theta$ and call
the resultant surface $H^{t}$ the reversed surface of section. Let us denote respectively
by $\mathcal{L}’,$ $C’,$ $\mathcal{R}’$ and $\tau/$ the regions of $H^{t}$ . Here for example, $\mathcal{L}’$ is the original $\mathcal{R}$ if not
reversed. The corresponding sequences (for the past) with ’1’ and ’2’ exchanged
are given in Table II.

Table II. Symbol sequences in the reversed surface of section.

$\frac{\mathrm{R}\mathrm{e}\mathrm{g}\mathrm{i}\mathrm{o}\mathrm{n}\mathrm{S}\mathrm{y}\mathrm{m}\mathrm{b}\mathrm{o}1\mathrm{s}\mathrm{e}\mathrm{q}\mathrm{u}\mathrm{e}\mathrm{n}\mathrm{c}\mathrm{e}(n\geq 0)}{\mathcal{L}’\ldots 11(21)2n+\mathrm{l}.2}\ldots$

$C’$ . .. $2(21)^{21}n+.2\cdots$

$\mathcal{R}’$ ... 11 (21) $.2\cdots$

$\mathcal{T}’$ .. , $2(21)^{22}n+.2\cdots$

If regions without prime and with prime overlap, then the symbol sequence
obtained by concatenating two one-sided sequence is allowable. Otherwise the
sequence is unallowable. There are 17 combinations of possible overlapping re-
gions: 16 combinations between one of $L,$ $C,$ $\mathcal{R},$ $T$ and one of $L’,$ $c^{J},$ $\mathcal{R}/,$ $\tau/$ and one
combination of $S$ and $S’$ . Due to the symmetry of the problem, we have $S=S’$ .
We show the non-empty overlapping regions in Fig. $2(\mathrm{b})$ . As we pointed out in
Remark in \S 4.1, near the boundary of $S\cap S’$ other overlappng regions may have
complicated form. However, we neglect it.

Non-overlapping combinations of regions are listed in Table III together with
unallowable words, where a word means a finite sequence of symbols. Any symbol
sequence having an unallowable word as its subsequence is unallowable. This can
be easily shown by using the shift operator $\sigma$ .
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Table III. Pairs of non-overlapping regions and unallowable words.

There are no other unallowable words. In fact, the regions $\mathcal{L},$ $C,$ $\mathcal{R}$ , and $T$

are stratified by triple collision curves running almost parallel to their boundary
inside the surface. In addition, all these stratified regions in $\mathcal{L},$ $C,$ $\mathcal{R}$ , and $\mathcal{T}$

converge to triple collision points at the bottom of the surface of section. On
the other hand, triple collision curves of the original and reversed surface of
sections intersect transversely. This can be confirmed comparing Figs. 1 and 3.
Therefore, if one of $\mathcal{L},$ $C,$ $\mathcal{R}$, and $\mathcal{T}$ has common area with one of $\mathcal{L}’,$ $C’,$ $R’$ , and
$T’$ , then the region for any sequence $($ . . . $s_{-21}s_{-}.)$ in the former and the region for
any sequence $(.t_{0}t_{1}$

-. . $)$ in the latter has common points, and the concatenated
sequence $(. . . S-2S_{-}1\cdot t0t1\cdots)$ is allowable.

Proposition 4.1. Unallowable words have the form $2(21)^{2k}+122,11(21)^{2}k22$ ,
11 $($21 $)^{2k}+11$ , and $2(21)2k+31$ for $0\leq k\leq k_{0}$ . Here $k_{0}$ is some large positive
integer. Their lengths are $4k$ and $4k+1$ with $k\geq 1$ .

We give first several examples in Table IV. The absense of These sequences
are confirmed numerically.

Table IV. Unallowable words of length less than or equl to 13.

Remark. In view of Remark in 4.1, we added the restriction $k\leq k_{0}$ in Proposi-
tion 4.1.

4.3 A detailed structure of the surface of section

In order to see the detailed distribution of symbol sequences in the surface of
section, we integrated orbits along the lines $\theta=30^{\mathrm{O}},$ $90^{\mathrm{O}}$ , and 150 with a finer
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50 100 theta
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theto

Figure 3: A finer structure of the surface of section.

mesh. We find that along the line $\theta=30^{\mathrm{O}}$ which is transeverse to the structure
in $\mathcal{L}$ , symbol sequences are distributed in such a way that symbol sequences
considered as ternary or decimal numbers decrease with increase of $R$ starting
from $1.(2)^{\infty}$ down to $1.(21)^{\infty}$ . We divide symbol sequences into three groups:
$1.(2)^{\infty},$ $1.(2)^{n}1\ldots$ , and $1.(21)^{2}k22\ldots$ with $n\geq 2,$ $k>0$ . We call the regions with
these symbol sequences $I_{9},$ $I_{5}$ , and $I_{1}$ , respectively. The lack of odd exponents in
the symbol sequences in $I_{1}$ will be understood if one sees the symbol sequences
in $I_{3}$ introduced below.

Along the line $\theta=90^{\mathrm{O}}$ and in $C$ , symbol sequences are distributed in such a way
that symbol sequences considered as ternary or decimal numbers increase with
increase of $R$ starting from $1.2(1)^{\infty}$ up to $1.(21)^{\infty}$ . We divide symbol sequences
into three groups: $1.2(1)^{\infty},$ $1.2(1)^{n}2\ldots$ , and $1.(21)2k+11\ldots$ with $n\geq 2,$ $k>0$ . We
call the regions with these symbol sequences $I_{10},$ $I_{6}$ , and $I_{2}$ , respectively. Similar
to the case of $I_{1}$ , the lack of even exponents in the symbol sequences in $I_{3}$ will be
understood if one sees the symbol sequences in $I_{4}$ introduced below.

Along the line $\theta=150^{\mathrm{o}}$ and in $\mathcal{R}$ , symbol sequences decrease with increase
of $R$ from $1.21(2)^{\infty}$ down to $1.(21)^{\infty}$ . We divide symbol sequence into three
groups: $1.21(2)^{\infty},$ $1.21(2)^{n}1.*\cdot$ , and $1.(21)^{2k+1}22\ldots$ with $n\geq 2,$ $k>0$ . We call
the regions with these symbol sequences $I_{11},$ $I_{7}$ , and $I_{3}$ , respectively.

$\mathrm{F}\mathrm{i}\mathrm{n}\mathrm{a}\mathrm{l}\mathrm{l}\mathrm{y}_{\rangle}$ along either of the lines $\theta=30^{\mathrm{O}},$ $90^{\mathrm{o}}$ , or $150^{\mathrm{o}}$ and in $\mathcal{T}$ , symbol
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sequences increase with decrease of $R$ from $1.212(1)^{\infty}$ up to $1.(21)^{\infty}$ . We divide
symbol sequence into three groups: $1.212(1)^{\infty},$ $1.212(1)n2\ldots$ , and $1.(21)^{2k}1\ldots$

with $n\geq 2,$ $k>0$ . We call the regions with these symbol sequences $I_{12},$ $I_{8}$ , and
$I_{4}$ , respectively.

Thus there are in total twelve regions $I_{i},$ $i=1,2,$ $\ldots,$
$12$ other than $S(\mathrm{s}\mathrm{e}\mathrm{e}$

Fig.3). The boundary of $I_{1}$ and $I_{5}$ is the triple collision curve with symbol se-
quence (. .. 1.20). Similarly, the boundaries of $I_{2}$ and $I_{6}$ , of $I_{3}$ and $I_{7}$ , and of $I_{4}$

and $I_{8}$ are triple collision curves with symbol sequences (. .. 1.210), (... 1.2120),
and (. .. 1.21210), respectively. Regions $I_{9},$ $I_{10},$ $I_{11}$ , and $I_{12}$ will be called im-
mediate escape regions(called regular regions in Paper I) with symbol sequences
$($ . . . $1.(2)^{\infty})$ , $(. . . 1.2(1)^{\infty})$ , (. . . 1.21 (2) ), and $(. .. 1.212(1)^{\infty})$ , respectively.

Table V. Subregions and symbol sequences

Name Sequence next

$.. \cdot..\cdot\frac{n.\geq 2,k>0,m>0}{I_{1},I1I_{5}^{3}I_{7}1111.21111.\}}$

$I_{9}$ 1.
$I_{11}$ 1.2

$21)^{lk}22\cdots$ $I_{3}\mathrm{o}\mathrm{r}I_{7}$

$21)^{2k+1}22\cdots$ $I_{1}$

$222222\mathrm{i}^{n_{1}}n_{1,1}(21^{\cdot}2)_{\infty}n_{121}n_{1}nn_{121}22(21(1)1\{^{)}122^{\cdot}m_{2}2m\infty 2^{\cdot}m212.2111.\cdot..\cdot.\cdot$ $I_{10}I_{7}I_{3}I_{2}I_{6}I11$

1 (2) $1\ldots$ $I_{5}$

(2) escape
1 (2) $I_{9}$

. We can further divide $I_{i},$ $i=1,2,$ $\ldots,$
$8$ into smaller pieces. However, instead

of doing this, we only look into a slightly finer structure of $I_{5}$ and $I_{6}$ . This will
be enough for finding periodic symbol sequences which will be done in \S 4.3.

Let us consider $I_{5}$ . As we described above, symbol sequences in $I_{5}$ have
the form $1.(2)^{n}1\ldots$ with $n\geq 2$ and these considered as decimal numbers de-
creases when $R$ increases along the line $\theta=30^{\mathrm{O}}$ . So the points with symbol
sequences $1.(2)^{n}1\ldots$ with larger $n$ stays below those with smaller $n$ . Let us
fix $n\geq 2$ and look into the structure of the point set with symbol sequence
$1.(2)^{n}1\ldots$ . The largest symbol sequence (as a decimal number) is $1.(2)^{n_{1}}(2)^{\infty}$ .
However, this sequence is unallowable because unallowable word ’22122’ is con-
tained. So the largest allowable symbol sequence is $1.(2)^{n}121(2)^{\infty}$ . Then we have
$1.(2)^{n}121(2)^{\infty}>1.(2)^{n_{12}}1(2)^{m_{1}}\ldots>1.(2)^{n_{1}}(21)2m_{22}’\ldots>1.(2)^{n_{1}}(21)\infty>$

$1.(2)^{n}1(21)2k211\ldots>1.(2)^{n}1211\ldots>1.(2)^{n_{12}}(1)^{\infty}$ where $m\geq 2,$ $m’\geq 1$ , and
$k\geq 1$ . In getting the above sequence of inequalities we have made use of Proposi-
tion 4.1. For example, sequence $1.(2)^{n}1(21)2m+1\prime 22\ldots$ might have been included
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$\mathrm{R}$

50 100 150
theta

Figure 4: Mapping of regions in $\mathcal{L}$ . Four bands in the left with symbol sequences
$1.(2)^{3}1\ldots,$ $1.(2)^{5}1\ldots,$ $1.(2)^{7}1\ldots$ , and $1.(2)^{9}1\ldots$ , are mapped to four bands in
the right. Corresponding regions have the same color.

in inequalities. However, this is unallowable because it contains unallowable word
$,221(21)2m’+122’$ . Now operating $\sigma^{n}$ to these sequences, we get 1.21 $($ 2 $)^{\infty}\in I_{11}$ ,
$1.21(2)^{m}1\ldots\in I_{7},1.(21)^{2m_{22}}’\ldots\in I_{3},1.(21)^{2k}211\ldots\in I_{2},1.211\ldots\in I_{6}$, and
$1.2(1)^{\infty}\in I_{10}$ . The remaining sequence $1.(21)^{\infty}$ is on the stable manifold which
tends to one of the corner of the Schubart region. Now we conclude that orbits
of points whose symbol sequences have the form $1.(2)^{n}1\ldots$ cross in the next in-
tersection the surface of section either in $I_{11},$ $I_{7},$ $I_{3},$ $I_{2},$ $I6,$ $I10$ or in the boundary
of $C$ and $\mathcal{R}$ .

Let us confirm the above consideration by numerical integration of orbits.
Let us take points of region $\mathcal{L}$ whose symbol sequences are $1.(2)^{3}1\ldots,$ $1.(2)^{5}1\ldots$ ,
$1.(2)^{7}1\ldots$ , and $1.(2)^{9}1\ldots$ , and integrate their orbits until the next intersection
with the surface of section. The results are shown in Fig. 4. We see images of the
initial bands have the form also of bands and indeed pass through $I_{11},$ $I_{7,3,2}II,$ $I_{6}$ ,
and $I_{10}$ . Now it is clear that $1.(21)^{\infty}$ , the $\mathrm{i}\mathrm{m}$

. age of $1.(2)^{n_{1}}(21)\infty$ , is on the
boundary of $C$ and $R$ .

One can do the same thing for $I_{6}$ . Here we do not repeat the procedure. One
sees in Table V regions $I_{i},$ $i=1,2,$ $\ldots$ , 12 and the corresponding symbol sequences
together with the regions mapped to in the next intersection. The points in $I_{1}$
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and $I_{3}$ move alternately as $I_{1}arrow I_{3}arrow I_{1}arrow I_{3}arrow\ldots$ , finally make transition
$I_{1}arrow I_{7}$ and go into $I_{5}$ . Similarly, the points in $I_{2}$ and $I_{4}$ move alternately as
$I_{2}arrow I_{4}arrow I_{2}arrow I_{4}arrow\ldots$ , finally make transition $I_{2}arrow I_{8}$ and go into $I_{6}$ .
The initial behavior resembles that of period 2 points near the boundary of the
Schubart region. The motion is almost regular revolving around the Schubart
region and gradually approaching the boundary of ’chaotic regions’ $I_{5}$ or $I_{6}$ .

$I_{7}$ and $I_{8}$ are mapped repsectively to $I_{5}$ and $I_{6}$ . $I_{11}$ and $I_{12}$ are mapped
respectively to $I_{9}$ and $I_{10}$ . Finally, $I_{9}$ and $I_{10}$ correspond escaping orbits. Thus
we call $I_{9},$ $I_{10},$ $I_{11}$ and $I_{12}$ the immediate escape regions.

4.4 Periodic sequences and periodic orbits
In order to obtain periodic sequences, we make in Fig.5 a graph of transitory
relations among $I_{i}$ from the data in Table V. The necessary condition for a se-
quence to be periodic is to come back to some $I_{i}$ starting from there. There are
four shortest round trip paths in the figure: $I_{1}-arrow I_{3},$ $I_{2}-arrow I_{4},$ $I_{5}\neq I_{7}$ , and
$I_{6}\neq I_{8}$ . However, the first two should be excluded. As we described in \S 4.3,
these transitions correspond to secular movements in the respective areas, so no
periodic sequences are expected to exist.

Let us consider transition $I_{5-}arrow I_{7}$ . The form of a sequence in $I_{5}$ is $1.(2)^{n}1\ldots$ ,
$n\geq 2$ , whereas the form is 1.21 $($ 2 $)^{2}$

$\ldots$ in $I_{7}$ . Then, the periodic sequence should
contain a word 1 $($ 2 $)^{n_{12}}$ , $n\geq 2$ . Similarly, we get a word $12(1)^{n}2$ from $I_{6}\nabla^{-}arrow I_{8}$ .
We list first several ones in Table VI.

Table VI. Possible periodic symbol words.

Geometrically, periodic sequences can be obtained as crosspoints of curves or
bands. Suppose that a word 1 $c_{2}c_{3}\ldots c_{n}-12$ is a unit of periodic sequence. Peri-
odic sequence should be of the form $(2c_{2^{C_{3}}}\ldots Cn-11)^{\infty}.(2_{Cc}23\cdots Cn-11)\infty$ . Then
sequence $1.(2c_{2}C_{3\cdots n}C-11)^{\infty}$ is in one of $I_{i}$ and sequence $1.(2\overline{C}n-1\cdots\overline{C}3^{\overline{C}}21)^{\infty}$ is
in another $I_{j}$ . The corresponding periodic sequence is given as crosspoints of
curves or bands $I(1.(2_{C_{2}c..c_{n}}3\cdot-11)\infty)$ and $I^{t}(1.(2_{\overline{C}_{n-}..\overline{C}}1\cdot 3^{\overline{C}}21)\infty)$ provided both
sequences are allowable. Here, $I^{t}(1.(2\overline{C}_{n-}1\cdots\overline{C}3^{\overline{C}}21)\infty)$ means the transformation
of $I(1.(2_{\overline{C}}n-1\cdots\overline{c}_{3}\overline{C}_{2}1)\infty)$ by $(\theta, R)arrow(\pi-\theta, R)$ . We show in Fig.5, the cases of
periodic sequences $(22121)^{\infty}.(22121)\infty,$ $(222121)^{\infty}.(222121)\infty$ , and $(2222121)^{\infty}$ .
$(2222121)^{\infty}$ . Crosspoints are seen in small boxes. $(\theta, R)=(25.20951, 1.8645681)$

is the approximate position of $(22121)^{\infty}.(22121)\infty$ . In the figure, intersecting
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Figure 5: Graph for transitions among $I_{i}$ .

curves are not continuous. This is due to the coarseness of the mesh of orbit
integrations.

There are longer round trip paths. Let us list in Table VII all the possible
round trip paths. Periodic words are obtained in a similar manner. These are
also listed in Table VII. In the table, one sees $I_{3-}arrow I_{1}$ and $I_{4-}arrow I_{2}$ in the fourth,
fifith, seventh and eighth paths. This means that the corresponding orbits repeat
transitions between these regions as much times as the number of 21 in the
sequences.

Table VII. Periodic paths and periodic words.

Path Periodic word
$(n, m\geq 2, k, k’>0)$

$I_{5}\neq I_{7}$ 1 (2) $12$

$I_{6=}arrow I_{8}$ $12(1)^{n}2$

$I_{5}arrow I_{6}arrow I_{7}arrow I_{5}$ $1(2)^{n}12(1)^{m_{22}}$

$I_{5}arrow I_{3}\neq I_{1}arrow I_{7}arrow I_{5}$ $1(2)^{n_{1(}}21)2k+122$

$I_{5}arrow I_{6}arrow I_{3\vee}arrow I_{1}arrow I_{7}arrow I_{5}$ 1 (2) $2(1)m(21)^{2}k22$

$I_{5}arrow I_{2}arrow I_{8}arrow I_{6}arrow I_{7}arrow I_{5}$ 1 (2) I (21) $2(1)^{m_{22}}$

$I_{5}arrow I_{2}arrow I_{8}arrow I_{6}arrow I_{3^{\underline{-\Delta}}}I_{1}arrow I_{7}arrow I_{5}$ $1(2)^{n_{1}}(21)2k2(1)^{m}(21)2k’22$

$I_{6}arrow I_{4}\neq I_{2}arrow I_{8}arrow I_{6}$ $12(1)^{n}(21)^{2k}2$
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Figure 6: Procedure to obtain periodic sequences. The cases of
$(22121)^{\infty}.(22121)\infty,$ $(222121)^{\infty}.(222121)\infty$ , and $(2222121)^{\infty}.(2222121)^{\infty}$ . The
crosspoints of the curves shown in small boxes correspond to the periodic se-
quence.

If future and past periodic sequences occupy bands in the surface of section,
then the common points occupy an area in the surface of section. In this case,
there may be a stable periodic point in it. On the othere hand, if they are
curves, then intersection is a single point. The point is certainly correspond to an
unstable periodic point. Thus, in any case, we expect that there are an infinite
number of periodic orbits corresponding to periodic symbol sequences in the one
dimensional three-body problem. But we need more precise analysis for a rigorous
result.

Finally, we can get oscillatory sequences. Oscillatory sequences directly spec-
ify a group of oscillatory $\mathrm{o}\mathrm{r}\mathrm{b}\mathrm{i}\mathrm{t}_{\mathrm{S}}(\mathrm{s}\mathrm{e}\mathrm{e}$ Tanikawa &Umehara, 1998 for osicllatory
orbits in the planar problem). Consider transitions $I_{5}-arrow I_{7}$ . The correspond-
ing periodic word is 1 $($ 2 $)^{n_{12}}$ , $n\geq 2$ . If $n$ is fixed for every round trip path,
then we get a periodic sequence as before. Let us take a sequence of pos-
itive integers $\{n_{i}\}_{i},$ $n_{i}\geq 2$ such that $\lim n_{i}arrow\infty$ , and consider a sequence
$1.(2)^{n_{1}}121(2)n_{2}12\ldots 1(2)^{n_{i}}12\ldots$ . This is an allowable sequence. This is an os-
cillatory sequence and gives an oscillatory orbit. In a similar manner, we can
construct oscillatory sequences from other periodic words in Table VII.
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4.5 Property of the set of allowable Symbol Sequences

In this subsection, assuming the numerical results, it will be shown that allowable
symbol sequences form a Cantor set. A cylinder is defined as a set of symbol
sequences which has a fixed word in a give range of $\mathrm{d}\mathrm{i}\mathrm{g}\dot{\mathrm{i}}\mathrm{t}_{\mathrm{S}}$ (see Robinson, 1995).

Assumption 4.2. Unallowable words are all given in Proposition 4.1.

Theorem 4.3. Under Assumption 4.2, the set $\Omega$ of allowable symbol sequences
forms a Cantor set in $\Sigma_{2}$ and hence in $\Sigma$ .

Proof. Cylinders are all open. Therefore, $\Omega=\Sigma_{2}\backslash$ { $\mathrm{a}\mathrm{l}1$ unallowable cylinders} is
compact.

Take any allowable symbol sequence $s=$ $(. . . s_{-2}1.2s_{12}s, \ldots , s_{n}, \ldots)$ . Let us
suppose that there exists a sequence $1<k_{1}<k_{2}<\ldots$ ( $k_{i}arrow\infty$ as $iarrow\infty$ )
such that $s_{k_{i}}=1$ and $s_{k_{i}+1}=2$ . Then $s$ is not isolated. For, we have $\sigma^{k_{i}}s=$

$(. .. 1.2s_{k_{i}2}+s_{k_{i}3}+\cdots)$ and we know that there is an infinite number of allowable
symbol sequences of this form. This implies that there are allowable symbol
sequences in any neighborhood of $s$ . $s$ is not isoletaed in the case where there
exists $N>0$ such that $s_{n}=1$ or $s_{n}=2$ for $n>N$ . For, we know the existence
of symbol sequences of the form. (2) $121\ldots \mathrm{o}\mathrm{r}.(1)^{n}212\ldots$ for any $n\geq 2$ .

In order to show that $\Omega$ is totally disconnected, it suffices to show that in any
neighborhood of a sequence in $\Omega$ there is a sequence which does not belong to
$\Omega$ . Using unallowable cylinders with their fixed words in arbitrarily high digits,
we can construct a symbol sequence not belonging to $\Omega$ and arbitrarily close

$\mathrm{t}\mathrm{o}\square$

a given allowable sequence.

As consequences, we have

Corollary 4.4. There is an uncountable number of non-escape orbits other than
orbits in the Schubart region.

This is obvious because there is an uncountable number of symbol sequences
other than (21) $.(21)^{\infty}$ and a symbol sequence corresponds to more than one
orbits. Moreover, there may be an uncountable number of curves of initial con-
ditions for non-escape orbits.

Corollary 4.5. The area of initial positions for a non-repeating symbol sequence
is zero.

This is also obvious because the corresponding orbits appear infinite times in
different positions of the surface of section.
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5 Conclusions
We have demonstrated that symbolic dynamics is effective in the one-dimensional
three-body problem. Main results are

(i) It has been found that there are unallowable sequences of binary collisions,
the symplest ones being 2211 and 1122.

(ii) Periodic sequences are found and some of periodic orbits are positioned, the
simplest one being $(22121)^{\infty}.(22121)\infty$ . The existence of oscillatory orbits with
collisions is deduced.

(iii) Qualitative behavior of general orbits on the surface of section is understood
to a certain extent by using symbol sequences and shift operator.

Acknowledgment
One of the authors(K.T.) expresses his thanks to Dr. Shigehiro Ushiki (Kyoto

University) for useful suggestions on symbolic dynamics.

Refererices
[1] Block, L.S. and Coppel, W.A., 1992, Dynamics in One Dimension, Lecture Notes in Math-

ematics Vol. 1513, Springer-Verlag.

[2] Bulirsch, R. and Stoer, $\mathrm{J}.:(1966)$ , Nume$7^{\sim}ical$ Treatment of Differential Equations by Extrap-
olation Methods. Num. Math., 8, 1-13.

[3] Mikkola, S. and Hietarinta, J., 1989, Celestial Mechanics and Dynamical Astronomy 46,
1-18.

[4] Mikkola, S. and Hietarinta, J., 1990, Celestial Mechanics and Dynamical Astronomy 47,
321-331.

[5] Mikkola, S. and Hietarinta, J., 1991, Celestial Mechanics and Dynamical Astronomy 51,
379-394.

[6] Robinson, C., 1995, Dynamical Systems, CRC Press, Boca Rayton, USA.
[7] Tanikawa, K. and Mikkola, S., $1999(\mathrm{P}\mathrm{a}\mathrm{p}\mathrm{e}\mathrm{r}$ I), Celestial Mechanics and Dynamical Astron-

$omy(\mathrm{S}\mathrm{u}\mathrm{b}\mathrm{m}\mathrm{i}\mathrm{t}\mathrm{t}\mathrm{e}\mathrm{d})$ .

[8] Tanikawa, K. and Umehara, H., 1998, Celestial Mechanics and Dynamical Astronomy 70,
167-180.

$\sim[9]$ Zare, K. and Chesley, S., 1998, Chaos 8, 475-494.

83


