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Abstract: Given a graph $G=(V, E)$ and a tree $T=(V, F)$ with $E\cap F=\emptyset$ such that
$G+T=$ (V, $F\cup E$) is 2-edge-connected, we consider the problem of finding a smallest
2-edge-connected spanning subgraph (V, $F\cup E’$ ) of $G+T$ containing $T$ . The problem,
which is known to be $\mathrm{N}\mathrm{P}$-hard, admits a 2-approximation algorithm. However, obtaining
a factor better than 2 for this problem has been one of the main open problems in the graph
augmentation problem. In this paper, we show that the problem is $(1.92+\epsilon)$-approximable
in $O(n^{1/2}m+n^{2})$ time for any constant $\epsilon>0$ , where $n=|V|$ and $m=|E\cup F|$ .

Key words: approximation algorithm, edge-connectivity, spanning tree, spanning subgraph,
graph augmentation

1 Introduction

Given a 2-edge-connected undirected multi-
graph $H=(V, E)$ with $n$ vertices and $m$ edges
and a spanning subgraph $H_{0}=(V, E_{0})$ , we con-
sider the problem of finding a smallest 2-edge-
connected spanning subgraph $H_{1}=(V, E_{1})$ that
contains $H_{0}$ . Note that the problem can be re-
garded as a graph augmentation problem of find-
ing a smallest subset $E’\subseteq E-E_{0}$ of edges to
augment $H_{0}$ to a 2-edge-connected graph $H_{1}=$

(V, $E_{1}=E_{0}\cup E’$). The problem is shown to be
$\mathrm{N}\mathrm{P}$-hard [3] even if $E_{0}=\emptyset$ . In the case of $E_{0}=\emptyset$ ,
the problem, which is called the minimum 2-edge-
connected spanning subgraph problem (2-ECSS),
has been extensively studied and several approx-
imation algorithms are known [1, 2, 7]. The cur-
rently best approximation ratio for 2-ECSS is $\frac{17}{12}$

due to Cheriyan et al. [1]. On the other hand, if
$H_{0}$ is connected, $H_{0}$ can be assumed to be a span-
ning tree of $H$ without loss of generality (since

every 2-edge-connected component in $H_{0}$ can be
contracted into a single vertex without losing the
property of the problem). Let us call the prob-
lem with a tree $H_{0}$ the minimum 2-edge-connected
subgraph problem containing a spanning tree (2-
ECST), which is shown to be $\mathrm{N}\mathrm{P}$-hard by Freder-
ickson and J. J\’aJ\’a [4] (even if the height of a span-
ning tree $H_{0}$ is 2 and every edge in $E-E_{0}$ connects
two leaf vertices of $H_{0}$ ). The 2-ECST has an ap-
plication to the problem of realizing rectangular
dual graphs in floor-planning [10]. In the spe-
cial case of $H$ being a complete graph, 2-ECST is
the problem of augmenting a tree $H_{0}$ to a 2-edge-
connected graph by adding a minimum number of
new edges, for which Eswaran and Tarjan [3] pre-
sented a linear time algorithm (which creates no
multiple edges). If $H$ is a general graph, we are
permitted to add to $H_{0}$ only edges from $E-E_{0}$ .
For general 2-ECST, there is a 2-approximation
algorithm $[4, 6]$ , which relays on the minimum
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branching algorithm. In this paper, we present a
$(1.92+\epsilon)$-approximation algorithm for 2-ECST,

where $\epsilon>0$ is an arbitrary constant. Our algo-

rithm is based on the maximum matching algo-

rithm and a certain decomposition of a tree. Its

running time is $O(n^{1/2}m+n^{2})$ , where $n=|V|$

and $m=|E|$ .

2 Definitions

A singleton set $\{x\}$ may be simply written as
$x$ , and $”\subset"$ implies proper inclusion while $”\subseteq"$

means $”\subset"$ or $”=$ ”. For an undirected graph
$H=(V, E)$ and an edge set $E’$ , we denote by

$H+E’$ (resp., $H-E’$) the graph obtained from
$H$ by adding (resp., removing) edges in $E’$ . The

vertex set (resp., edge set) of a graph $H$ may be

denoted by $V(H)$ (resp., $E(H)$ ). For a subset
$X\subseteq V$ , let $\overline{X}$ denote $V-X$ , and $H-X$ means the

graph obtained from $H$ by removing the vertices

in $X$ together with the incident edges. A maximal
2-edge-connected subgraph $H[X]$ of $H$ induced
by a subset $X\subseteq V$ is called a 2-edge-connected
component.

Let $G=(V, E)$ be an undirected graph, and
$T=(V, F)$ be a tree on the same vertex set $V$ ,

where $E\cap F=\emptyset$ is assumed, but there possibly

exits a pair of edges $e\in E$ and $f\in F$ such that
$e$ and $f$ have the same end vertices. For a subset
$E’\subseteq E,$ $V(E’)$ denotes the set of end vertices of

edges in $E’$ . For a subset $X\subset V,$ $E_{G}(X)$ denotes

the set of edges in $E$ connecting a vertex in $X$

and a vertex in $V-X$ . In particular, $E_{G}(u)$ is the

set of edges in $E$ which are incident to a vertex
$u\in V$ . For two vertices $u,$ $v\in V$ , let $P_{T}(u,v)$

denote the path connecting $u$ and $v$ in $T$ . We

say that an edge $e=(u, v)\in E$ covers an edge

$f\in F$ if $P\tau(u, v)$ contains $f$ , and that an edge set
$E^{l}\subseteq E$ covers an edge set $F^{l}\subseteq F$ if each edge in
$F’$ is covered by an edge in $E’$ . Clearly, $T+E’$ is

2-edge-connected for a subset $E’\subseteq E$ if and only

if $E’$ covers $F$ .
We choose an arbitrary vertex $r\in V$ as the

root of $T$ , which defines a parent-child relation

among vertices in $V$ on $T$ . The parent of a non-
root vertex $u$ is denoted by $p(u)$ . For a vertex
$u\in V$ , let $Ch(u)$ denote the set of children of $u$ ,

and $D(u)$ denote the set of all descendents of $u$

(including $u$ ). For two vertices $u,$ $v\in V$ , we say

that $u$ is lower than $v$ (or $v$ is higher than $u$) if

$u\in D(v)-v$ . We write $v\prec u$ (resp., $v\preceq u$) if
$u\in D(v)-v$ (resp., $u\in D(v)$ ). For two vertices $u$

and $v$ with $u\in D(v)$ or $v\in D(u),$ $\min(u, v)$ (resp.,

$\max(u, v))$ denotes the higher (resp., lower) vertex

in $\{u, v\}$ if $u\neq v$ (or any of $u$ and $v$ if $u=v$). For

an edge $e=(u, v)\in E$ , we denote by $lca(e)$ the

least (lowest) common ancestor of end vertices $u$

and $v$ in the rooted tree $T$ . For a vertex set $X\subseteq$

$V,$ $H\dot{i}gh(x)$ is defined to be the subset of $Ec(X)$

such that, for any $e\in E_{G}(X)-H\dot{i}gh(x)$ , there is

an $e’\in H_{i}gh(X)$ with $lca(e’)\prec lca(e)$ and for any

two $e_{1},$
$e_{2}\in H_{\dot{i}}gh(X)$ , neither $lca(e_{1})\prec lca(e_{2})$

nor $lCa(e_{2})\prec lca(e_{1})$ (thus $H_{i}gh(X)$ contains
those edges $e$ with the highest $lca(e))$ .

The subgraph $T[D(u)]$ of $T$ induced by $D(u)$ is

called the subtree at $u$ (which is connected). A

vertex $u$ is called a leaf vertex if $u$ has no child,

and is called a $ff_{i}nge$ vertex if all the children

of $u$ are leaf vertices. For a vertex $u\in V$ , let

LEAF$(u)$ (resp., FRINGE $(u)$ ) denote the set of

all leaf vertices (resp., fringe vertices) in the sub-

tree $T[D(u)]$ . An edge $f=(u, v)\in F$ with $u\prec v$

is called a leaf edge (resp., fringe edge) of $v$ if $v$ is

a leaf vertex (resp., a fringe vertex). The subtree
$T[D(u)]$ at a vertex $u$ is called a leaf tree if $u$ is a

fringe vertex.
We call a subtree $T[D(v)]l$ -closed in $G$ if $G$ has

no edge between LEAF$(v)$ and $\overline{D(v)}$ . Clearly,

$T=T[D(r)]$ is l-closed.

3 Decomposing the problem

In this section, we describe how a given instance
$(T=(V, F),$ $G=(V, E))$ of the 2-ECST prob-

lem can be decomposed into smaller problem in-

stances. For a subset $F’\subseteq F$ , we define

$\bullet$ $\beta(F’)$ as the size of the smallest set $E’\subseteq E$

that covers $F’$ (where $E’$ does not necessarily
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cover edges in $F-F’$), 4 Lower bounds
$\bullet$ $E\langle^{p^{r}}\rangle$ as the set of all edges in $E$ that cover

at least one edge in $F^{l}$ ,

$\bullet$

$\overline{F’}$ as the set of all edges in $F$ covered by
$E\langle F’\rangle$ (where trivially $F’\subseteq\overline{F’}$).

(For example, if we consider the set $F_{leaf}$ of all
leaf edges in an $l$-closed subtree $T[D(v)]$ , then any
edge $e=(u, u’)\in E\langle p_{laf}e\rangle$ satisfies $\{u, u^{l}\}\subseteq$

$D(v)$ , and hence $\overline{F_{leaf}}$ is contained in $T[D(v)].)$

Assume that there are subsets $F_{1},$ $F_{2},$
$\ldots,$

$F_{k}\subseteq$

$F$ such that

$E(F_{i})\cap E(F_{j}\rangle=\emptyset,$ $1\leq\dot{i}<j\leq k$

(hence $F_{i}\cap F_{j}=\emptyset$ ). Since there is no edge $e\in E$

that can cover two edges from distinct $F_{i}$ and $F_{j}$ ,
it holds

$\beta(F)\geq\beta(F_{1})+\beta(F_{2})+\cdots+\beta(F_{k})$.
Suppose that we are able to compute an edge set
$E_{i}^{apx}\subseteq E$ that covers $F_{i}$ and satisfies $|E_{i}^{apx}|\leq$

$c\beta(F_{i})$ for some constant $c$. Then $E^{apx}=E_{1}^{apx}\cup$

$.\cup E_{k}^{apx}$ becomes a $c$-approximation solution to
the original problem $(T, G)$ , provided that $E^{apx}$

covers the entire $F$ .
Let us consider a procedure for finding such $F_{i}$

and $E_{i}^{apx}$ . With initial setting $F’:=F,$ $E’:=E$
and $\dot{i}:=1$ , we repeat the following procedure until
all edges in $F$ are covered.

Choose a subset $F_{i}\subset F’$ , and compute
a subset $E_{i}^{a\mathrm{p}x}\subseteq E’$ that covers $\overline{F_{i}}$ and
satisfies $|E_{i}^{apx}|\leq c\beta(F_{i})$ . Let $F_{i}’’(\supseteq\overline{F_{i}})$

denote the set of all edges covered by
$E_{i}^{a\mathrm{p}x}$ .
Let $F^{l}:=F’-p_{i}\prime l;E’:=E’-E_{i}apx;i:=$

$\dot{i}+1$ . (To remove $F_{i}’’$ from $F’$ effectively,
we contract all vertices in $V(F_{i}^{;\prime})$ into a
single vertex if the graph $(V(F_{i}’;), F’’i)$ is
connected.) $\square$

Importantly, $\overline{F_{i}}\subseteq F_{i}^{ll}$ implies $E(F_{i}\rangle\cap E\langle F_{i1}+\rangle=\emptyset$

for any choice of $F_{i+1}$ in the $(\dot{i}+1)$-th iteration.
If $F’$ becomes empty after the $i^{*}$ -th iteration,
$Eapx_{\cup}\ldots E1i*p\cup xa$ covers $F$ and is a c-approximation
solution.

Let $F_{l\epsilon af}$ and $F_{fringe}$ be respectively the sets of
leaf edges and fringe edges in $T[D(v)]$ . In this sec-
tion, we introduce some lower bounds on $\beta(F_{lea}f)$

and $\beta(F_{lea}f\cup F_{f^{ri}})nge$ .

LEMMA 4.1 (lower bound) Let $G=(V, E)$ be
a graph and $T=(V, F)$ be a tree rooted at $r$ with
$E\cap F=\emptyset$ . For a non-leaf vertex $v$ in $T$, let $F_{leaf}$

be the set of all leaf edges in the subtree $T[D(v)]$ ,
and let $E_{leaf}$ be the set of all edges $e=(u, u’)\in E$

with $u,$ $u’\in LEAF(v)$ . Then

$\beta(F_{lf}ea)\geq|LEAp(v)|-|M^{*}|$ ,

where $M^{*}\subseteq E$ is a maximum matching in the
graph (LEAF$(v),$ $E\iota_{ea}f$ ).

Proof: Omitted. $\square$

Let us derive a stronger lower bound on
$\beta(\mathrm{f}\mathrm{i}eaf\cup F_{fe})ring$ . For this, we introduce prime
edges of type-l and type-2. For a leaf tree $T[D(u)]$

with exactly two leaf vertices $\{w, w^{l}\}=Ch(u)$ ,
we call an edge $g=(w, w’)\in E$ a prime edge of
type-l. Let $f=(v^{ll}, v)’\in F(v’’\prec v’)$ be an edge
in $T$ such that FRINGE$(v^{l})-v’$ contains ex-
actly one fringe vertex $v$ , and LEAF$(v)$’ contains
exactly three leaf vertices $u_{1},$ $u_{2}$ and $u_{3}$ (where
$\{u_{1}, u_{2}\}=Ch(v)$ and $u_{3}\in Ch(v’)$ are assumed
without loss of generality). We call edges $(u_{3}, u_{1})$

and $(u_{3}, u_{2})$ prime edges of type-2 if

for $\dot{i}=1,2,$ $\{(u_{1}, u_{2}), (u_{i}, u_{3})\}\subseteq E_{G}(u_{i})$

and $w\in D(v^{l})-u_{3}$ for all (1)
$(u_{i}, w)\in E_{G}(u_{i})$ .

See Fig. 1 (where $(u_{1}, u_{2})$ is a prime edge of type-l
by definition). In this case, the edge $f=(v^{\prime l},v’)\in$

$F$ is called a pseudo-fringe edge, and the vertices
in $D(v’)-u_{3}-D(v)$ are called pseudo-fringe ver-
tices. We denote by PFRINGE$(u)$ the set of
fringe and $\mathrm{P}^{\mathrm{S}\mathrm{e}\mathrm{u}\mathrm{d}-\mathrm{f}\mathrm{r}}\mathrm{O}\mathrm{i}\mathrm{n}\mathrm{g}\mathrm{e}$

. vertices in $T[D(u)]$ .

LEMMA 4.2 (lower bound) Let $G=(V, E)$ be
a graph and $T=(V, F)$ be a tree rooted at $r$ with
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in $T[D(v)]$ can be found by the next procedure
(P1).

$\mathrm{B}1$ : Definition of prime edges of type-2, and

pseudo-fringe edges and vertices.

(P1) Compute a maximum matching $M^{*}$ in the
graph ( $Ch(v),$ $E\iota eaf^{)}$ , and choose an arbi-
trary edge $e_{w}\in E_{G}(w)$ for each unmatched
vertex $w\in ch(v)-V(M^{*})$ (where $E_{G}(w)\neq$

$\emptyset$ by the 2-edge-connectivity of $T+E$). Re-
tain $E_{v}^{opt}=M^{*}\cup\{e_{w}|w\in ch(v)-V(M^{*})\}$

as part of the solution to cover the current
$T$ . Contract all vertices in $Ch(v)\cup\{v\}$ into a
single vertex $v’$ both in $T$ and $G$ , and delete
any resulting self-loops (where the vertex $v’$

becomes a new leaf vertex in the resulting
tree).

$E\cap F=\emptyset$ . For a vertex $v\in V-LE\mathrm{A}F(r)$ -

FRINGE$(r)$ , let $E_{leaf}$ be the set of all edges
$e=(u, u’)\in E$ with $u,$ $u’\in LEAF(v)$ , Eprime
be the set of prime edges of type-l and type-2 in
$E_{leaf},$ $F_{leaf}$ be the set of leaf edges in $T[D(v)]$ ,
and $F_{f^{ri}nge}$ be the set of fringe or pseudo-fringe
edges in $T[D(v)]$ . Then for $F_{v}=\mathrm{f}\mathrm{i}eaf\cup F_{frine}\mathit{9}$

’

$\beta(F_{v})\geq\frac{2}{3}|LEAF(v)|-\frac{1}{3}|M*|$ ,

where $M^{*}\subseteq E$ is a maximum matching in the
graph (LEAF$(v),$ $Eleaf-Eprime$ ).

Proof: Omitted. $\square$

We call a subtree $T[D(v)]lf$-closed if $G$ has
no edge between LEAF$(u)\cup PFRINcE(u)$ and
$\overline{D(u)}$ . Clearly, $T=T[D(r)]$ is $lf$-closed. A
subtree $T[D(v)]$ is called minimally $lf$ -closed if
$T[D(v)]$ is $lf$-closed and there is no proper sub-

tree $T[D(u)]$ of $T[D(v)]$ which is $lf$-closed.

5 Some reducible cases

In this section, we show four cases where we can
reduce the size of a given instance $(T, G)$ without
loss of generality.

Case-l. There is an $l$-closed leaf tree $T[D(v)]$ :

Now $\overline{F_{leaf}}=F_{leaf}$ . In this case, a smallest set
$E_{v}^{opt}\subseteq E$ that covers the set $F_{leaf}$ of all leaf edges

Obviously, $E_{v}^{opt}$ covers $F_{leaf}$ , and satisfies $|E_{v}^{opt}|=$

$|M^{*}|+|ch(v)|-2|M*|=|LEAF(v)|-|M^{*}|$ . By
Lemma 4.1, $|E_{v}^{opt}|=\beta(F_{le}af)$ is the minimum
among all subsets of $E$ that cover $F_{leaf}$ . $\square$

For a fringe vertex $v$ , let $u\in Ch(v)$ . Vertex $u$

is called isolated if $u$ is not adjacent via edges in
$E_{G}(u)$ to any sibling (i.e., other child) of $v$ . Note
that $u$ is isolated $\mathrm{i}\mathrm{f}|Ch(v)|=1$ . Vertex $u$ is called
$tr\dot{i}v\dot{i}al\mathrm{i}\mathrm{f}|Ec(u)|=1$; we must use the unique edge
in $E_{G}(u)$ to cover the leaf edge $f=(v, u)$ . For
a nontrivial $u$ , let $E_{G}(u)=\{e_{1}=(u, v_{1}),$ $e_{2}=$

$(u, v_{2}),$
$\ldots,$

$e_{p}=(u, v_{p})\}$ , where $p=|Ec(u)|\geq 2$ .
An edge $e_{i}=(u, v_{i})$ with $v_{i}=v$ is called re-
dundant if $E_{G}(u)$ contains some $e_{j}=(u, v_{j})$ with
$v_{j}\neq v$ . If all edges in $E_{G}(u)$ are multiple edges of
$(v, u)$ , then we choose an arbitrary edge (say $e_{1}$ )
in $E_{G}(u)$ and call the other edges $e_{i},$ $i=2,$ $\ldots,p$

redundant. (Even if $G$ is originally simple, our al-
gorithm will repeat contracting some vertices and
may produce multiple edges in the resulting $G.$ )

It is not difficult to see that there is an optimal
subset $E^{opt}\subseteq E$ that covers $F$ without using any
redundant edge.

Case-2. There is a leaf tree $T[D(v)]$ such that
$T[D(v)]$ is not $l$-closed and there is an isolated
leaf vertex $u\in Ch(v)$ (this includes the case of
$|Ch(v)|=1)$ : There is the parent $v’=p(v)$ of
$v$ (since $v$ is not the root by the $\mathrm{n}\mathrm{o}\mathrm{n}- l- \mathrm{c}1_{0}\mathrm{S}\mathrm{e}\mathrm{d}\mathrm{n}\mathrm{e}\mathrm{s}\mathrm{s}$
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of $T[D(v)])$ . Let $I_{v}$ denote the set of all isolated
vertices in $Ch(v)$ .

For each non-trivial leaf vertex $u\in I_{v}$ (if any),
we first remove all redundant edges in $E_{G}(u)$ from
$G$ . For each trivial leaf vertex $u’\in I_{v}$ such that
$E_{G}(u’)=\{(u’, v)\}$ (if any), we retain the edge
$(u’, v)$ as part of the solution to cover the original
$T$ and contract $u’$ and $v$ into a vertex both in $T$

and $G$ . Now if there remains an isolated vertex
$u”\in I_{v}$ , then any edge in $E$ covering the leaf
edge $f=(v, u”)$ also covers the fringe edge $f’=$

$(v’, v)$ of $v$ , because $E_{G}(u)’$
; contains no redundant

edge. Thus $\beta(F)=\beta(F-f’)$ . For this reason,
we contract the end vertices of the fringe edge
$f’=(v^{l}, v)$ into a single vertex both in $T$ and $G$ ,
and delete any resulting self-loops. The procedure
in Case-2 is described as follows.

(P2) For each non-trivial leaf vertex $u\in I_{v}$ , re-
move all redundant edges in $E_{G}(u)$ from $G$ .
For each trivial leaf vertex $u’\in I_{v}$ such that
$E_{G}(u’)=\{(u’, v)\}$ , retain the edge $(u’, v)\in$

$E_{G}(u’)$ and contract $u’$ and $v$ into $v$ . If there
remains an isolated vertex in $I_{v}$ , then con-
tract $v’=p(v)$ and $v$ into a vertex.

$\square$

Case-3. There is a leaf tree $T[D(v)]$ such that
$T[D(v)]$ is not $l$-closed, $|Ch(v)|=3$ holds, and
$Ch(v)$ contains no isolated vertex: We first re-
move all redundant edges incident to $u\in Ch(v)$ .
If there is a trivial vertex $u$ $\in$ $Ch(v)$ (i.e.,
$|E_{G}(u)|=1)$ , then choose such a vertex $u$ . Now
the edge $e\in E_{G}(u)$ connects $u$ and a sibling
$u’\in Ch(v)$ of $u$ ( $\grave{\mathrm{s}}\mathrm{i}\mathrm{n}\mathrm{c}\mathrm{e}u$ is not isolated). To cover
the leaf edge $f=(v, u)$ , the edge $e=(u, u’)$ must
be used. Therefore, we retain the edge $(u, u’)$ as
part of the solution, and contract $\{u, u’, v\}$ into
a single vertex $v$ both in $T$ and $G$ , deleting any
resulting self-loops.

On the other hand, if $|Ec(u)|\geq 2$ holds for all
$u\in Ch(v)$ , then we claim that the fringe edge
$f’=(v’, v)\in F$ , where $v’=p(v)$ , can be con-
tracted without loss of generality. Let $Ch(v)=$

$\{u_{1}, u_{2}, u3\}$ . Consider an arbitrary subset $E’\subseteq E$

that covers all edges in $T$ . Suppose that $E’$ con-
tains no edge between $Ch(v)$ and $\overline{D(v)}$. That is,
all leaf edges in $T[D(v)]$ are covered by (at least)
two edges $e_{1}=(u_{i}, u_{j}),$ $e_{2}=(u_{j}, u_{h})\in E^{l}$ . Since
$T[D(v)]$ is not $l$-closed, $E$ contains an edge $e_{0}$ be-
tween a vertex $u\in Ch(v)$ and $w\in\overline{D(v)}$. If there
is such an edge $e_{0}=(w, u_{i})$ (resp., $e_{0}=(w,$ $u_{h})$ ),
then we easily see that $\tilde{E}=(E^{l}-e_{1})\cup\{e_{0}\}$

(resp., $\tilde{E}=(E’-e2)\cup\{e_{0}\}$ ) covers all edges in
$T$ . If all such edges $e_{0}$ are incident to $u_{j}$ , then by
$|E_{G}(ui)|\geq 2,$ $E$ contains an edge $e_{3}=(u_{i}, u_{h})$ .
In this case, $\tilde{E}=(E’-\{e_{1}, e_{2}\})\cup\{e_{0}, e_{3}\}$ covers
all edges in $T$. In any case, we can assume that at
least one edge between $Ch(v)$ and $\overline{D(v)}$ is used in
$E^{l}$ . For this reason, we contract the end vertices
of the fringe edge $f’=(v’, v)$ into a single vertex
both in $T$ and $G$ , and delete any resulting self-
loops. The procedure in Case-3 is summarized as
follows.

(P3) Remove all redundant edges incident to $u\in$

$Ch(v)$ . If there is a trivial vertex $u\in Ch(v)$ ,
retain the edge $(u, u^{l})\in E_{G}(u)$ and contract
$\{u, u^{l}, v\}$ into a single vertex $v$ . Otherwise,
contract the fringe edge $f^{l}=(v’, v)$ .

Given a solution $E’$ to the instance $(T’, G’)$ re-
sulting from contracting $f’$ , we can modify $E’$ (if
necessary) so that $f’$ is also covered in the original
instance $(T, G)$ without increasing the size of $E’$ .

$\square$

Case-4. There is an edge $f’=(vv)\prime\prime,$’ in $T$

$(v^{\mu}\prec v’)$ such that FRINGE$(v’)-v^{;}$ contains
exactly one fringe vertex $v$ (where its leaf tree
$T[D(v)]$ is not $l$-closed and no child in $Ch(v)$ is
isolated), LEAF$(v’)$ contains exactly three leaf
vertices $u_{1},$ $u_{2}$ and $u_{3}$ (where $\{u_{1}, u_{2}\}\cdot=Ch(v)$

and $u_{3}\in Ch(v’)$ are assumed without loss of gen-
era..lity), and there is an edge $(u_{3}, u_{2})\in E$ , but $f’$

is not a pseudo-fringe edge. See Fig. 2.
Since $u_{1}$ is assumed to be a non-isolated ver-

tex, it has edge $(u_{1}, u_{2})\in E_{G}(u_{1})$ . We show
that if no edge in $E_{G}(u_{1})$ is incident to any ver-
tex $\overline{D(v)\prime}\cup\{u_{3}\}$ , then we can retain $(u_{1}, u_{2})$ as
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vertex both in $T$ and $G$ , deleting any resulting

self-loops.
The remaining case is that $(u_{1}, u_{3})\in E_{G}(u_{1})$ .

Since $f’$ is not a pseudo-fringe edge (i.e., (1) does

not hold), there is an edge $(u_{2}, w^{l})\in E_{G}(u_{2})$ with
$w’\in\overline{D(v’)}$ and in this case we can also contract $f’$

by applying the above argument exchanging the
roles of $u_{1}$ and $u_{2}$ . The procedure in Case-4 is
summarized as follows.

$\mathbb{E}2$ : Illustration for a subtree $T[D(v)’]$ in Case-4.

part of the solution to cover $T$ . Let $E^{*}$ be a

smallest edge set $E^{*}\subseteq E$ covering $F$ , and as-

sume that $E^{*}$ contains an edge $(u_{1}, w)\in E$ with
$w\in D(v’)-u_{3}$ , but do not contain $(u_{1}, u_{2})$ . To

cover the leaf edge $(v, u_{2})\in F,$ $E^{*}$ has some
edge $e^{l}=(u_{2}, w’)$ $\in E_{G}(u_{2})-(u_{1}, u_{2})$ . It

is clear that $(E^{*}-(u_{1}, w))\cup\{(u_{1}, u_{2})\}$ (resp.,
$(E^{*}-\{(u_{1}, w), e\}/)\cup\{(u_{1,2}u), (u_{2}, u_{3})\})$ still cov-

ers $F$ if $w’\not\in D(v^{l})-v’$ (resp., if $w^{l}\in D(v)’-v’$).

Thus, removal edges in $E_{G}(u_{1})-(u_{1}, u_{2})$ from $E$

never increases $\beta(F)$ , and we can contract $D(v)$

into a single vertex after retaining $(u_{1}, u_{2})$ as part

of the solution to cover $T$ .

Assume that $E_{G}(u_{1})$ contains an edge $(u_{1}, w)$

such that $w=u_{3}$ or $w\in\overline{D(v’)}$. For the edge
$f’=(v^{l\prime}, v’)$ , we next claim that $\beta(F)=\beta(F-fJ)$

holds if there is an edge $(u_{1}, w)\in E_{G}(u_{1})$ with
$w\in\overline{D(v^{l})}$ . To see this, consider the instance
$(T’, G’)$ obtained from the current $(T, G)$ by con-
tracting $v”$ and $v’$ into a single vertex, and let
$E^{**}\subseteq E$ be a smallest edge set covering the

edges in $T^{l}$ (i.e., $F-f’$). Assume that $E^{**}$

does not cover $f^{l}$ in $T$ (otherwise we are done).

Thus, the edges in $T[D(v)’]$ are covered by two

edges (say $e_{1},$ $e_{2}$ ) in $E^{**}$ by the minimality of
$|E^{**}|$ . For the edge $e_{3}=(u_{3},$ $u_{2^{)},}$ and an edge
$e_{4}=(u_{1}, w)\in E_{G}(u_{1})$ with $w\in\overline{D(v’)}$ , we see

that $(E^{**}-\{e_{1}, e_{2}\})\cup\{e_{3}, e_{4}\}$ covers all edges in
$T$ . Therefore, $\beta(F)=\beta(F-f’)$ and we contract
the end vertices of edge $f’=(v^{\prime\prime/}, v)$ into a single

(P4) If no edge in $E_{G}(u_{1})$ is incident to any vertex
$\overline{D(v’)}\cup\{u_{3}\}$ , then retain $(u_{1}, u_{2})$ as part of
the solution to cover $T$ and contract $D(v)$

into a single vertex. Otherwise contract edge
$f’=(v”’, v)$ .

Given a solution $E^{**}$ to the instance $(T’, G^{;})$ re-
sulting from contracting $f’$ , we can modify $E^{**}$ (if

necessary) so that $f’$ is also covered in the origi-
nal instance $(T, G)$ without increasing the size of
$E^{**}$ .

$\square$

3: Definition of lower-, middle- and up-

per-parts of a chain $P\tau(u_{1}, uk)$ .

6 Structure of $T+E$

A leaf vertex is called a thorn vertex if its par-
ent is not a fringe vertex, and a vertex $u$ is called

a branch vertex if $u=r$ or $Ch(u)$ contains at

least two non-leaf vertices. Let THORN$(v)$ de-

note the set of all thorn vertices in $T[D(v)]$ . Note
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that the number of branch vertices is at most
$|FRINGE(v)|$ . For each branch vertex $u$ , a path
$P_{T}(u, u)/$ with $u’\in D(u)$ is called a chain of $u$ if $u^{l}$

is a fringe or branch vertex and $P_{T}(u, ul)-\{u, u’\}$

contains no fringe or branch vertex. (Thus any
internal vertex $u^{n}$ in a chain has exactly one non-
leaf vertex in $Ch(u^{\prime l}).)$ The number of chains in
a tree $T[D(v)]$ is at most $2|FRINGE(v)|-1$ .

In what follows, we assume that $T+E$ is 2-edge-
connected and $T[D(v)]$ is a minimally 1 $f$-closed
subtree of $T$ . In this case, $v$ is the root of $T[D(v)]$

and is treated as a branch vertex. Consider a
chain $P_{T}(u_{1}, u_{k})$ of $T[D(v)]$ , where $u_{1}\prec\cdots\prec u_{k}$

for $V(P_{T}(u_{1}, u_{k}))=\{u_{1}, \ldots, u_{k}\}$ (see Fig. 3).
Let $u_{a}$ be the lowest vertex in $\{u_{1}, \ldots, u_{k}\}$ such
that all the edges in $P_{T}(u_{1}, u_{a})$ are covered by
a single edge $(t, t’)\in E$ (where $a\geq 2$ since
such $(t, t^{l})$ exists by the 2-edge-connectivity of
$T+E)$ , and call the subpath $P_{T}(u_{1a}, u)$ the upper-
part of chain $P_{T}(u_{1}, u_{k})$ . The edge $(t, t’)\in E$

that defines $u_{a}$ is called the upper-edge of the
chain, where $lca((t, t’))\preceq u_{1}\preceq t$ holds and $t$

may belong to $D(u_{k})$ . Similarly the highest ver-
tex $u_{b}$ $\in$ $\{u_{1}, . ‘. , u_{k}\}$ such that the edges in
$P_{T}(u_{b}, u_{k})$ are covered by a single edge $(S, S^{/})\in$

$E$ with $s\in LEAF(u_{k})\cup PFRINGE(u_{k})-u_{k}$

(where $u_{b}=u_{k}$ if no such $(S,$ $S’)$ exists), and call
the subpath $P_{T}(u_{b}, uk)$ the lower-part of chain
$P_{T}(u_{1}, uk)$ . If $u_{b}\neq u_{k}$ , the edge $(S, S^{J})\in E$

that covers the lower-part is called the lower-edge
of chain $P_{T}(u_{1}, uk)$ , where $s’$ possibly belongs to
$\overline{D(u_{1})}$. If $u_{1}\prec u_{b}$ , then there must be a thorn
vertex $z_{0}\in D(u_{b})-(D(u_{k})\cup\{u_{b}\})$ such that an
edge $e\in E$ connects $z_{0}$ and a vertex in $\overline{D(u_{b})}$

(otherwise $T[D(u_{b})]$ would be $lf$-closed). We say
that a subpath $P_{T}(u_{i}, uj)$ has a thorn vertex $w$ if
the parent $p(w)$ is contained in $P_{T}(u_{i}, uj)$ .

Consider an edge $g–(X_{1}, X_{2})\in E$ such that
both parents $p(x_{1})$ and $p(x_{2})$ belong to the same
chain $P_{T}(u_{1}, u_{k});p(x_{1})\preceq p(x_{2})$ is assumed with-
out loss of generality. In this case, we denote the
parents $p(x_{1})$ and $p(x_{2})$ by up$(g)$ and $dwn(g)$ , re-
spectively. Such edge $g$ is called a swing edge if
path $P\tau(p(x1),p(X_{2}))$ has no thorn vertex other

than $x_{1}$ and $x_{2}$ (some other edge $e\in E$ may be
incident to $x_{1},$ $x_{2}$ or $P\tau(p(x_{1}),p(x2)))$ . See Fig. 4,
where $g_{1},$ $g_{2},g_{3}$ are not swing edges.

$\backslash \backslash$

$4\wedge \mathrm{f})\mathrm{p}\mathrm{f}\mathrm{i}\Pi i\mathrm{f},\mathrm{i}\mathrm{f})\mathfrak{n}$ of.qwin $\sigma\epsilon\wedge\sigma P..\mathrm{S}\Pi_{-}$

$\backslash \backslash$ 5: Definition of binding edges $e_{\mathit{9}}$ of a swing
$\epsilon!\mathrm{d}\sigma \mathrm{e}$

$a$ in the ca..qe of $(\mathrm{R}1)_{-}$

$\mathrm{H}6$ : Definition of binding edges $e_{\mathit{9}}$ of a swing
edge $g$ in the case of (B2).

$\backslash \backslash 7$: Definition of a succeeding tree of a solo edge
$g$ .

If $u_{a+1}$ $\preceq$ $u_{b-1}$ , then the sub-
path $P\tau(u_{a}+1, ub-1)$ is called the middle-part of
chain $P_{T}(u_{1}, uk)$ . In this case, for a swing edge
$g=(x_{1}, x_{2})\in E$ with $u_{a+1}\preceq up(g)\preceq dwn(g)\vee\preceq$

$u_{b-1}$ , we call an edge $e_{g}=(w,\backslash y)\in E$ a binding
edge of $g$ if $e_{g}$ satisfies one of the following (B1)
and (B2).
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(B1) $w,$ $y\in THORN(v)$ and up$(e_{g})\prec up(g)\preceq$

$dwn(g)\prec dwn(e_{g})$ (see Fig. 5).

(B2) $\{w\}=\{w, y\}\cap THORN(v),$ $p(w)\prec up(g)\preceq$

$y$ and path $P_{T}(p(w), \max(dwn(g),y))$ has a
thorn vertex $z_{g}\in$ THORN$(v)-\{X_{1,2}X, w\}-$

$D(u_{k})$ , where possibly $y\in D(u_{k})$ (see Fig. 6).

Notice that for any binding edge $e_{g}=(w, y)$ , it
must hold $p(w)\in D(u_{1})-u_{1}$ in cases (B1) and

(B2) and $y\not\in D(u_{k})$ in case (B1) by the choice of
$u_{a}$ and $u_{b}$ .
A swing edge $g\in E$ is called a solo edge if

(B3) $u_{a+1}\preceq up(g)\preceq dwn(g)\preceq u_{b-1}$ , and $g$ has

no binding edge in (B1) or (B2).

For a solo edge $g=(x_{1}, x_{2})\in E$ defined on the

chain $P_{T}(u_{1}, uk)$ , we define the succeeding tree

of $g$ as follows. Let $t_{\min}$ be the highest vertex in
$P\tau(dwn(g), uk)-\{dwn(g), uk\}$ such that there is a

thorn vertex $z\in THoRN(v)-\{x_{1}, X_{2}\}$ incident

to $t_{\min}$ . (By definition of $u_{b}$ and the minimal
$lf$-closedness of $T[D(v)]$ , there exists such thorn

vertex $z_{0}.$ ) Let $f=(v_{g}, t_{\min})\in F$ be the edge

with $v_{g}\prec t_{\min}$ (possibly $v_{g}=dwn(g)$ ). We call

this vertex $v_{g}$ the succeeding vertex of $g$ , and call
the subtree $T[D(v)g]$ the succeeding tree of $g$ . See

Fig. 7.

7 Covering minimally $lf$-closed
subtrees

Let $T[D(v)]$ be a minimally $lf$-closed subtree

in $T$ (where we can assume that $v$ is not a fringe

vertex in $T$ by Case-l). Such a $T[D(u)]$ always

exits, since $T=T[D(r)]$ is $lf$-closed. In this sec-
tion, we consider how to choose edges from $E$ to

cover all edges in the $T[D(v)]$ .

7.1 Outline

Assume that none of Cases-1,2,3 and 4 holds in
$T[D(v)]$ . Thus $T[D(v)]$ satisfies that

(A1) Every fringe vertex $u$ satisfies $|Ch(u)|\neq 1,3$ ,

and each non-root and non-fringe vertex $v’\in$

$D(v)$ with $|LEAF(v’)|=3$ satisfies (1),

(A2) Every fringe vertex $u$ has an edge $e$ $=$

$(w,w’)\in E$ such that $\{w, w’\}\subseteq Ch(u)$ .

In this section, we assume that the following

condition holds in a given minimally $lf$-closed tree
$T[D(v)]$ .

(A3) For any solo edges $g\in E$ on the middle-
part of a chain in $T[D(v)]$ , its succeeding tree
$T[D(v)g]$ has at most five leaf vertices (i.e.,
$|LEAF(v_{g})|\leq 5)$ .

(We discuss in section 8 the case in which con-
dition (A3) does not hold.) If there are three
disjoint solo edges $g,$ $g’,$ $g”$ on a path from $v$ and
to a leaf vertex $w$ in $T[D(v)]$ . For the highest
edge $g$ among these three edges, it is easy to see
that $|LEAV(v_{g})|\geq 6$ for its succeeding vertex $v_{g}$ .
Thus, if (A3) holds, then there are at most two
disjoint solo edges in the path from $v$ to any fringe

vertex in $T[D(v)]$ .
We sketch a procedure COVER for computing

a subset $E^{apx}\subseteq E$ that covers all edges in a min-
imally $lf$-closed subtree $T[D(v)]$ . Let $F_{leaf}$ be
the set of leaf edges in $T[D(v)]$ , and $E_{leaf}$ de-

note the set of all edges $e=(u, u’)\in E$ with
$u,$ $u’\in LEAF(v)$ , and $E_{prime}\subseteq E_{leaf}$ be the set
of prime edges. The procedure consists of the fol-
lowing three phases, where the details of Phases-2

and 3 are described in the next subsections.

Procedure COVER
If $|LEAF(v)|\leq 3$ , then it is easy to find a sub-

set $E^{a\mathrm{p}x}\subseteq E$ that covers $T[D(v)]$ and satisfies
$\frac{3}{2}\beta(F_{leaf}\cup F_{f^{ri}nge}).\mathrm{I}\mathrm{n}$ what follows, $|LEAF(v)|\geq$

$4$ is assumed.

Phase-l (Covering all leaf edges in $T[D(v)]$ ):

Compute a maximum matching $M^{*}\subseteq E$ in the

graph (LEAF$(v),$ $E\iota eaf-Erimpe$ ), and denote by
$W$ the set of unmatched vertices in LEAF$(v)$ . A
prime edge $g\in E_{prime}$ is called an unmatched
prime edge if both end vertices of $g$ are un-
matched, and denote by $M_{1}’$ (resp., $M_{2}^{l}$ ) the set
of all unmatched prime edges of type-l (resp., of
type-2). For each unmatched prime edge $(w, w’)$
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of type-2, where $w\prec w’$ , we see by (1) that
there is an unmatched prime edge $(w, w”)$ of
type-2 such that $w”$ is the sibling of $w’$ (also
$(w’, w^{\mu})\in M_{1}’)$ . For each such pair of unmatched
prime edges $(w, w^{l})$ and $(w, w^{\prime l})$ , we choose arbi-
trarily one of them, and denote by $M_{2}’’$ the result-
ing set of unmatched prime edges of type-2 (hence
$|M_{2}^{\prime l}|=|M_{2}’|/2)$ .

For each vertex $w\in W-V(M_{1’}\cup M_{2}^{l})$ (where
$E_{G}(w)\neq\emptyset$ by the 2-edge-connectivity of $T+E$),
choose an edge $e_{w}\in E_{G}(w)$ as follows. If $w$ is
incident to a binding edge $e_{g}$ in (B1) or (B2) for
a swing edge $g$ with $w\prec up(g)$ , then let $e_{w}=e_{g}$

(by choosing one arbitrarily if there is more than
such binding edge). Otherwise, let $e_{w}\in High(w)$ .

For each $g=(u, u’)\in M_{1}’$ , we choose an
edge $e^{(g)}$ as follows. If no unmatched prime
edge of type-2 is adjacent to $g$ , then let $e^{(g)}\in$

$H_{\dot{i}}gh(\{u, u^{J},p(u)\})$ . Otherwise, if an unmatched
prime edge $(w, u)$ of type-2 is adjacent to $g$ ,
then let $e^{(g)}\in H_{\dot{i}}gh(D(p(w)))$ . Denote $E_{1}=$

$M^{*\prime\prime\prime}\cup M_{1}\cup M_{2}\cup\{e^{(}g)|g\in M_{1}’\}\cup\{e_{w}|w\in$

$W-V(M_{1}/\cup M)2J\}$ .

Phase-2 (Merging $2-\mathrm{e}\mathrm{d}\mathrm{g}\mathrm{e}$-connected com-
ponents in $T+E_{1}$ ): Consider all nontrivial 2-
edge-connected components in $T+E_{1}$ . To reduce
the number of those components, we choose an
appropriate set $E_{2}\subseteq E-E_{1}$ of edges which com-
bine different components in $T+E_{1}$ .

Phase-3 (Making $T[D(v)]$ 2-edge-
connected): For each 2-edge-connected compo-
nent $B$ in $T+(E_{1}\cup E_{2})$ containing an edge
in $M^{*}$ , we choose an edge $e^{(B)}\in High(X)$ for
$X=V(B)\cap(LEAF(v)\cup FRINGE(v))$ . Let $E_{3}$

be the set of the edges $e^{(B)}$ chosen for all those
components B. (To be precise, Phase-3 of our al-
gorithm may divide some 2-edge-connected com-
ponent into several components (without separat-
ing two end vertices of any edge in $M_{1}’\cup M_{2}’’$) or
may treat some 2-edge-connected components as
a single component before computing $e^{(B)}$ for each
component $B.$ ) Output $E^{apx}=E_{1}\cup E_{2}\cup E_{3}$ . $\square$

The solution $E^{apx}=E_{1}\cup E_{2}\cup E_{3}$ covers all the
edges in $T[D(v)]$ , as will be shown in the next sub-
section. We first note that $|E_{1}|=|LEAF(v)|-$
$|M^{*}|$ holds, because by $|W|=|LEAp(v)|-2|M*|$ ,
we have $|E_{1}|=|M^{*}|+|M_{1}^{l}|+|M_{2}’’|+|\{e^{(g)}|$

$g\in M_{1}’\}|+|\{e_{w}|w\in W-V(M_{1}’\cup M_{2}’)\}|=$

$|LEAF(v)|-|M^{*}|$ . Hence we have

$|E^{apx}|\leq|LEAF(v)|-|M^{*}|+|E_{2}|+|E_{3}|$ .

Let us assume that $E_{2}$ and $E_{3}$ are chosen so that
the next two properties hold.

PROPERTY 7.1 $|E_{2}|+|E_{3}|\leq|M^{*}|$ . $\square$

PROPERTY 7.2 For some constant $\theta\geq 0,$ $(2+$

$\theta)(|E_{2}|+|E_{3}|)\leq|LEAF(v)|$ . $\square$

For the set $F_{v}$ of all leaf and fringe edges in
$T[D(v)]$ , we see by Lemma 4.2 that $\beta(F_{v})\geq$

$\frac{1}{3}(2|LEAF(v)|-|M^{*}|)$ . Therefore,

$\frac{|E^{apx}|}{\beta(F_{v})}$ $\leq$ $\frac{3(|LEAp(v)|-|M*|+|E_{2}|+|E_{3}|)}{2|LEAp(v)|-|M*|}$

$\leq$ $\frac{3|LEAF(v)|}{2|LEAF(v)|-(|E_{2}|+|E_{3}|)}$

(by Property 7.1 and by $|LEAF(v)|$

$+|E_{2}|+|E_{3}|\leq 2|LEAF(v)|$

which follows from Property 7.2)

$\leq$
$\frac{3|LEAF(v)|}{2|LEAF(v)|-\frac{1}{2+\theta}|LEAF(v)|}$

(by Property 7.2)

$=$ $\frac{6+3\theta}{3+2\theta}=2-\frac{\theta}{3+2\theta}$ ,

which is strictly smaller than 2 unless $\theta=0$ . We
design Phases-2 and 3 such that Property 7.1 and
Property 7.2 with some $\theta>0$ hold.

7.2 Phases-2 and 3

In this subsection, we describe the details of
Phases-2 and 3, and then prove some properties
of the obtained sets $E_{2}$ and $E_{3}$ .
Phase-2 (Merging $2-\mathrm{e}\mathrm{d}\mathrm{g}\mathrm{e}$-connected com-
ponents in $T+E_{1}$ ):
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Step 1. A matching edge $g=(z, z’)\in M^{*}$ with

$z,$ $z^{l}\in THORN(v)$ is called upward in a chain
$P_{T}(u_{1}, uk)$ in $T[D(v)]$ if

(B4) both $z$ and $z^{l}$ are incident to $P_{T}(u_{1}, uk)$ , and

on, $\mathrm{e}$ of $z$ and $z’$ is incident to $P_{T}(u_{1,a}u)$ -

$u_{1}$ , where $P_{T}(u_{1}, ua)$ is the upper-part of
$P_{T}(u_{1,k}u)$

(note that $g$ is not upward if $p(z)=u_{k}$ or $p(z’)=$

$u_{k})$ . A chain $P_{T}(u_{1}, uk)$ is called active if it has
at least one upward matching edge and $P_{T}(u_{1}, ua)$

does not belong to a single 2-edge-connected com-
ponent in $T+E_{1}$ . A branch vertex $u_{1}$ is also called
active if it has an active chain $P_{T}(u_{1}, uk)$ .

For each active chain $P$ $=$ $P_{T}(u_{1}, uk)$ in
$T[D(v)]$ , we choose its upper-edge $e^{(P)}$ . For each

active branch vertex $v^{l}$ , let $E_{upper}(v^{l})$ be the set of

the upper-edges $e^{(P)}$ chosen for all active chains
$P=P\tau(v^{J}=u_{1}, u_{k})$ of $v’$ . Let $E_{upper}$ denote the

union of $E_{up\mathrm{P}^{er}}(v’)$ for all active branch vertices
$v’$ .

Step 2. Consider the graph $T+$ ( $E_{1^{\cup}}$ Eer)p $\cdot$

A 2-edge-connected component $A$ in this graph is

called small if it contains a matching edge $g=$

$(X_{1}, x_{2})\in M^{*}$ , but has no leaf vertex other than
$x_{1}$ and $x_{2}$ .

By (A1) and (A2) and $M^{*}\cap E_{prime}=\emptyset$ , the

two leaf vertices $x_{1}$ and $x_{2}$ in a small component
$A$ are both thorn vertices. From definitions $(\mathrm{B}1)-$

(B3), the matching edge $g=(x_{1}, X_{2})$ in a small
component $A$ satisfies one of the following cases.

(a) $g$ is not a swing edge, i.e., the path
$P_{T}(p(x1),p(X_{2}))$ between the parents $p(x_{1})$ and
$p(x_{2})$ contains a branch vertex. (In the following

(b) and (c), $g$ is assumed to be a swing edge.)

(b) One of the parents $p(x_{1})$ and $p(x_{2})$ belongs to

the lower-part of a chains.
(c) Both $p(x_{1})$ and $p(x_{2})$ belong to the middle-
part of the same chain, where

(1) $g$ has a binding edge $e_{g}=(w, y)\in E$ satisfy-

ing one of (B1) and (B2), or

(2) $g$ is a solo edge.

In the case $(\mathrm{c})-(1)$ , we choose a binding edge

$e_{g}$ for each $g$ (even if there is more than one
binding edge). Initially set $E_{merge}:=\emptyset$ , and let
$A=\{A_{1}, \ldots , A_{h}\}$ be the set of all small compo-
nents satisfying $(\mathrm{c})-(1)$ . The binding edge $e_{g}$ of

the swing edge $g$ in an $A_{i}\in A$ is called merging if

(B5) adding $e_{g}$ to the current graph $T+(E_{1}\cup$

$Eupper\cup Emerge)$ merges at least three 2-edge-
connected components, each of which con-

tains at least one matching edge, into a single
2-edge-connected component.

We repeatedly apply the following procedure until
no new merging edge is found.

MERGE Find an $A_{i}\in A$ such that the
binding edge $e_{\mathit{9}i}$ of the matching edge $g_{i}$

in $A_{i}$ is merging in the current graph
$T+$ ($E_{1}\cup$ Eupper $\cup E_{merge}$ ). Add $e_{g_{i}}$ to
$E_{merge}$ , letting $A:=A-A_{i}$ . $\square$

Let $E_{2}’:=E_{u}pper\cup E_{merge}$ .

Phase-3 (Making $T[D(v)]$ 2-edge-
connected): Consider all 2-edge-connected com-
ponents $C$ in $T+(E_{1}\cup E_{2}’)$ containing an edge

in $M^{*}$ , and apply the following steps after letting
$E_{3}:=\emptyset$ .

Step 3. Consider the $2- \mathrm{e}\mathrm{d}\mathrm{g}\mathrm{e}$-connected compo-
nents $C$ in $T+(E_{1}\cup E_{2}’)$ such that

$E(C)\cap M^{*}\neq\emptyset$ and $|E(C)\cap M^{*}|=|E(c)\mathrm{n}E_{2}’|$ .

By procedure MERGE, this can occur only when
$E(C)\cap E\prime 2\subseteq E_{upper}$ holds and the edges in $E(C)\cap$

$M^{*}$ are all upward, where each $e\in E(C)\cap M^{*}$

corresponds to an upper-edge $e’\in E(C)\cap$ Eupper
by Step 1.

For each of such components $C$ , we partition
$E(C)\cap M^{*}$ into subsets $M_{up}^{*}(v_{1}),$ $\ldots$ , $M_{up}^{*},(v_{q})$

such that the upward matching edges in each
$M_{up}^{*}(v_{i})$ are defined on some chains $P\tau(v_{i}, u)$ of

the same branch vertex $v_{i}$ . For each $v_{i}$ , let $C_{v_{i}}$ de-

note the graph which consists of upward edges in
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$M_{up}^{*}(v_{i})\cup E_{uppr}e(v_{i})$ (for notational convenience),
and choose an edge $e^{(B)}\in High(V(M^{*}(upvi)))$ for
component $B=C_{v_{i}}$ . In this case, $e^{(B)}$ is adja-
cent to an upward matching edge $g^{l}\in M_{up}^{*}(v_{i})$ .
Let $e^{(P)}\in E_{upper}(v_{i})$ be the upper-edge of $P=$

$P_{T}(v_{i}, u);$ that has the matching edge $g’$ . See
Fig. 8. If $lca(e^{()})B\prec v_{i}$ , then we replace $e^{(P)}$

by $e^{(B)}$ :

(LEAF$(v)\cup FRINGE(v)$ ) $)$ , where $V(A(P_{i}))$ de-
note the set of all vertices in the small components
in $A(P_{i})$ . Let $B^{S5}$ be the set of all these compo-
nents $B=A(P_{i})$ computed in this step.

For t,he final $E_{upper}$ and $E_{3}$ computed in the
above procedure, we denote $E_{2}=E_{upper}\cup E_{merge}$

and $E^{apx}=E_{1}\cup E_{2}\cup E_{3}$ . $\square$

$E_{3}:=E_{3}\cup\{e^{(B}\})$ , $E_{upper}(v_{i}):=E_{u}pper(v_{i})-\{e\}(P)$ ,

updating $C_{v_{i}}:=C_{v_{i}}+e^{(B)}-e^{(P)}$ . (Otherwise
(i.e., if $v_{i}\preceq lca(e^{()})B$ ) we do nothing by setting
$e^{(B)}$ to be empty.) Let $B^{S3}$ denote the set of all
these components $B=C_{v_{i}}$ computed in this step.

We now show that the obtained $E^{apx}$ covers all
edges in $\tau 1D(v)]$ (for this we do not need condi-
tion (A3) $)$ .

LEMMA 7.1 Let $G=(V, E)$ be a graph and $T=$

(V, $F$) be a tree rooted at $r$ with $E\cap F=\emptyset$ such
that $T+E=(V, F\cup E)$ is 2-edge-connected. Let
$T[D(v)]$ be a minimally $lf$ -closed subtree satisfy-
ing conditions $(A1)$ and $(A2)$ . Then the subset
$E^{apx}=E_{1}\cup E_{2}\cup E_{3}\subseteq E$ obtained by the proce-
dure COVER covers all edges in $T[D(v)]$ .

Proof: Omitted. $\square$

Now we estimate the size of $E^{apx}$ . For each
$B\in B^{S3}\cup B^{S4}\cup B^{S5}$ , we first show

$\mathrm{B}8:\mathrm{n}\mathrm{l}\mathrm{u}\mathrm{S}\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}$ for Step 3.

Step 4. Consider the remaining 2-edge-
connected components in $T+(E_{1}\cup E_{2}’)$ not con-
sidered in Step 3. For each component $B$ that
contains an edge in $M^{*}$ , but is not a small com-
ponent satisfying (b), let $E_{3}:=E_{3}\cup\{e^{(B)}\}$

by choosing an edge $e^{(B)}\in H_{\dot{i}}gh(X)$ for $X=$

$V(B)\cap(LEAF(v)\cup FRINcE(v))$ . Let $B^{S4}$ be
the set of all these components $B$ computed in
this step.

$|E(B)\cap M^{*}|\geq|E(B)\cap E_{2}|+|E(B)\cap E_{3}|$ . (2)

By construction of Phase-2, any edges in $E_{2}’$ are
chosen so that if the resulting $2- \mathrm{e}\mathrm{d}\mathrm{g}\mathrm{e}- \mathbb{C}\mathrm{o}\mathrm{n}\mathrm{n}\mathrm{e}\mathrm{c}\mathrm{t}\mathrm{e}\mathrm{d}$

component $C$ has $p$ edges from $E_{2}’$ , then $C$ has
at least $p+1$ matching edges, except for the case
in Step 3. In Step 3, each component $C$ with
$|E(B)\cap M^{*}|=|E(B)\cap E_{2}^{l}|$ is divided into several
components $B=C_{v_{i}}$ , for which an upper-edge
$E(B)\cap E_{2}’$ is discarded or no edge $e^{(B)}$ is add to
$E_{3}$ . Each $e^{(B)}\in E_{3}$ is chosen for a component $B$

which contains a matching edge in $M^{*}$ . Therefore,
(2) holds, and we have Property 7.1

Step 5. Finally, we partition the set of all
small components satisfying (b) into subsets
$A(P_{1}),$

$\ldots,$
$A(P_{q})$ such that all components in

each $A(P_{i})$ are defined on the same chain $P_{i}$ . We
treat each $A(P_{i})$ as a single component $B$ . For
each component $B=A(P_{i})$ , let $E_{3}:=E_{3}\cup\{e^{(B)}\}$

by choosing an edge $e^{(B)}\in High(V(A(Pi))\cap$

$|M^{*}|\geq|E_{2}|+|E_{3}|$ .

If the minimally $lf$-closed subtree $T[D(v)]\mathrm{s}\mathrm{a}\mathrm{t}\mathrm{i}_{\mathrm{S}}-$

fies condition (A3), then we can show the next
property.

CLAIM 7.1 $(2 +\theta)(|E_{2}|+|E_{3}|)\leq|LEAF(v)|$

holds for $\theta=\frac{2}{7}$ .

171



Proof: Omitted. 口 LEMMA 8.2 For a solo edge $g\in E$ defined on a

Therefore, from the argument at the end of sec-
tion 7.1, we have the following result.

LEMMA 7.2 Let $G=(V, E)$ be a graph and $T=$

(V, $F$ ) be a tree rooted at $r$ with $E\cap F=\emptyset$ such
that $T+E=(V, F\cup E)$ is 2-edge-connected. Let
$T[D(v)]$ be a minimally $lf$ -closed subtree satis-
fying conditions $(A1)-(A3)$ . Then the subset
$E^{apx}=E_{1^{\cup E}2^{\cup}3}E\subseteq E$ obtained by the procedure
COVER satisfies $|E^{apx}|\leq 1.92\beta(F_{v})$ for the set

$F_{v}$ of leaf and $(pseud_{\mathit{0}}-)pinge$ edges in $T[D(v)]$ .
口

8 Reduction by COVER

chain $P_{T}(u_{1}, u_{k})(u_{1}\prec u_{k})$ , let $v_{\mathit{9}}$ be the succeed-
ing vertex of $g$ . Assume that $T[D(v_{g})]$ satisfies
condition $(A1)-(A3)$ . For $|LEAF(v_{g})|\geq 6$ and
any fixed $\epsilon>0$ , an edge set $E^{+}\subseteq E$ that cov-
$ers\overline{F_{g}}$ and has size $|E^{+}|\leq(1.92+\epsilon)\beta(F_{g})$ can
be found in the same time complexity of COVER
applied to $T[D(v\mathit{9})]$ .

Proof: Omitted. 口

If there is a solo edges $g$ such that
$|LEAV(v_{g})|\geq 6$ for its succeeding vertex $v_{g}$ , then
we can apply Lemma 8.2 to find a $(1.92 +\epsilon)-$

approximation solution to cover the edges in the
tree $T[D(v)g]$ .

We consider the remaining case in which a given
minimally $lf$-closed tree $T[D(v)]$ does not satisfy
condition (A3). That is, there is a solo edges
$g\in E$ on the middle-part of a chain in $T[D(v)]$

such that its succeeding tree $T[D(v)g]$ has at least
six leaf vertices (i.e., $|LEAF(v_{g})|\geq 6$). We apply
procedure COVER to find an approximate solu-
tion to cover the edges in the tree $T[D(v)g]$ .

LEMMA 8.1 For a solo edge $g=(x_{1}, x_{2})\in E$ de-

fined on a chain $P_{T}(u_{1}, uk)(u_{1}\prec u_{k})$ in a $\min-$

imally $lf$ -closed tree $T[D(v)]$ , let $v_{g}$ be the suc-
ceeding vertex of $g$ , and let $w^{*}$ be the highest ver-
tex among all vertices in $P_{T}(u_{1}, u_{k})$ that are in-
cident to a vertex in $D(v_{g})-v_{g}$ via an edge in
$E$ (see Fig. 7). Then for $F_{g}=E(T[D(v_{g})])$ and
$x= \min(w^{*}, up(g))$ , it holds

$\overline{F_{g}}-F_{g}\subseteq\{f_{1}, f_{2}\}\cup E(P\tau(X, v_{g}))$ ,

where $f_{1}$ and $f_{2}$ are the two leaf edges adjacent to
$g$ .

Proof: Omitted. $\backslash$ . $\square$

Given an edge set $E^{l}\subseteq E$ that covers $F_{g}=$

$E(T[D(v_{g})])$ , we note here that an edge set
$E”$ can be constructed to cover $F_{\mathit{9}}\cup\{f1, f_{2}\}\cup$

$E(P_{T}(X,v)g)(\supseteq\overline{F_{g}})$ by adding to $E^{l}$ at most three
edges (two edges to cover $\{f_{1}, f_{2}\}$ and one to cover
$E(P_{T(}X, v_{\mathit{9}})))$ .

9 Entire description

We are now ready to describe the entire algo-
rithm. Given a graph $H=(V, E’)$ and a subset
$X\subseteq V$ , we denote by $H/X$ the graph obtained
from $H$ by contracting $X$ into a single vertex and
deleting all the resulting self-loops.

APPROX
Input: A graph $G=(V, E)$ and a tree $T=(V, F)$

rooted at $r$ with $E\cap F=\emptyset$ such that $T+F=$
(V, $F\cup E$) is 2-edge-connected, and
a constant $\epsilon>0$ .
Output: A subset $E^{l}\subseteq E$ that covers $F$ and has
size $|E’|\leq(1.92+\epsilon)\beta(F)$ .

$E’:=\emptyset$ ;
while $T$ contains more than one vertex do

while one of Cases-1,2,3 and 4 holds do
Execute procedures $(\mathrm{P}1),(\mathrm{P}2),(\mathrm{P}3)$ , (P4)
in Cases-1,2,3,4, respectively, and add
to $E’$ the edges retained by the procedure

end; $/*_{\mathrm{W}\mathrm{h}\mathrm{i}1}\mathrm{e}^{*}/$

$/*\mathrm{C}_{0\mathrm{n}}\mathrm{d}\mathrm{i}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}\mathrm{S}$ (A1) and (A2) hold. $*/$

Choose a minimally $lf$-closed subtree $T[D(v)]$ ;
if condition (A3) holds in $T[D(v)]$ then

Compute an edge set $E^{apx}\subseteq E$ which
covers edges in $T[D(v)]$

by procedure COVER;
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$E’:=E’\cup Eapx$ ;
For $X=$ {the end vertices of edges
$f\in F$ covered by $E^{apx}$ }, $T:=T/X$

and $G:=G/X$ ;
else $/*\tau[D(v)]$ has a solo edge $g$ such that

its succeeding tree $T[D(vg)]$

contains at least six leaf vertices. $*/$

Choose such succeeding tree $T[D(v_{g})]$ ;
$F_{v_{g}}:=$ {all edges in $T[D(v_{g})1$ };
Compute an edge set $E^{+}\subseteq E$ which
covers $\overline{F_{v_{g}}}$ by Lemma 8.2 with
constant $\epsilon>0$ ;
$E’:=E/\cup E^{+}$ ;
For $X=$ {the end vertices of edges $f\in F$

covered by $E^{+}$ }, $T:=T/X$ and $G:=G/X$
end; $/*_{\mathrm{W}\mathrm{h}\mathrm{i}\mathrm{l}\mathrm{e}}*/$

Output $E’$ (after modifying $E^{l}$ , if necessary,
so that the edges $f^{\prime_{\mathrm{C}\mathrm{o}\mathrm{n}}}\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{c}\mathrm{t}\mathrm{e}\mathrm{d}$ in Cases-3
and 4 are also covered in $T$ without increasing
the size of $E’$ ). $\square$

By using the least common ancestor algorithm
$[5, 9]$ and the maximum matching algorithm [8],
the above algorithm can be implemented to run
in $O(n^{1/2}m+n^{2})$ time.

THEOREM 9.1 Given a graph $G=$ (V, $E$) and
a tree $T=$ (V, $F$) with $E\cap F=\emptyset$ such that
$T+E=(V, F\cup E)$ is $\mathit{2}- edge- Connec\theta ed$, the prob-
lem of finding a smallest 2-edge-connected span-
ning subgraph $H=(V, F\cup E’)$ containing $T$ is
$(1.92+\epsilon)$ -approximable in $O(n^{1/2}m+n^{2})$ time
for any fixed constant $\epsilon>0$ , where $n=|V|$ and
$m=|E\cup F|$ . $\square$

参考文献

[1] J. Cheriyan, A. Seb\"o and Z. Szigeti: “An
improved approximation algorithm for min-
imum size 2-edge connected spanning sub-
graphs,” Lecture Notes in Computer Science,
1412, Springer-Verlag, $\mathrm{I}\mathrm{P}\mathrm{C}\mathrm{O}’ 98$ (1998) 126-
136.

graphs via matching,” Proc. 37th IEEE Symp.
on Found. Comp. Sci. (1996) 292-301.

[3] K. P. Eswaran and R. E. Tarjan: “Augmenta-
tion problems,” SIAM J. Computing, 5 (1976)
653-665.

[4] G. N. Frederickson and J. J\’aJ\’a: “Approxi-
mation algorithms for several graph augmen-
tation problems,” SIAM J. Computing, 10
(1981) 270-283.

[5] D. Harel and R. E. Tarjan: “Fast algorithms
for finding nearest common ancestors,” SIAM
J. $C_{ompu}t_{\dot{i}ng}.’ 13$ (1984) 338-355.

[6] S. Khuller and R. Thurimella: “Approxi-
mation algorithms for graph augmentation,”
Proc. 19th International Colloquium on Au-
tomata, Languages and Programming Confer-
ence (1992) 330-341.

[7] S. Khuller and U. Vishkin: “Biconnectivity
approximations and graph carvings,” J. $ACM$,
41 (1994) 214-235.

[8] S. Micali and V. V. Vazirani: “An $O(\sqrt{|V|}|E|)$

algorithm for finding maximum matching in
general graph,” Proc. $\mathit{2}\mathit{1}st$ IEEE Symp. $on$

Found. Comp. Sci. (1980) 17-27.

[9] B. Schieber and U. Vishkin: “On finding low-
est common ancestors: simplification and par-
allelization,” SIAM J. Computing, 17 (1988)
1253-1262.

[10] S. Tsukiyama, K. Koike and I. Shirakawa:
“An algorithm to eliminate all complex trian-
gles in a maximal planar graph for use in VLSI
floor-plan,” Proc. ISCAS’86 (1986) 321-324.

[2] J. Cheriyan and R. Thurimella: “Approximat-
ing minimum-size $k$-connected spanning sub-

173


