
線形化可能な分散共有メモリの無待機な実現
Wait-Free Linearizable Implementation of a Distributed Shared Memory

井上美智子 須田克朗 1 守屋宣

Michiko INOUE Katsuro SUDA Sen MORIYA
増澤利光 藤原秀雄

Toshimitsu MASUZAWA Hideo FUJIWARA

奈良先端科学技術大学院大学
〒 630-0101奈良県生駒市高山町 8916-5

{kounoe, katuro-s, sen-m, masuzawa, fuj $\mathrm{i}\mathrm{w}\mathrm{a}\mathrm{r}\mathrm{a}$ } $@\mathrm{i}s$. aist-nara. $\mathrm{a}\mathrm{c}$. jp

Abstract: We consider wait-free linearizable implementations of shared objects which tol-

erate crash faults of any number of processes on a distributed message-passing system. We

consider the system where each process has a local clock that runs at the same speed as

real-time clock and an message delays are in the range $[d-u, d]$ where d and $u(0<u\leq d)$

are constants known to every process. We present four wait-free linearizable implementa-

tions of $\mathrm{r}\mathrm{e}\mathrm{a}\mathrm{d}/\mathrm{w}\mathrm{r}\mathrm{i}\mathrm{t}\mathrm{e}$ registers and two wait-free linearizable implementations of general ob-

jects for several system settings. These are the first implementations with taking account

of wait-freedom. Moreover, the worst-case response times of our wait-free implementations

of $\mathrm{r}\mathrm{e}\mathrm{a}\mathrm{d}/\mathrm{W}\mathrm{r}\mathrm{i}\mathrm{t}\mathrm{e}$ registers on a reliable broadcast model is better than any previously known

implementations.

Keywords: message-passing system, distributed shared memory, linearizability, wait-

freedom

1 Introduction

How to provide logically shared objects in a dis-
tributed system is a fundamental problem on
concurrent computing. A distributed system
with shared objects has good scalability while
it needs low-level or complex control to shared
data through message-passing paradigm. Logi-
cally shared objects greatly simplifies a design of

a user program thanks to its simple and general
computing paradigm. A distributed shared mem-
ory consisting of such shared objects aims at pro-
viding useful and scalable programming environ-
ment for high-performance computing using mul-
tiple processors.

We implement logical shared objects which are
used by multiple application processes concur-
rently. The implemented shared objects should
provide some consistency for concurrent accesses.
We consider linearizable implementations [1] of

1現在, NTT ソフトウェア.

shared objects on a distributed message pass-
ing system. Informally, linearizability guarantees
that operations to the implemented objects seem
to be executed sequentially in some total order,

and, for two operations such that one operation
starts after the other operation completed, this
total order preserves the real-time order on them.
It has some good properties, such as locality and
nonblocking. Locality means that a system is lin-
earizable if each individual object is linearizable.
Locality allows concurrent system to be designed
and constructed in a modular fashion; each of
linearizable objects can be implemented, verified
and executed independently. Nonblocking prop-
erty means that a pending operation is never re-
quired to wait for another pending operation to
complete. Nonblocking implies that linearizabil-
ity is an appropriate condition for a system where
real-time response is important.

An implementation is said to be wait-free if any
operations of the implemented object are com-

数理解析研究所講究録
1120巻 1999年 78-87 78

Table 1: Linearizable implementations (Processes
do not crash).

Table 2: Wait-free linearizable implementations
in this paper (Processes may crash).

$\mathrm{r}\mathrm{e}\mathrm{a}\mathrm{d}/\mathrm{w}\mathrm{r}\mathrm{i}\mathrm{t}\mathrm{e}$ registers, reliable broadcast

$\ovalbox{\tt\small REJECT}^{\mathrm{a}\mathrm{s}\mathrm{y}\mathrm{n}\mathrm{C}}u- \mathrm{s}\mathrm{y}\mathrm{n}\mathrm{C}u+\alpha Au+(1-\alpha)A(A--\mathrm{m}\mathrm{a}\mathrm{x}\mathrm{t}d-2u,0\},0\leq\alpha\leq 1)du$

pleted in finite time regardless of other processes’
$\mathrm{b}\mathrm{e}\mathrm{h}\mathrm{a}\mathrm{v}\mathrm{i}\mathrm{o}\mathrm{r}[5]$. We consider wait-free implementa-
tions, which tolerates crash faults of any num-
ber of processes. James et al. showed that there
are no wait-free linearizable implementations of

$\mathrm{r}\mathrm{e}\mathrm{a}\mathrm{d}/\mathrm{w}\mathrm{r}\mathrm{i}\mathrm{t}\mathrm{e}$ registers on the system in which mes-
sage delays are $\mathrm{a}\mathrm{r}\mathrm{b}\mathrm{i}\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{r}\mathrm{y}[6]$. In this paper, we
assume that au message delays in the system are
in the range $[d-u, d]$ for some constants d and
$u\langle 0<u\leq d$) where every process knows these d

and u , and the system provides each process with
a local clock that runs at the same rate as global
time. We consider two kinds of models about ex-
change of messages, a reliable broadcast and an
unreliable broadcast. These two mcdels differ in a
guarantee on a case where a process crashes dur-
ing its broadcast. A broadcasted message is guar-
anteed to be received by $\mathrm{a}\mathrm{U}$ correct processes in a
reliable broadcasted model. On the other hand, in
an unreliable broadcast model, if a process crashes
during its broadcast, the message is not guaran-
teed to be received by au processes. We consider
two kinds of models also on local clocks, asyn-
chronous clocks and u-synchronous clocks. In a u-
synchronous clock model, the difference between
any pair of two local clock values is at most u .
in an asynchronous clock model, we make no as-
sumptions on such a difference. The efficiency of
an implementation is measured by the worst-case
response time $reS_{-time(}op$) for each operation op

of the implemented objects.

Several authors have investigated linearizable
implementations of shared objects on a system in
which no processes crash and $\mathrm{a}\mathrm{U}$ message delays
are in the range $[d-u, d]$ (Tab. 1). In Tab. 1,
op_{a} is any operation returning a unique response,

$\mathrm{c}\mathrm{a}\mathrm{U}\mathrm{e}\mathrm{d}$ to be ack-type, and op_{v} is any operation
that is not $\mathrm{a}\mathrm{c}\mathrm{k}$ -type, $\mathrm{c}\mathrm{a}\mathrm{U}\mathrm{e}\mathrm{d}$ to be val-type. in this
paper, we consider wait-freedom and present six
wait-ffee linearizable implementations shown in
Tab.2. The response time of our wait-free im-
plementation of $\mathrm{r}\mathrm{e}\mathrm{a}\mathrm{d}/\mathrm{w}\mathrm{r}\mathrm{i}\mathrm{t}\mathrm{e}$ registers on a reliable
broadcast and u-synchronous model is better than
the previously known implementation in [3].

2 Definitions
2.1 System

A distributed message-passing system consists of
multiple processes and a communication network.
A process communicates with any other processes
by exchanging messages through the network. AU
message delays are in the range $[d-u, d]$ for some
constants d and $u(0<u\leq d)$ known to ev-
ery process. Each process has a local clock that
runs at the same rate as global time 2. The pro-
cess obtains local time from its local clock and

2We use system-wide global time to $\mathrm{s}\mathrm{p}\mathrm{e}\mathrm{c}\mathrm{i}\Phi$ systen be-
havior. Note that the global time is introduced only for
specification and no processes can use it.

79

uses a timer based on its local clock. We assume
the difference between any pair of local clock val-
ues in a system is at most ϵ for some constant
ϵ . Such a model is called ϵ-synchronous clock
model. If ϵ is the infinity, the model is called
asynchronous clock model. We assume that a
process may crash. After a process crashes, it
ceases to operate. We consider two kinds of mod-
els about exchange of messages, a reliable broad-
cast model and an unreliable broadcast model. In
a reliable broadcast model, if a process crashes
during broadcasting a message, it is guaranteed
that all correct processes receive it or no process
receives it.

A process p is modeled as a state machine. Its
state changes when some event occurs at p . A $sy_{S}-$

tem configuration (or we call just configuration) is
defined as all process states, a set $\Lambda^{(}$ of in-transit
messages and sets A_{p} of alarms which have been
set to its timer and have not gone off at each pro-
cess p . An in-transit message is a triple (M, s, r)

where M is a message, s is the sender, and r is
the destination. An alarm is a pair (K,t) where
K is the type of an alarm and t is the local time
for the alarm to go off. A process can set multiple
alarms concurrently, and a type of alarm is used
to identify them. Each process has the following
events.

\bullet Communication events: Broadcast
events BroadCast(p, M) and receive events
Receive (p, q, M) can occur in a reliable
broadcast model. Send events $s_{en}d(p, q, M)$

and receive events Receive (p, q, M) can oc-
cur in an unreliable broadcast model, .

$-s_{en}d(p, q, M)$: Process p sends a mes-
sage M to process q . A triple (M,p, q)

is added to N .
$-BroadCaSt(p, M)$: Process p broad-

casts a message $M3$. For any process
$q,$ (M,p, q) is added to N.

$-TimerSet(p,\overline{t}, K)$: Process p sets its
timer of type K to go off after \overline{t}. When
an event TimerSet (p,\overline{t}, K) occurs at lo-
cal time t , a pair ($K,$ $t+\overline{t\supset}$ is added to
A_{p} .

$-Alarm(p, K)$: An alarm of type K

occurs at process p . When an event
Alarm(p, K) occurs at local time t , a
pair (K,t) is removed from A_{p} .

$-ReadClock(p, s)$: Process p obtains the
clock value s from its local clock.

\bullet $St_{\mathit{0}}p(p)$: Process p crashes. After this event,
$p’ \mathrm{s}$ state changes to fault state and p ceases
to operate.

\bullet A process communicates also with the out-
side of the system, which we call environ-
ment. We describe events about communi-
cation between a process and environment
later.

The receive, alarm and stop events are input
events, which arise passively.

The system history (or we call just history) is
defined as a finite or infinite alternating sequence
of configurations and occurrences of events,
$H=c0,$ $(e_{1},T1),$ $C1,$ $\cdots,$ $c_{k},$ $(ek+1,\tau k+1),$ $ck+1,$ \cdots ,
where each $c_{k}(k \geq 0)$ is a configuration,
$(e_{k},T_{k})(k\geq 1)$ is an occurrence of an event, e_{k}

is the event and T_{k} is global time when e_{k} occurs.
Each T_{k} is denoted by $t\dot{i}me(ek)$. A process $p’ \mathrm{s}$

state is a projection of a configuration c_{k} to p , de-
noted by $c_{k}|p$. The first configuration c_{0} is called
an initial configuration, in which all processes are
in the initial state, and N and A_{p} for any pro-
cess p are empty. For each $k,$ $T_{k}\leq T_{k+1}$ holds.
A history H implies that, for each $k(k\geq 0)$, an
event e_{k+1} occurs at some process p at T_{k+1} in a
configuration c_{k} , and $p’ \mathrm{s}$ state changes $\mathrm{h}\mathrm{o}\mathrm{m}c_{k}|p$

to $c_{k+1}|p$ (and N or A_{p} also may change). To be
simplified, all events in a history are distinct. We
assume the following conditions on any history H .

$-Receive(p, q, M)$:Process p receives a
message M from process q . A triple
(M, q,p) is removed from N .

\bullet Time events:

3For convenience, we assume that a process sends a mes-
sage to au processes including itself by a broadcast.

\bullet If A_{p} contains a pair $(K,t),$ $Alarm(p,K)$ oc-
curs or p is in a fault state at local time t .
Conversely, Alarm(p, K) occurs at t , only if
$(K,t)_{\overline{1}\mathrm{S}}$ in A_{p} .

\bullet rf a triple (M,p, q) is added to N at global
time $T,$ $Rece\dot{i}ve(q,p, M)$ occurs in $[T+d-$
$u,T+d]$ or p is a fault state at T . Only if

80

N contains a triple (M,p, q) , a receive event
$Rece\dot{i}ve(q,p, M)$ occurs.

2.2 Implementation of an object

We define a deterministic shared object (we call
just object in the following). An object is a data
structure to which multiple processes can access
concurrently. An object has a unique name and
a type. The type is a tuple $(OP,RES,Q, q_{0}, \delta)$,
where OP is a set of operations, RES is a set
of responses, Q is a set of states, q_{0} is an initial
state, and δ : $Q\cross OParrow Q\cross RES$ is a func-
tion $\mathrm{c}\mathrm{a}\mathrm{U}\mathrm{e}\mathrm{d}$ sequential specification. The sequen-
tial specification defines a behavior of the object
when operations are applied sequentially: if an
operation op is applied to the object in a state
s , the object changes its state to $s’$ and returns
the response res where $\delta(s, op)=(s’, res)$ holds.
Such an object is called to be deterministic, since
the sequential specification is a function. If an
operation op always returns a unique response,
that is $|\{res|\exists s, S’[\delta(s, op)=(s’,res)]\}|=1,$ op is
called to be ack-type. An operation is called to be
val-type, if it is not $\mathrm{a}\mathrm{c}\mathrm{k}$-type. In the following, op_{a}

denotes any $\mathrm{a}\mathrm{c}\mathrm{k}$-type operation and op_{v} denotes
any $\mathrm{v}\mathrm{a}\mathrm{l}$-type operation.

Next, we define an implementation of an object
O of type $(OP,REs, Q, q_{0}, \delta)$. We implement a
virtual shared object which is used concurrently
by environment. Figure 1 illustrates the imple-
mentation. An object is implemented by a set of
processes $\{p_{1},p_{2}, \cdots,pn\}$. A subscript i of each

p_{i} is the process identifier. Environment can ac-
cess an object by communicating with a process

p_{i} . Communication between environment and p_{i}

is modeled as the following events.
\bullet Invoke (p_{i}, op) : Environment calls p_{i} to ap-

ply an $.0$peration $op(\in OP)$ to the object O .
\bullet Response (pi,res) : Process p_{i} returns a re-

sponse $res(\in RES)$ for an invocation to en-
vironment.

The invoke event is an input event. We assume
the following condition about communication be-
tween environment and p_{i} on any history H .

\bullet Once environment invokes an operation to a
process p_{i} , it does not invoke the next oper-
ation to p_{i} until p_{i} returns a response for the
former invocation.

Figure 1: Implementation of a shared object.

To return consistent responses, the processes may
exchange messages with each other.

For each p_{i} , we consider the restricted se-
quence of a history H to $p_{i}’ \mathrm{s}$ invoke and re-
sponse events. It should be an alternating se-
quence $Inv_{1},$ ${\rm Res}_{1},$ $Inv_{2},$ ${\rm Res}_{2},$ \cdots where Inv_{k} is
an invoke event and ${\rm Res}_{k}$ is a response event for
each $k(k\geq 1)$. For each invoke event Inv_{k} , the
next event ${\rm Res}_{k}$ is called to be a corresponding
response event. A pair of events ($Inv_{k},$ Resk) is
called an operation execution. An invoke event
that has no corresponding response events is said
to be pending. If an invoke event of an operation
is not pending, the operation execution is said to
be completed.

We adopt $linea\dot{n}\mathcal{Z}abil_{\dot{i}}ty$ as a consistency condi-
tion of an implementation of an object. Herlihy
et al. showed a local property $\mathrm{o}\mathrm{f}\mathrm{l}\mathrm{i}\mathrm{n}\mathrm{e}\mathrm{a}\mathrm{r}\mathrm{i}\mathrm{z}\mathrm{a}\mathrm{b}\mathrm{i}\mathrm{l}\mathrm{i}\mathrm{t}\mathrm{y}[1]$.
The locality means that an implementation of
multiple shared objects is linearizable if and only
if each object is implemented linearizably. In this
paper, we consider an implementation of one ob-
ject, and we define an implementation of only one
object. From locality, we can implement multiple
objects from our implementations of one object.

Now we define linearizability and wait-freedom.
We consider a sequence of operation executions
$\tau=$ $(Inv1,{\rm Res} 1),$ $(Inv2,{\rm Res} 2),$ \cdots . For each
$k(k\geq 1)$, let Inv_{k} and ${\rm Res}_{k}$ be Invoke $(p_{i}k’ p_{k}o)$

and Response ($p_{i_{k}},$ resk) respectively. For an ob-
ject O of type $(oP,REs, Q,q_{0}, \delta)$, if there ex-
ists a sequence $\theta=q_{0},$ $q_{1},$ \cdots of states of O ,
where $\delta(qk-1, opk)=$ ($q_{k},$ resk) holds for each
$k\geq 1,$ τ is said to be legal. rn a system his-
tory H , if time $({\rm Res}_{k})<time(Inv_{l})$ holds for

81

two operation executions op_{k} $=$ $(Inv_{k}, {\rm Res}_{k})$,
$op_{l}=$ ($Inv_{l},$ Resl), we say that op_{k} precedes op_{l} ,
denoted by $op_{k}arrow_{O}Hp\iota$. A restricted sequence of H

to completed invoke events and response events is
denoted by complete (H) .

Definition 1 A history H is said to be lineariz-
able, $\dot{i}.f$ there exists a history $H’$ that satisfies the
followings.

\bullet The history $H’$ is obtained from H by append-
ing corresponding response events for some
(possibly empty) pending invoke events.

\bullet There exists a legal sequence τ consisting
of all operation executions in complete $(H’)$

such that, for any operation executions op_{1}

and $op_{2}sat\dot{i}S.fyingop_{1}Com_{\mathrm{P}arrow}\iota_{ete}(Hr)op_{2},$

$op_{\underline{1}}$

precedes op_{2} in τ .

Definition 2 An implementation I is said to be
linea$7^{\cdot}\dot{i}Zable$ if any possible system history H is $lin–$
earizable.

Definition 3 An implementation I is said to be
wait-free if any invoke event Inv in every possible
history H satisfies one of the followings.

\bullet There exists a corresponding response event.

\bullet For the process p_{i} in which $Invoccurs-$,Stop (p_{i}) occurs after Inv .

The efficiency of an implementation I is mea-
sured by the worst-case response times of op-
eration executions. For an operation execu-
tion $(Inv, {\rm Res})$, we define the response time as
time (${\rm Res}\rangle-time(Inv)$. Let $OPE(H)$ denote
a set of operation executions that appears in a
history H . For an operation execution $ope=$
$(Inv, {\rm Res})$, let ope.op denote an operation in-
voked in Inv . For an implementation I of an
object O supporting an operation op , we de-
fine the worst-case response time of op , denoted
by $res_{-}time(op)$, as $\max\{res_{-}time(ope)|ope$ \in

$OPE(H)$, ope.op $=op,$ H is a history of I}.

3 $\mathrm{R}\mathrm{e}\mathrm{a}\mathrm{d}/\mathrm{w}\mathrm{r}\mathrm{i}\mathrm{t}\mathrm{e}$ registers

In this section, we present four implementations
of a $\mathrm{r}\mathrm{e}\mathrm{a}\mathrm{d}/\mathrm{w}\mathrm{r}\mathrm{i}\mathrm{t}\mathrm{e}$ register. We show the type of
a $\mathrm{r}\mathrm{e}\mathrm{a}\mathrm{d}/\mathrm{w}\mathrm{r}\mathrm{i}\mathrm{t}\mathrm{e}$ register on a domain D in Fig-
ure 2. The efficiency of a $\mathrm{r}\mathrm{e}\mathrm{a}\mathrm{d}/\mathrm{w}\mathrm{r}\mathrm{i}\mathrm{t}\mathrm{e}$ register is
measured by $res_{-}t_{\dot{i}}me(read\rangle$ and $reS_{-tim}e(write)$

where write is any write operation write (v) .

$OP=\{write(v)|v\in D\}\cup\{read\}$

$RES=\{\mathrm{a}\mathrm{c}\mathrm{k}\}\cup D$

$Q=D$
$\forall v,v’\delta(v, write(v’))=(v’,\mathrm{a}\mathrm{c}\mathrm{k})$

$\forall v\delta$ (v , read) $=(v,v)$

Figure 2: Type of a $\mathrm{r}\mathrm{e}a\mathrm{d}/\mathrm{w}\mathrm{r}\mathrm{i}\mathrm{t}\mathrm{e}$ register on on a
domain D .

In all implementations, each process keeps a lo-
cal copy of a $\mathrm{r}\mathrm{e}\mathrm{a}\mathrm{d}/\mathrm{w}\mathrm{r}\mathrm{i}\mathrm{t}\mathrm{e}$ register. When a write
operation is invoked at a process, the process
assigns a timestamp to the write operation and
broadcasts an update message that contains the
written value and the timestamp of the write op-
eration. A process updates its local copy accord-
ing to received update messages. The update de-
pends on a timestamp assigned to the write op-
eration execution. In a read operation execution,
the value of its local copy at some time during
the operation is returned. For a read operation
execution R , let Write ($R\rangle$ be the write operation
execution whose written value R returns.

We describe each program code by event-driven
form for input events. A series of each event and
the succeeding internal changes of the state is
atomic, that is, the process does not crash dur-
ing the series. If multiple input events occur at
the same time, they are handled in an order such
that they appear in the described code except a
stop event.

3.1 Implementations using reliable
broadcast

3.1.1 Asynchronous clocks

The first implementation is on a reliable broad-
cast and asynchronous clock model, which we
call $reg_{\dot{i}S}ter_{RBAc}-$ (for”reliable broadcast, asyn-
chronous clocks”). The program code for p_{i} is
given in Fig.3.

In a write operation execution, the process
broadcasts an update message on the invocation.
When a process receives the update message, it
updates its local copy according to the message.
The write operation execution is completed by re-
turning ack after d since the invocation. In a read
operation execution, the process decides the re-
turned value for the value of its local copy on the

82

data type
timestamp$=$ ($\mathrm{i}\mathrm{n}\mathrm{t}\mathrm{e}\mathrm{g}\mathrm{e}\mathrm{r}$, process identifier)
variables
count, type integer, init 0

res-val, type value of the register
$last_{-u}p_{-}t_{S},$ tyPe timestamp, init $(0,0)$

local-copy, type value of the register
transition functions of process p_{i}

Invoke $(p_{i}, write(v))$:
count:$=count+1$;
BroadCast($pi,$ update(v , (count, i)));
$/*_{\mathrm{u}\mathrm{p}}\mathrm{d}\mathrm{a}\mathrm{t}\mathrm{e}$ messae $*/$

TimerSet($pi,$ d , WRITE);
Invoke(p_{i} , read) :

res-val $:=loCal_{-co}py$;
$\tau imers_{e}t$ ($p_{i},$ u , READ);

Receive($pi,p_{j},$ update(v , (recvd-ct, recvd-uid))) :
count: $= \max$(count, recvd-ct);
if $last_{-u}p_{-tS}<^{4}$ (recvd-ct, recvd-uid)

then local-copy: $=v$;
$last_{\vee}up_{-t=}s$: ($recvd_{-}Ct$, recvd-uid);

Alarm(p_{i} , WRITE):
Response $(p_{i}, \mathrm{a}\mathrm{c}\mathrm{k})$;

Alarm(pi , READ):
Response($p.i$, res-val);

Stop (p_{i}) :
No events can happen after this event.

Figure 3: $reg_{\dot{i}St}er_{RBAc}-$ (for p_{i}).

t of a write operation execution W is received in
$[t+d-u,t+d]$. Therefore, at each process, the
update message for W is handled in this interval,
or it is ignored. For two read operation executions
R and $R’$ such that $R’$ precedes R , it is guaran-
teed that R returns the value written by the write
operation with timestamp greater than or equal
to $R’$.

We show that any possible history H in
$register_{R}B-AC$ is linearizable and wait-free. A
pending invoke event of a write operation W is
said to be valid if there exists a read operation
execution R such that Write $(R)=W$. Let $H’$ be
a history in which response events corresponding
to valid pending events are appended to H in ar-
bitrary order. We construct a legal sequence τ as
follows. First, we assume that a sequence τ begins
with a virtual write operation W_{0} that writes the
initial value, and arrange all write operation exe-
cutions in complete $(H’)$ after W_{0} in order of their
timestamps. Next, we put read operation execu-
tions that returns a written value of a write oper-
ation execution W immediately before W in order
of their global invocation time. We can show that
op_{1} precedes op_{2} in τ if $op_{1}com_{P}le(\sim^{el}H’)op_{2}$, for
any operation executions op_{1} and op_{2} . Therefore,
the following theorem holds.

invocation, and it returns the value after u since
it is invoked.

In this implementation, a monotone increasing
integer count is used as a timestamp. A process
increase count by 1 when it invokes a write opera-
tion. If the timestamp contained in a received up-
date message is greater than the process’s count
(breaking tie by process identifiers), the process
sets its count to the timestamp. Since any mes-
sage delay is not greater than d , a write opera-
tion execution W_{2} succeeding another write op-
eration execution W_{1} is assigned a greater times-
tamp than W_{1} . A process ignores an update mes-
sage containing smaller timestamp than the last
handled timestamp. In this case, the process con-
siders that such an update message was handled
and the value was overwritten by some write op-
eration. An update message broadcasted at time

4The symbol $<\mathrm{d}\mathrm{e}\mathrm{n}\mathrm{o}\mathrm{t}\mathrm{e}\mathrm{S}$ lexicographic order. A relation
$(a_{1},b_{1})<(a_{2},b_{2})$ implies that $a_{1}<a_{2}$, or $a_{1}=a_{2}$ and
$b_{1}<b_{2}$.

Theorem 1 The implementation
$registerRB-AC$ is a wait-free linearizable imple-
mentation of a $read/w\dot{n}te$ register which achieves
$res_{-t_{\dot{i}}}me(wr\dot{i}te)=d$ and res-time (read) $=u$
on a reliable broadcast and an asynchronous clock
model. \blacksquare

3.1.2 u-synchronous clock

We present an implementation $registerRB-uC$
on a reliable broadcast and u-synchronous
clock model (Fig.4). The implementation
$regi_{S}terRB-uC$ is a parameterized implemen-
tation with a parameter α $(leq\alpha \leq 1)$

where $reS_{-t_{\dot{i}me(t}}wrie$) $\geq u,$ $reS_{-ti()}mewr\dot{i}te+$

$reS_{-ti(rea}med)\geq d$ and $reS_{-ti(r}meead$) $\geq u$ hold.

The implementation $registerRB-uC$ uses a 10-
cal clock value as a timestamp $\mathrm{i}\mathrm{n}s$tead of count.
This guarantees that a preceding write operation
execution has a smaller timestamp. A returned
value of a read operation execution is decided at

83

constant
$|W|=u+ \alpha\cdot\max\{d-2u, 0\}$,
$|R|=u+(1- \alpha)\max\{d-2u, 0\}$

data type
timestamp$=$ (time, process identifier);
variables
local-cl, type time, init 0 ;
res-val, type value of the register ;
$last_{-}up-ts$, type timest $a\mathrm{m}\mathrm{p}$, init $(0,0)$;
local-copy, type value of the register,

init initial value of the register;
transition functions of process p_{i}

Invoke$(p_{i}, write(v))$:
ReadClock(pi , local-cl);
$Broadc_{a}st$ ($pi,$ update(v , (local-cl, i)));
$/*\mathrm{u}\mathrm{p}\mathrm{d}\mathrm{a}\mathrm{t}\mathrm{e}$ message $*/$

TimerSet($p_{i},$ $|W|$, WRITE);
Invoke(p_{i} , read) :

$\tau imerset$ ($pi,$ $\min\{|R|,$ $d-u\}$, SET-VAL);
$\tau imers_{e}t$ ($p_{i},$ $|R|$, READ);

Receive($p_{i},p_{j},$ update(v , (recvd-cl, recvd-uid))) :
if $last_{-}up-t_{S}<$ (recvd-cl, recvd-uid)

then local-copy: $=v$;
$last_{-}up_{-}t_{S}:=$ ($recvd_{-c\iota}$, recvd-uid);

Alarm(p_{i} , WRITE) .
$la\epsilon t_{-u}p_{-t_{S}}:=write_{-}t_{S}$;
Response $(p_{i}, \mathrm{a}\mathrm{c}\mathrm{k})$;

Alarm(p_{i} , SET-VAL):
res-val: $=loCal$-copy;

Alarm(p_{i} , READ):
${\rm Res}_{\mathrm{P}^{O}}nSe$($pi$, res-val);

Stop(p_{i}) :
No events can happen after this event.

Figure 4: $reg_{\dot{i}Str}eRB-uC$ (for p_{i}).

$\min\{d-u,u+(1-\alpha)\max\{d-2u,\mathrm{o}\}\}$. This guar-
antees that, for any read operation execution R

and any write operation execution W preceding
$R,$ $Write(R)$ does not have a smaller timestamp
than W . Furthermore, for any read operation
execution $R’$ preceding R , it is guaranteed that
Write (R) does not have a smaller timest$a\mathrm{m}\mathrm{p}$ than
$Wr\dot{i}te(R’)$. From these facts, we can prove the
following theorem.

Theorem 2 The implementation $register_{R}B-uC$

is a wait-free lineariz-
able implementation of a $read/w7^{\cdot}ite$ register which
achieves $res-t \dot{i}me(wr\dot{i}te)=u+\alpha\cdot\max\{d-2u,0\}$

and res-time (read) $=u+(1- \alpha)\max\{d-2u,\mathrm{o}\}$

$(0\leq\alpha\leq 1)$ on a reliable broadcast and u-

synchronous clock model. \blacksquare

3.2 Implementations without reliable
broadcast

3.2.1 Asynchronous clocks

Here we present implementation $registerUB-AC$
on an unreliable broadcast and asynchronous
clock model (Fig.5). This implementation is
based on $register_{RBAc}-\cdot$ Note that a message
broadcasted in an unreliable broadcast model is
not guaranteed to be received by all correct pro-
cesses if the sender crashes during its broadcast.
A message which all correct processes do not re-
ceive is called to be incompletely broadcasted.

If the update message is incompletely broad-
casted, some correct processes does not receive it.
In this case, if some process receives such a mes-
sage and returns a value written by it, another
process that does not receive the message may
violate linearizability. In $register_{\sigma}B-AC$ ’ a pro-
cess executing a read operation relays an update
message containing a return value of this read op-
eration execution to other processes. A process
broadcasts such an additional update message as
soon as it decides a return value and waits for the
response time of a write operation before it re-
turns a response. If a read operation execution is
completed, it means that the process does not get
faulty during the operation execution and every
correct process can receive the additional update
message. This guarantees linearizability.

Theorem 3 The implementation
$reg_{\dot{i}St}er_{UBAc}-$ is a wait-free linearizable imple-
mentation of a $read/write$ register which achieves
res-time (write) $=d$ and res-time (read) $=d$

on an unreliable broadcast and asynchronous clock
model. \blacksquare

$3.2.2$ u-synchronous clocks

Here we show an implementation $registerUB-uC$
on a u-synchronous clock and unreliable broad-
cast model (Fig.6). This implementation is
based on $reg_{\dot{i}S}terRB-uc$ and a process execut-
ing read operation relays an update messages like
$register_{\sigma}B-AC$. To minimize response times, we
set $\alpha=0$ for $register_{R}B-uC$ and modify it in a
similar fashion to $register_{UBAc}-\cdot$ Consequently,
we can show the following theorem.

84

data type
timestamp$=$ ($\mathrm{i}\mathrm{n}\mathrm{t}\mathrm{e}\mathrm{g}\mathrm{e}\mathrm{r}$, process identifier)
variables
count, type integer, init 0

res-val, type value of the register
$last_{-^{u}}p-t_{S}$, type timestamp, init $(0,0)$

local-copy, type value of the register
transition functions of process p_{i}

Invoke $(pi, write(v))$:
count: $=count+1$;
for $j=1$ to n

$/*\mathrm{b}\mathrm{r}\mathrm{o}\mathrm{a}\mathrm{d}\mathrm{c}\mathrm{a}S\mathrm{t}$ an original update $\mathrm{m}\mathrm{e}\mathrm{s}\mathrm{s}\mathrm{a}\mathrm{g}\mathrm{e}*/$

do Send$(pi,p_{j}, \mathrm{u}\mathrm{p}\mathrm{d}\mathrm{a}\mathrm{t}\mathrm{e}(v, (coun.t,i).)).$;
TimerSet($pi,$ d , WRITE);

Invoke(p_{i} , read):
res-val: $=local_{-}copy$;
for $j=1$ to n

$/*\mathrm{b}\mathrm{r}\mathrm{o}a\mathrm{d}_{\mathrm{C}}\mathrm{a}\mathrm{s}\mathrm{t}$ an additional update $\mathrm{m}\mathrm{e}\mathrm{s}\mathrm{s}\mathrm{a}\mathrm{g}\mathrm{e}*/$

do Send$(p_{i},pj, \mathrm{u}\mathrm{p}\mathrm{d}\mathrm{a}\mathrm{t}\mathrm{e}(reS-^{v}al, last-up-ts))$;
$\tau imers_{e}t$ ($pi,$ d , READ);

$ReCeive$ ($p_{i,}$ ute(v , (recvd-ct, recvd-uid))):
count: $= \max$(count, recvd-ct);
if $last_{-}up_{-}tS<$ (recvd-ct, recvd-uid)

then local-copy:$=v$;
$last_{-}up-tS:=$ ($recvd_{-}ct$,recvd-uid);

Alarm(p_{i} , WRITE):
Return$(p_{i},\mathrm{a}\mathrm{c}\mathrm{k})$;

Alarm(p_{i} , READ):
Return(p_{i} , res-val);

Stop$(\mathrm{P}i)$:
No events can happen after this event.

Figure 5: $regi_{S}ter\sigma B-Ac$ (for $p_{i}.$)

Theorem 4 The implementation $registerUB-\cdot uc$

is a wait-free $linear\dot{i}Zable$ implementation of
a $read/wr\dot{i}te$ register which achieves res-time
(write) $=d$ and res-time (read) $=u$ on an un-
reliable and u -synchronous clock model. \blacksquare

4 General objects using reli-
able broadcast

4.1 Asynchronous clocks

We previously presented a linearizable implemen-
tation of a general object on an asynchronous
clock model, where we achieved $reS_{-ti}me(op_{a})=$

u and $res_{-}t_{\dot{i}}me(op_{v})=2d[4]$. However, the imple-
mentation is not wait-free in a sense that it does
not tolerate a crash fault of a process. In this

data type
timestamp$=$ (time, process identifier);
variables
$local_{\mathrm{c}}l$, type time, init 0 ;
res-val, type value of the register;
$last_{-}up-ts$, type timestamp, init $(0,0)$;
local-copy, type value of the register,

init initial value of the register;
transition functions of process p_{i}

Invoke $(p_{i},wr\dot{i}te(v))$:
ReadClock(pi , local-cl);
for $j=1$ to n

$/^{*}$ broadc$a\mathrm{s}\mathrm{t}$ an original update $\mathrm{m}\mathrm{e}\mathrm{s}\mathrm{s}\mathrm{a}\mathrm{g}\mathrm{e}*/..$

.do Send($pi,p_{j},$ update(v , (local-d, i))) \cdot,
$T\dot{i}merset$ ($p_{i},$ u , WRITE);

Invoke(p_{i} , read) :
$\tau imers_{e}t$ ($pi,$ $d-u$, SET-VAL);
TimerSet($p_{i},$

d , READ);
Receive($p_{i,pj}$, update (v , (recvd-cl, recvd-uid))) :

if $last_{-}up_{-}ts<$ (recvd-d, recvd-uid)
then local-copy: $=v$;

$last_{-}up-tS:=$ ($recvd_{-}Cl$, recvd-uid);
Alarm(pi , WRITE):

$last_{-}up-tS:=write_{-}t_{S}$;
Response $(p_{i}, a\mathrm{c}\mathrm{k})$;

Alarm(p_{i} , SET-VAL):
res-val $:=local$-copy;
for $j=1$ to n

$/*_{\mathrm{b}\mathrm{r}\mathrm{o}\mathrm{a}}\mathrm{d}_{\mathrm{C}}\mathrm{a}\mathrm{s}\mathrm{t}$ an additional update $\mathrm{m}\mathrm{e}\mathrm{s}\mathrm{s}\mathrm{a}\mathrm{g}\mathrm{e}*/$

do Send$(p_{i},pj, \mathrm{u}\mathrm{p}\mathrm{d}\mathrm{a}\mathrm{t}\mathrm{e}(reS-val, last_{-^{u}}p-tS))$;
Alarm(p_{i} , READ):

Response $(pi,res_{-}val)$;
stop(pi) :

No events can happen after this event.

Figure 6: $reg_{\dot{i}St}er_{U}B-uC$ (for $p_{i}.$)

subsection, we slightly modify that implementa-
tion so as to guarantee wait-ffeedom in the case
where a reliable broadcast is available. First, we
briefly explain the implementation presented in
[4], and then mention the modification to pro-
duce a wait-freedom linearizable implementation,
which we call $generalRB-AC$.

In the implementation in [4], any $\mathrm{v}\mathrm{a}\mathrm{l}$-type op-
eration needs $2d$ since its invocation to obt$a\mathrm{i}\mathrm{n}$ its
response value, and any operation needs u since
its invocation to return a response that guaran-
tees linearizability. Each process applies invoked
operations to the implemented object sequentially
in some common order to all processes. The total
order is decided as follows. When an operation

85

–: upoare message $-\sim$. $\mathrm{r}\mathrm{e}\mathrm{p}\mathrm{t}$)$\mathrm{r}\iota$ Incssagc

Figure 7: Case where a process crashes before
broadcasting a report message.

op is invoked at a process $pi,$ p_{i} broadcasts an up-
date message to inform of the invocation. After
$d-u$ since this invocation, p_{i} regards the oper-
ation whose update messages p_{i} received before
this time as operations prior to op in the total
order, and broadcasts this order by a report mes-
sage. We proved that a collection of such prece-
dence relation forms surely a partial order and
every process can obtain a ,$\mathrm{c}\mathrm{o}\mathrm{m}\mathrm{m}\mathrm{o}\mathrm{n}$ total order
by extending it locally in a common rule. We
also showed that a subset of the total order up to
an operation op can be decided after $2d$ since its
invocation. Therefore, the process can obtain its
response value at that time. In the case of an ack-
type operation, since its response value is unique,
the process does not need $2d$ to obtain a response
value but needs u for linearizability.

Now we modify this implementation for wait-
freedom. Only the problem is the case where some
process crashes soon after some $\mathrm{a}\mathrm{c}\mathrm{k}$-type opera-
tion op_{1} completed in the process. If the pro-
cess crashes before broadcasting the correspond-
ing report message, any other process is not in-
formed of the precedence relation about this op-
eration. If some operation execution op_{2} precedes
another operation execution op_{1} as in Fig.7, ev-
ery process including p_{i} receives an update mes-
sage of op_{2} prior to an update message of op_{1} . In
$general_{RB}-Ac$ ’ processes broadcast such receipt
orders in their report messages. When a process
applies operations to its local copy, if some report
message brings that an update message of op_{2} is
received before one of op_{1} and no report message
brings the reverse, the process applies op_{2} prior to
op_{1} . This modification can achieve wait-freedom
without additional response time.

Theorem 5 The implementation $general_{RBAC}-$

is a wait-free linea$r\dot{\eta}zable$ implementation of any
$dete7min\dot{i}Sti_{C}$ object which achieves
$re\mathit{8}_{-ti(}meopa)=u$ and $reS_{-ti(}meopv$) $=2d$ on a
reliable broadcast and asynchronous clock model.

\blacksquare

4.2 u-synchronous clocks

Next we propose an imple-
mentation $general_{RBuC}-$ of a general object on
u-synchronous clock model.

In this implementation, the common order to
all processes is decided by a timestamp assigned
to each operation. When an operation op is in-
voked at $p_{i},$ p_{i} assigns the value of its local clock
as a timestamp to op , and broadcasts an update
message with the timestamp. When a process re-
ceives an update message, it stores the informa-
tion in its update-bu$ffer$. Since the difference
between any pair of local clock values is at most
u and message delays are at most d , the process
does not receive an update message with smaner
timestamp than an operation op after $d+u$ since
the invocation of the operation op . Therefore, if
op is $\mathrm{v}\mathrm{a}\mathrm{l}$-type, p_{i} can decide the tot$a1$ order of op-
erations with smaller timestamp at that time and
obt$a\mathrm{i}\mathrm{n}$ its response value. And then, it returns
the response. For an $\mathrm{a}\mathrm{c}\mathrm{k}$-type operation, the pro-
cess need not obtain its returned value but need
u for linearizability. If a process crashes while
an operation, the operation is left pending. In
such a case, all correct processes receive the up-
date message, or no processes receive it because
of a reliable broadcast. Therefore, the implemen-
tation $general_{RB}-uc$ works correctly in the case
where a process crashes.

Theorem 6 The implementation $general_{RBuC}-$

is a wait-free linearizable implementation of any
deterministic object which achieves
$reS_{-time(}O\mathrm{P}a)=u$ and $res-time(op_{v})=d+u$
on a reliable broadcast and u -synchronous clocks
model. \blacksquare

5 Conclusions

In this paper, we have presented the first wait-free
linearizable implementations on a synchronous
message passing system. We have considered four
types of models on exchange of message and lo-
cal clocks, and have presented four implemen-

86

tations of $\mathrm{r}\mathrm{e}\mathrm{a}\mathrm{d}/\mathrm{w}\mathrm{r}\mathrm{i}\mathrm{t}\mathrm{e}$ registers, which are reli-
$\mathrm{a}\mathrm{b}\mathrm{l}\mathrm{e}/\mathrm{u}\mathrm{n}\mathrm{r}\mathrm{e}\mathrm{l}\mathrm{i}\mathrm{a}\mathrm{b}\mathrm{l}\mathrm{e}$ broadcast and asynchronous/u-
synchronous clock models, and two implemen-
tations of general objects using reliable broad-
casts on $\mathrm{a}\mathrm{s}\mathrm{y}\mathrm{n}\mathrm{c}\mathrm{h}\mathrm{r}\mathrm{o}\mathrm{n}\mathrm{Q}\mathrm{u}\mathrm{S}/u$-synchronous clock mod-
els (See Tab2).

In general, an implementation on an asyn-
chronous clock model needs longer worst-case re-
sponse times than an implementation on a u-
synchronous clock model if the other conditions
are the same. In an asynchronous clock model, if
processes in the system execute a synchronization
procedure (e.g. procedure $\mathrm{S}\mathrm{y}n\mathrm{C}\mathrm{h}[7]$ for a reliable
broadcast model) to make the difference between
any pair of local clock values at most u , we can ap-
ply an implementation for a u-synchronous clock
model. Taking costs of the synchronization pro-
cedure into consideration, implementations for a
u-asynchronous clock model is more effective in
the case where operations are invoked many times
in an asynchronous clock model.

Some open problems are left. Some lower
bound results as to worst-case response times in
linearizable implementations were $\mathrm{p}\mathrm{r}\mathrm{e}\mathrm{S}\mathrm{e}\mathrm{n}\mathrm{t}\mathrm{e}\mathrm{d}[2,3$,
4]. There are gaps between their results and our
results. The other open problem is about lin-
earizable implementations of general objects on
an unreliable broadcast model. We can easily
construct a wait-free linearizable implementation
which provides operations with response time pro-
portional to the number of processes. However,
we do not know whether there exists a wait-free
linearizable implementation which provides oper-
ations with shorter response time.

temational Workshop on Distributed Algo-
rithms $(LNCS\mathit{6}\mathit{4}7)$, pages 346-361, 1992.

[4] M. Inoue, T. Masuzawa, and N. Tokura. Ef-
ficient linearizable implementation of shared
fifo queues and general objects on a dis-
tributed system. IEICE Transactions on Fun-
damentals on Electronics, Communications
and Computer Sciences, E81-A(5) $:768-775$,
May 1998.

[5] M. Herlihy. Wait-free synchronization. A CM
Transactions on Programming Languages and
Systems, $13(1):124-149$, 1991.

[6] J. James and A. K. Singh. Fault tolerance
bounds for memory consistency. Proceedings
of the 11th Intemational Workshop on $D_{\dot{i}}s-$

tributed Algorithms (LNCS1320), pages 200-
214, 1997.

[7] M. Mavronicolas and D. Roth. Sequential con-
sistency and $\mathrm{l}\mathrm{i}\mathrm{n}\mathrm{e}\mathrm{a}\mathrm{r}\mathrm{i}\mathrm{a}\mathrm{b}\mathrm{i}\mathrm{l}\mathrm{i}\mathrm{t}\mathrm{y}:\mathrm{r}\mathrm{e}\mathrm{a}\mathrm{d}/\mathrm{w}\mathrm{r}\mathrm{i}\mathrm{t}\mathrm{e}$ objects.
Proceedings of the 29th Annual Allerton $C_{\mathit{0}n}-$

ference on Communication, Control and Com-
puting, Oct. 1991.

References

[1] M. Herlihy and J. Wing. Linearizability:
A correctness condition for concurrent ob-
jects. ACM Transaction on Programming
Languages and Systems, $12(3):463-492$, 1990.

[2] H. Attiya and J. L. Welch. Sequential con-
sistency versus linearizability. ACM Trans-
actions on Computer Systems, $12(2):91-122$,
May 1994.

[3] M. Mavronicolas and D. Roth. Effi-
cient, strongly consistent implementations of
shared memory. Proceedings of the 6th In-

87

