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Abstract: This paper presents a general framework for constructing a variety of multi-

dimensional interpolants based on Voronoi diagrams. This fr\v{c}unework includes previously

known methods such as Sibson’s interpolant and Minkowski’s interpolant; moreover it con-
tains infinitely many new interpolants. Computational experiments suggest that the smooth-

ness improves by the proposed generalization. Hence. this framework gives a new and promis-

ing direction of researcll on the interpolation based on the Voronoi diagrams.
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1 Introduction
Interpolation is an extremely important tech-

nique to solve various problems in engineering
such as differential equations and geometric mod-
cling. The finite element method is one of the
most practical approaches to the interpolation
problem, and is well-established today. However,

there is an alternative approach to the interpo-
lation problem, which utilizes Voronoi diagrams.
In this paper, we call this approach the Voronoi
diagram approach. See, for example, [1, 5, 6] for
the theory of the Voronoi diagrams.

The interpolation problem is formulated in the
following way. Let $\varphi$ : $\mathrm{R}^{d}arrow \mathrm{R}$ be a function,

whose value is known only on the points $P_{1},$
$\ldots$ ,

$P_{n}$ . These points are called the data sites. The
(exact) interpolation problem is to find a good

function $\tilde{\varphi}$ such that

$\tilde{\varphi}(P_{i})=\varphi(P_{i})$

for $\dot{i}=1,$
$\ldots,$

$n$ . The meaning of the word “good”
depends on the context.

Thiessen first applied Voronoi diagrams to the

interpolation problem [11]. Let $P$ be the target
point the value on which is to be estimated. In his
method, the Voronoi diaglam for the data sites is
constructed. Assume that the point $P$ bclongs

to the Voronoi region of $P_{i}$ . Then, the value at
$P$ is estimated at the value at the point $P_{i}$ . By

the definition, Thiessen’s interpolant is a picce-
wise constant function.

Recently, Sibson found anotller intcrpolation
method $[8, 9]$ . In his method, the Voronoi dia-
gram for $\{P_{1,}\ldots.’.P_{n}, P\}$ is constructed. If the

Voronoi regions of $P$ and $P_{i}$ arc adjacent via a
$(d-1)$-dimensional facet, we call $P_{i}$ a neighbor of
$P$ . The critical fact he found is that the position
vector of $P$ can be expressed as a convex com-
bination of the position vectors of $P’ \mathrm{s}$ neighbors
with the coefficients computed from the second-
order Voronoi diagram [8]. Hence we can inter-
pret the coefficients of this convex combination
as the coordillates of $P$ . Sibson constructcd $\mathrm{C}^{0}$

and $\mathrm{C}^{1}$ interpolants based on this coordinate sys-
tem. Sibson’s interpolation method was further
researched by Farin [2] and Piper [7]. Farin pro-
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posed another $\mathrm{C}^{1}$ interpolant $\mathrm{b}\mathrm{a}s$ed on the Bern-
stein polynomial [2].

On the other hands, Hiyoshi and Sugihara
found another coordinate system, and proposed
a $\mathrm{C}^{0}$ interpolant [3, 4, 10]. We call this sys-
tem Minkowski’s coordinate system, because it
is based on the Minkowski’s theorem on convex
polytopes.

Compared with the finite element interpola-
tion, the Voronoi diagram approach has a lot
of virtues [9]. For example, interpolants based
on the Voronoi diagram approach behaves con-
tinuously when the data sites move. However,
the Voronoi diagram approach is less flexible in
some points: for example, it is difficult to con-
struct even $\mathrm{C}^{2}$ interpolants by tlle Voronoi dia-
gram approach, as explained in Section 2. The
main reason, we guess, is that the number of
the coordinate systems that thc Voronoi diagram
approach stands on is too few. In this paper,
we generalize the coordinate systems in order to
make the Voronoi diagram approach more flexi-
ble, concentrating on the case when $d=2$ . $\mathrm{I}\mathrm{n}\mathrm{d}$.eed
we construct a large class of interpolants based
on the Voronoi diagram approach, which con-
tains both Sibson’ and Minkowski’s interpolants,
and which contains infinitely many other inter-
polants. Computational experiments suggest that
the smoothness improves by the proposed gener-
alization. Hence, this generalization gives a new
and promising direction of research on the inter-
polation based on the Voronoi diagrams.

Section 2 reviews Sibson’s coordinate system
and Minkowski’s coordinate system. Section 3
gives another proof to Sibson’s result, which pro-
vides the basic idea of our generalization. Sec-
tion 4 proposes the generalization. Section 5 gives
some computational experiments. Section 6 con-
cludes our research.

2 Previous Works
In this section, we review the previous works

briefly.

2.1 Notations

First, let us introduce some notations.
Assume that a finite number of points $P_{1},$

$\ldots$ ,
$P_{n}\in \mathrm{R}^{2}$ are given. $P_{i^{\mathrm{S}}}$

’ are called the generators.
Let $V(P_{i})$ be the set of all the points $Q\in \mathrm{R}^{2}$

such that $\mathrm{d}(Q, P_{i})<\mathrm{d}(Q_{B}.P_{j})$ for $j\neq\dot{i}$ , where
$d(P, Q)$ denotes the Euclidean distance between
two points $P$ and $Q$ . We call $V(P_{i})$ the Voronoi
region of the generator $P_{i}$ . By the definition,
the boundary of eacll $V(P_{i})$ is a convex polygon.
The Euclidean plane $\mathrm{R}^{2}$ is almost partitioned into
$V(P_{1})’\ldots$ .

$,$

$V(P_{lt})$ , that $\mathrm{i}\mathrm{S},\cdot$ the measure of the set
of all the point that does not belong to any $V(P_{i})$

is zero. The collection of all $V(P_{i})’ \mathrm{s}$ is denoted
by $\mathcal{V}(P_{1}, \ldots’.P_{n})$ and is called the Voronoi $d\dot{i}a-$

gram for the generator set $\{P_{1,}\ldots. , P_{n}\}$ . When
two Voronoi regions $V(P_{i})$ and $V(P_{j})$ are adjacent
via some open line segment, this line segment is
called the Voronoi ed.$qe$ between $P_{i}$ and $P_{j}$ , and
is denoted by $E(P_{i}, P_{j})$ . If $E\langle P_{i},$ $P_{j}$ ) exists, $P_{j}$ is
called a neighbor of $P_{i}$ (and vice versa).

For $i\neq j$ , let $V(P_{i}, P_{j})$ be the set of all the
points $Q\in \mathrm{R}^{2}$ such that

$\mathrm{d}(Q\text{ノ}.P_{i})<\mathrm{d}(Q, P_{j})<\mathrm{d}(Q, P_{k})$

for $k\neq i,j$ . $V(P_{i}, P_{j})$ is called the second-order
Voronoi region of the ordered pair $(P_{i}, P_{j})$ . By
the definition, each $V(P_{i})$ is almost partitioned
into $V(P_{i}, P_{j}),$ $i\neq j$ . The collection of all
$V(P_{i}, P_{j})\prime \mathrm{s}$ is called the second-order Voronoi di-
agram for the generator set $\{P_{1}, \ldots, P_{n}\}$ .

See, for example, [1, 5, 6] for the detail of the
Voronoi diagram theory.

2.2 Sibson coordinates

Now let us describe Sibson’s interpolation
method $[8,9]$ briefly.

Let $P_{1},$
$\ldots$ , $P_{n}\in \mathrm{R}^{2}$ be the given data sites,

and let $y_{1},$ $\ldots$ , $y_{n}\in \mathrm{R}$ be the data value associ-
ated with $P_{1},$

$\ldots,$
$P_{n}$ , respectively. Assume that.

we wallt to evaluate the value on the target point
$P$ . Here, we require that $P$ is an inner point of
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It follows from the definition that

Figure 1. The $\mathrm{V}\mathrm{o}\mathrm{l}\cdot \mathrm{o}\mathrm{n}\mathrm{o}\mathrm{i}$ region $V(P)$ is parti-

tioned into $\mathrm{t}\mathrm{l}$) $\mathrm{e}$ subregions $V(P, P_{i})$ .

the convex hull of $P_{1\cdot*},$ . , $P_{n}$ , but does not equal

to any of $P_{1_{B}}.\ldots,$ $P_{n}$ .
According to Sibson [8], the Voronoi diagram

$\mathcal{V}(P_{1}\ldots..P_{l},, P)$ is constructed. Each $V(P_{i})$ is

not necessarily bounded, but $V(P)$ is always

bounded because $P$ is an ipner point of the con-
vex hull of $P_{1_{\mathrm{P}}}.\ldots$ , $P_{1},$ . Now partition $V(P\rangle$ into
$V(P, P_{i})\mathrm{s}$ , and let $s_{i}^{1}(P)$ denote the measure of
$V(P, P_{i})$ . Note that $s_{i}^{1}(P)>0$ if and only if $P_{i}$ is

a neighbor of $P$ .
Figure 1 shows this situation. In this figure, the

Voronoi region $V(P)$ is partitioned into the subre-
gions $V(P, P_{i})$ . The boundaries of this paltition

are drawn by the dashed lines.
Let $x_{1},$ $\ldots$ , $x_{r\iota}$ and $x$ denote the position vec-

tors of $P_{1},$
$\ldots$ , $P_{tl}$ and $P$ , respectively. Sibson [8]

proved the following identity:

$\sum_{i=1}^{n}s_{i}(1P)x=\sum_{i=1}^{n}s^{1}i(P)\%$ . (1)

We will give another proof of this identity in Sec-
tion $3\text{ノ}$. which gives the basic idea of the general-

ization we propose.
Now define that

$\hat{s}_{i}^{1}(P\rangle=s^{1}i(P)/\sum^{n}s_{j}(1P)j=1^{\cdot}$

$\sum_{i=1}^{n}\hat{S}i(1P)=1$ ,

$0\leq\hat{s}_{i}^{1}(P)\leq 1$ .

Thus $x$ is expressed as the following convex com-
bination:

$x= \sum_{i=1}\hat{S}_{i(}^{1}P)x_{\iota}n$ .

We call $\hat{s}_{i}^{1}(P)\mathrm{i}\mathrm{s}$ thc Sibson coordinates of the point
$P^{1}$. Note that $\hat{s}_{j}(P)arrow\delta_{ij}$ as $P$ approaches $P_{i}$ .

Therefore we dcfine

$\hat{s}_{7}^{1}(P)=\delta_{i;}$

wllen $P$ coincides with $P_{i}$ .
From the Sibson coordinates, Sibson con-

structed the following $\mathrm{C}^{0}$ interpolant:

$\tilde{\varphi}^{1}(P)=\sum_{i=1}^{n}yi\hat{S}^{1}i(P)$ .

Figure 2 shows an example of a surface obtained
from the above interpolant.

Although $\mathrm{C}^{1}$ interpolants has been also pro-
posed by Sibson [9] and Farin [2], it is difficult
to construct interpolants that have higher-order
continuity. This difficulty comes from a global

property of $\hat{s}_{i}^{1}$ . Piper showed that $\hat{s}_{i}^{1}\mathrm{s}$ are dif-

ferentiable everywhere except the points $P_{i\mathrm{p}}$. but
$\mathrm{C}^{2}$ -continuity fails on the Delaunay circles of the

data sites [7]. Devising a technique to avoid this

non-smoothness is difficult.
Figure 3 shows where $\mathrm{C}^{2}$ -continuity fails. In

this figure, the Voronoi diagram for the 11 data

sites is drawn by dashed lines. In particular, the

generator $P_{1}$ has five neighbors $P_{2},$
$\ldots$ , $P_{6}$ . In

other words, the boundary of the Voronoi region

of $P_{1}$ is a pentagon. Hence, there are five Delau-

nay circles that are concerned with $P_{1}$ , on which

the $\mathrm{C}^{2}$ -continuity of $\hat{s}_{1}^{1}$ .
1we also call $s_{i}^{1}(P)’ \mathrm{s}$ the Sibson coordinates when there

is llo collfusion. Is fact, $(s_{1}^{1}, \ldots , s_{n}^{1})$ and $(\hat{s}_{1}^{1}, \ldots,\hat{s}_{n}^{1})$ de-
note the same point in the $(n-1)$-dimensional real projec-
tive space.
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2.3 Minkowski coordinates

Figure 2. An example of a surface obtained from
$\mathrm{S}\mathrm{i}\mathrm{b}\mathrm{S}\mathrm{o}\mathrm{n}\mathrm{s}$ interpolant.

Recently, Hiyoshi and Sugihara found another
coordinate system [3, 4, 10]. In their method,
the Voronoi diagram $\mathcal{V}(P_{1}, \ldots’.P_{n,}.P)$ is also con-
structed. For $\dot{i}=1,$ $\ldots \mathrm{l}n$ , define that

$s_{i}^{0}(P)=l_{i}(P)/di(P)$ ,

where $l_{i}(P)$ is the $1\mathrm{C}\mathrm{n}\mathrm{g}\mathrm{t}1_{1}$ of the Voronoi edge
$E(P, P_{i})$ if any, and $d_{i}(P)$ is the Euclidean dis-
tance between $P$ and $P_{i}$ . Note that $s_{i}^{0}(P)>0$ if
and only if $P_{i}$ is a neighbor of $P$ . Then, the fol-
lowing identity follows, as proved in Section 3.1.

$\sum_{i=1}^{n}s_{i}(P0)X=\sum_{i=1}^{n}S_{i}(0P)\%$ . (2)

Now let us define that

$\hat{s}_{i}^{0}(P)=S_{i}^{0}(P)/\sum_{j=1}^{n}s_{j}P0_{(})$ .

We call $s_{j}^{0}(P)_{\mathrm{S}}$
’ the Minkowski coordinates (The

name “Minkowski coordinates” is after the under-
lying theorem. See Section 3.1). Then, $x$ can be
expressed as another convex combination:

$x= \sum_{1i=}^{l}’\hat{s}i(0P)\mathfrak{B}$ .

It is clear that $\hat{s}_{j}^{0}(P)arrow\delta_{ij}$ as $P$ approaches $P_{i}$ .
Hiyoshi and Sugihara proposed the following in-

tcrpolant from the Minkowski coordinates [3, 4,
10]:

$\tilde{\varphi}^{0}(P)=\sum_{=i1}ny_{i}\hat{s}^{0}i(P)$ .

$\tilde{\varphi}^{0}$ does not have $\mathrm{C}^{1}$ -continuity on the Delaunay
circles of $P_{1},$

$\ldots$ , $P_{n}[3]$ ( $cf$ Figure 3).
Figure 4 shows an.example of a surface obtained

from $\tilde{\varphi}^{0}$ .

Figure 3. Circles on which $\mathrm{C}^{2}$-continuity of the
Sibson coordinates fails.

3 Another P.roof of Sibson’s
Identity

In this section, we give another proof of Sibson’s
identity. Observing this proof closely leads to the
generalization proposed in $\mathrm{S}\mathrm{e}\mathrm{c}\mathrm{t}\mathrm{i}\mathrm{o}\dot{\mathrm{n}}4$ .
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this fact and Minkowski’s theorem, we get

Figure 4. An example of a surface obtained from
the Minkowski’s interpolant.

3.1 Proof of the identity for the
Minkowski coordinates

At first, let us give a proof of the identity (2),
which comes from Hiyoshi-Sugihara [4]. For this
purpose, the following lcmma is used as a funda-
mental tool, which is known as Minkowski’s the-
orem:

Lemma 1 For any rcgion $V\subseteq \mathrm{R}^{d}$ . the following
equation holds:

$\int_{Q\in\partial V}n\mathrm{d}S=0$
, (3)

where $\partial V$ denotes the boundary of $V,$ $n$ denotes
the unit outer normal vector to $\partial V$ at $Q$ , and $\mathrm{d}S$

denotes the infinitesimal surface element at Q. $\square$

Let $P_{p(1)},$ $\ldots$ , $P_{\iota(k)}$ be the neighbors of the tar-
get point $P$ . In general, the boundary of the
Voronoi region of some generator $Q$ is a (possi-
bly unbounded) polygon each edge of which is a
part of the perpendicular bisector of the line seg-
ment $\overline{QQ’}$ with another generator $Q’$ . Therefore,
the unit outer normal vector to the Voronoi edge
$E(P, P_{\iota}(i))$ is denoted by $(1/d_{L}))^{\frac{1}{PP_{\ell(i)}\prime}}(i$ . $\mathrm{E}^{\backslash }\mathrm{o}\mathrm{m}$

$\sum_{i=1}^{k}\frac{l_{\iota(i)}}{d_{\iota(i\rangle}}=0\frac{1}{PP_{\iota(i)}\prime}$ .

Note that $l_{i}=0$ if $P_{i}$ is not a neighbor of $P$ .

Hence we get

$\sum_{i=1}^{n}\frac{l_{i}}{d_{i}}x=\sum_{i=1}^{n}\frac{l_{i}}{d_{i}}x_{?}.$ .

which proves (2).

3.2 Proof of Sibson’s identity

Observing the proof we gave in Section 3.1
closely, we notice that the crucial fact is that for
cach $P^{}\mathrm{s}$ neighbor $P_{i}$ , the Voronoi edge $E(P, P_{i})$ is
perpendicular to the vector $\frac{}{PF_{i}^{J}}$ . Therefore, if we
find a polygon each of whose edges is perpendic-
ular to the vector $\frac{}{PP_{i}}$ with some neighbor $P_{i}$ , we
can obtain another coordinate $\mathrm{s}\mathrm{y}\mathrm{s}\mathrm{t}_{\mathrm{C}\mathrm{I}}\mathrm{n}$ from that
polygon.

At first, we describe a procedure for construct-
ing such polygons. For this purpose. the Voronoi
diagram $\mathcal{V}(P_{1}\ldots.’.P_{n}, P)$ is constructed. We de-
note $P\mathrm{s}$ neighbors by $P_{\iota(1)},$ $\ldots,$

$P_{\iota(k)}$ in the coun-
terclockwise order. Without loss of generality,
we assume that $P_{\iota(1)}$ is the nearest generator to
$P$ (choose arbitrary one if not unique). Parti-
tion $V(P)$ into the subregions $V(P.P_{\iota}(1\rangle)’\ldots$ ,
$V(P, P_{t(k)})$ . Let $S_{i}\in\overline{V(P,P_{\iota})(i)}$ be the point fur-
thest from the line containing $E(P.P)\iota(i).\mathit{1}$ and let
$t_{l_{i}}$ be the distance of $S_{i}$ from the line containing
$E(\dot{P}, P_{\iota(}i))$ .

Let us pay attention to $V(P, P_{t(1)})$ . Since $P_{\iota(1)}$

is the nearest generator to $P,$ $\overline{V(P,P_{\iota(1\rangle})}$ con-
tains the target point $P$ . We start construct-
ing the polygon by stroking its first edge inside
$V(P, P_{\iota})(1)$ . The following procedure outputs the
vertices of a desired polygon.

1. Let $L_{1}$ be the line perpendicular to $\frac{\iota}{PP_{\iota(1)}\prime}$

such that $L_{1}\cap V(P, P_{\iota}(1))$ is not empty.

2. Let $\{Q_{1}, Q_{2}\}=\partial V(P, P_{\iota(1\rangle})\cap L_{1}$ sucll that
$S_{1}$ is located on the left of $Q_{1Q_{2}}^{arrow}$ .
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3. Set $\dot{i}\vdash 2$ and $j\vdash 2$ .

4. Let $L_{i}$ be the line that is perpendicular to
$\frac{\backslash }{PP_{L(i\rangle}\prime}$ and that contains $Q_{i}$ .

5. If $L_{i}\cap V(P, P_{\iota(}i))$ is empty, go to 7.

6. Set $jarrow j+1$ . Let $Q_{j}$ be the other endpoint
of the line segment $L_{i}\cap V(P, P_{t(i)})$ .

7. Set $\dot{i}\succ\dot{i}+1$ .

8. If $\dot{i}\leq k’$. go to 4. Otherwise output $Q_{1},$
$\ldots$ ,

$Q_{?}-1$ and terminate.

We denote the obtained polygon by $C(t)$ , where
the parameter is determined in the following man-
ner. For $\dot{i}=1,$ $\ldots k_{t}\neq$. lct $u_{i}$ denote the distance of
the line segments $V(P, P_{\iota})(i)\cap C(t)$ , if any. from
the Voronoi edge $E(P, P_{p(}i))$ . Then, $t$ is set to
$(h_{1}-u_{1})/h_{1}$ . It follows from the definition tllat
$0<t<1$ . Note that $C(t)$ tends to the boundary
of $V(P)$ as $tarrow 1$ . In fact, the abovc procedure
can be seen as the $\mathrm{i}\mathrm{n}\mathrm{c}\mathrm{l}\cdot \mathrm{C}m\mathrm{C}\mathrm{n}\mathrm{t}\mathrm{a}\mathrm{l}$ algorithm for con-
structing Voronoi diagrams.

By setting $\partial V=C(i)$ in Lemma 1, we get the
following identity:

$\sum_{i=1}^{n}S_{i}(t;P0)x=\sum_{i=1}^{n}g_{i}(0P)t;xi_{J}$. (4)

where

$s_{i(;}^{0}tP)=l_{i}(t;P)/d_{i}(P)’$.
$l_{i}(t;P)=$ ( $\mathrm{t}\mathrm{h}\mathrm{e}$ length of $C(t)\cap V(P_{i})$ ).

We call $s_{i}(0t;P)_{\mathrm{S}}$
’ the weak Minkowski coordinates

with parameter $t$ . Note that $s_{i}^{0}(t;P)arrow s_{i}^{0}(P)$ as
$tarrow 1$ . Hence we define $s_{i}^{0}(1;P)=s_{i}^{0}(P)$ and
interpret $s_{i}^{0}(P)$ as the special c\v{c}lse of the weak
Minkowski coordinates.

For the purpose of proving Sibson’s identity, we
require another fact. Let $e_{i}(t)$ denote the line
segment $V(P_{i})\cap C(t)$ .

Lemma 2 Two polygons $C(t)$ and $C(t+\mathrm{d}t)$

given, assume that the edges $e_{i}(t)_{!}$. $e_{i}(t+\mathrm{d}t),$ $ej(t)$ ,
and $e_{j}(t+\mathrm{d}t)$ exist. Let $\mathrm{d}u_{i}$ be the w\’idth between

Figure 5. Consecutive edges of $C(t)$ and $C(t+$

$\mathrm{d}t)$ .

$e_{i}(t)$ and $c_{i}(t+\mathrm{d}t)$ . and let $\mathrm{d}u$ ; be the width be-
tween $e_{j}(t)$ and $e_{j}(t+\mathrm{d}t)$ . Then,

$d_{i}\mathrm{d}u_{i}=d_{j}\mathrm{d}u_{j}$ .

Proof. Let $b$ denote the perpendicular bisector
of the line scgment $\overline{P_{i}P_{j}}$ . Then, the Voronoi edge
$E(P_{i}.P_{j})$ is a part of $b$ . Let $\theta_{i}$ denote tlle angle
generated by the lines $b\mathrm{a}\mathrm{n}\mathrm{d}\overline{PP_{i}}$, and lct $\theta_{j}$ denote
the angle generated by the lines $b$ and $\overline{PP_{j}}$. See
Figure 5.

It is clear that

$\frac{\mathrm{d}u_{i}}{\cos\theta_{i}}=\frac{\mathrm{d}u_{j}}{\cos\theta_{j}}$ .

Since $b\perp\overline{P_{i}P_{j}}$ , the following equations hold:

$\angle PP_{i}P_{j}=90^{0}-\theta_{i}$ , $\angle PP_{j}P_{i}=90^{0}-\theta_{j}$ .

On the other hand, the sine theorem on the tri-
angle $PP_{i}P_{j}$ yields the equation

$\frac{d_{j}}{\sin\angle PPiPj}=\frac{d_{i}}{\sin\angle PP_{j}P_{i}}$ .

From the above equations, we get

$d_{i}\mathrm{d}u_{i}=d_{j}\mathrm{d}u_{j}$ .

$\square$
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Now we give another proof of Sibson’s identity.
Minkowski’s theorem guarantees (4) for any $0<$

$t<1$ . Operating $d_{1}h_{1} \int_{0}^{1}\mathrm{d}t$ on (4), we get

$d_{1}h_{1} \sum_{i=1}^{n}\int_{0}^{1}s_{i}^{0}(t;P)\mathrm{d}t_{X}$

$=d_{1}h_{1} \sum_{i=1}^{n}\int_{0}^{1}s_{i}^{0}(t;P)\mathrm{d}tx_{l}$ .

Note that Lemma 2 implies that

$\mathrm{d}t=-\frac{1}{h_{1}}\mathrm{d}u_{1}=-\frac{d_{\mathrm{i}}}{d_{1}h_{1}}\mathrm{d}u_{i}$

for $\dot{i}=1,$ $\ldots$ , $k$ . Hence we get

$\sum_{i=1}^{k^{\alpha}}\int_{0}h_{\dot{\tau}}l_{(i}(l)t(ui);P)\mathrm{d}u_{i}x$

$= \sum_{i=1}\int 0u_{i}khil_{p(i}()t();P)\mathrm{d}uiX(i)l$ .

Since

$s_{\iota(i)}^{1}(t;P \rangle=\int_{0}^{h_{i}}l_{\iota}(?.\rangle(t(u_{i});P)\mathrm{d}ui$ ,

the above eqllation completes tlle proof.

4 Generalization of Coordinate
Systems

Observing the proof given in Section 3.2 care-
fully, we notice that Sibson’s coordinate system
is not the ollly one that we can obtain; other co-
ordinate systems can be obtained by modifying
the expression slightly. The following are typical
lnodifications:

1. Any subinterval $(a, b)$ of $(0,1)$ is available as
the integration interval.

2. Furthermore, any interval $(a, b)$ with $0<a<$
$b$ is available when we extend $C(t)$ naturally
for $t>1$ . $C(t)$ with $t>1$ lies outside the
Voronoi regioll $V(P)$ .

3. In the integration step, the weight function
$w(t)$ can be multiplied.

4. Multiple integration. We can construct other
coordinate systems by integrating previously
obtained coordinates repeatedly.

4.1 Standard interpolants

Although a lot of coordinate systems can be
constructed by combining the above modifica-
tions, we guess the following subclass of $s_{i}^{k}(P)$

is especially important. Each $k=0,1,$ $\ldots$ , the
coordinate $s_{i}^{k}(P)$ is calculated in the following re-
cursion:

$s_{i}^{k}(P)=s_{i}^{k}(1;P)$ .

where

$s_{i}^{k}(t;P)=d_{1}h_{1} \int_{0}^{t}s_{i}h-1(s;P)\mathrm{d}S$ for $0<t<1$ .

We call $s_{i}^{k}(P)$ the order-k standard coordinates.
Minkowski’s coordinate system and $\mathrm{S}\mathrm{i}\mathrm{b}\mathrm{S}\mathrm{o}\mathrm{n}\mathrm{S}$ coor-
dinate system are the $\mathrm{f}\mathrm{i}1^{\cdot}\mathrm{s}\mathrm{t}$ two coordinate systems
in this subclass. The corresponding interpolant

$\tilde{\varphi}^{k}(P)=.\sum_{=?1}’ y_{i}s_{i}^{k}(P)l$ (5)

is called the order-k standard interpolant.

5 Computational Experiment

In this section, we present some computational
results about the order-k standard interpolant.

Assume that the data $y_{j}=\delta_{ij}$ for sonle $\dot{i}=1$ .
. . . , $n$ are given. Then we obtain the function
$\tilde{\varphi}^{k}(P)=\hat{s}_{i}^{k}(P)$ as the result. Therefore, we give
$\hat{s}_{i}^{k}$ the alias ‘ hat function”. The hat functions are
important because the standard interpolant is a
linear combination of the hat functions.

Figure 6 describes examples of hat functions of
$\tilde{\varphi}^{0},\tilde{\varphi}^{1}$ and $\tilde{\varphi}^{2}$ for the data sites drawn in $\mathrm{F}\mathrm{i}\mathrm{g}\mathrm{U}1^{\backslash }\mathrm{e}3$.
Although our eyes can hardly see the difference
among the figures. the following discussion clari-
fies their difference.

Figure 7 describes the cross sections of hat func-
tions cut by a vertical plane. If we see the cross
scction of $\tilde{\varphi}^{0}$ , we notice that some non-smooth
points, as explained in Section 2. The slopcs of
these cross sections are drawn in Figure 8. The
differentiation $\mathrm{W}\mathrm{c}\gamma \mathrm{S}$ done by the numerical manner.
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Figure 8 tells that $\tilde{\varphi}^{1}$ loses $\mathrm{C}^{2}$-continuity, whereas
$\tilde{\varphi}^{2}$ still has $\mathrm{C}^{2}$-continuity. Therefore these com-
putational experiments suggest that the obtained
surface becomes smoother as $k$ increases. We con-
jecture that $\tilde{\varphi}^{k}$ has $\mathrm{C}^{k}$-continuity except at the
data sites.

6 Concluding remarks
This paper gave another proof of Sibson’s iden-

tity from Minkowski’s theorem. Based on the un-
derlying idea, this paper generalized Sibson $\mathrm{s}$ co-
ordinate system and Minkowski’s coordinate sys-
tem. This generalization implies direction of the
research of the Voronoi diagram approach. In-
deed the generalization contains both Sibson’s
and Minkowski’s interpolant, and it also contains
infinitely many new interpolants.

A lot of works must be done, including the fol-
lowing:

(a) A hat function of $\tilde{\varphi}^{0}$ .

$\bullet$ To research the smootllness and other prop-
ertics of the standard interpolants.

$\bullet$ To select better interpolants, if any, than the
standard interpolants.

$\bullet$ To develop the applications of the Voronoi
diagram approach. Spatial surface construc-
tion is one of potential applications.

(b) A hat function of $\tilde{\varphi}^{1}$ .

(c) A hat function of $\tilde{\varphi}^{2}$

Figure 6. Hat functions of standard inter-
polants.
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(a) A hat function of $\tilde{\varphi}^{0}$ .

(b) A hat function of $\tilde{\varphi}^{1}$ .

(c) A hat function of $\tilde{\varphi}^{2}$

(c) Derivative function of the cross section.

Figure 8. Derivative functions of the cross sec-
Figure 7. Cross sections of hat functions.

tions.
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