goooboooobgon
11200 19990 161-173

161

WEShEREAERURN 2 DEHEENYT S TERD B EMTLTY XL

Approximating a Smallest 2-Edge-Connected Subgraph
Containing a Specified Spanning Tree

xE
Hiroshi NAGAMOCHI

FERFRZBGER LT R

T 606-8501 RE diLm

3 A AHET

naga@kuamp.kyoto-u.ac. jp

Abstract:

Given a graph G = (V,E) and a tree T = (V, F) with EN F = @ such that

G+T = (V,F UE) is 2-edge-connected, we consider the problem of finding a smallest
2-edge-connected spanning subgraph (V,F U E') of G + T containing T. The problem,
which is known to be NP-hard, admits a 2-approximation algorithm. However, obtaining
a factor better than 2 for this problem has been one of the main open problems in the graph
augmentation problem. In this paper, we show that the problem is (1.92 + ¢)-approximable
in O(n'/?m + n?) time for any constant € > 0, where n = |V| and m = |[EUF|.

Key words: approximation algorithm, edge-connectivity, spanning tree, spanning subgraph,

graph augmentation

1 Introduction

Given a 2-edge-connected undirected multi-
graph H = (V, E) with n vertices and m edges
and a spanning subgraph Hy = (V, Ey), we con-

sider the problem of finding a smallest 2-edge-

connected spanning subgraph H; = (V, E}) that
contains Hy. Note that the problem can be re-
garded as a graph augmentation problem of find-
ing a smallest subset E' C E — Ej of edges to
augment Hy to a 2-edge-connected graph H; =
(V,E1 = Ey UE'"). The problem is shown to be
NP-hard [3] even if Ey = 0. In the case of Fy = 0,
the problem, which is called the minimum 2-edge-
connected spanning subgraph problem (2-ECSS),
has been extensively studied and several approx-
imation algorithms are known [1, 2, 7. The cur-
rently best approximation ratio for 2-ECSS is }—;
due to Cheriyan et al. [1]. On the other hand, if
Hyj is connected, Hy can be assumed to be a span-
ning tree of H ‘without loss of genefality (since

every 2-edge-connected component in Hy can be
contracted into a single vertex without losing the
property of the problem). Let us call the prob-
lem with a tree Hy the minimum 2-edge-connected

subgraph problem containing a spanning tree (2-

ECST), which is shown to be NP-hard by Freder-

ickson and J. JaJ4 [4] (even if the height of a span-
ning tree Hy is 2 and every edge in E—Ej connects
two leaf vertices of Hp). The 2-ECST has an ap-
plication to the problem of realizing rectangular
dual graphs in floor-planning [10]. In the spe-
cial case of H being a complete graph, 2-ECST is
the problem of augmenting a tree Hy to a 2-edge-
connected graph by adding a minimum number of
new edges, for which Eswaran and Tarjan [3] pre-
sented a linear time algorithm (which creates no
multiple edges). If H is a genéral graph, we are
permitted to add to Hy only edges from E — Ej.
For general 2-ECST, there is a 2-approximation
algorithm [4, 6], which relays on the minimum

branching algorithm. In this paper, we present a
(1.92 + ¢)-approximation algorithm for 2-ECST,
where € > 0 is an arbitrary constant. Our algo-
rithm is based on the maximum matching algo-
rithm and a certain decomposition of a tree. Its
running time is O(n'/?m + n?), where n = |V|
and m = |E|.

2 Definitions

A singleton set {z} may be simply written as
z, and “ C ” implies propef inclusion while “ C”
means “ C ” or “ = ”. For an undirected graph
H = (V,E) and an edge set E’, we denote by
H + E' (vesp., H — E') the graph obtained from
H by adding (resp., removing) edges in E'. The
vertex set (resp., edge set) of a graph H may be
denoted by V(H) (resp., E(H)). For a subset
X CV,let X denote V—X, and H—X means the
graph obtained from H by removing the vertices
in X together with the incident edges. A maximal
2-edge-connected subgraph H|[X] of H induced
by a subset X C V is called a 2-edge-connected
component. '

Let G = (V,E) be an undirected graph, and
T = (V,F) be a tree on the same vertex set V,
where EN F = 0 is assumed, but there possibly
exits a pair of edges e € E and f € F such that
e and f have the same end vertices. For a subset
E' C E, V(E") denotes the set of end vertices of
edges in E'. For a subset X C V, Eg(X) denotes
the set of edges in F connecting a vertex in X
and a vertex in V —X. In particular, Eg(u) is the
set of edges in E which are incident to a vertex
uw € V. For two vertices u,v € V, let Pr(u,v)
denote the path connecting u and v in 7. We
say that an edge e = (u,v) € E covers an edge
f € Fif Pr(u,v) contains f, and that an edge set
E' C E covers an edge set F' C F if each edge in
F' is covered by an edge in E'. Clearly, T + E'is
2-edge-connected for a subset E' C E if and only
if E' covers F.

We choose an arbitrary vertex r € V as the
root of T', which defines a parent-child relation

162

among vertices in V on T. The parent of a non-
root vertex u is denoted by p(u). For a vertex
u € V, let Ch(u) denote the set of children of u,
and D(u) denote the set of all descendents of
(including u). For two vertices u,v € V, we say
that u is lower than v (or v is higher than u) if
u € D(v) —v. We write v < u (resp., v X u) if
u € D(v)—w (resp., u € D(v)). For two vertices
and v with u € D(v) or v € D(u), min(u, v) (resp.,
max(u,v)) denotes the higher (resp., lower) vertex
in {u,v} if u # v (or any of u and v if u = v). For

an edge e = (u,v) € E, we denote by Ica(e) the

least (lowest) common ancestor of end vertices u
and v in the rooted tree T. For a vertex set X C
V, High(X) is defined to be the subset of Eg(X)
such that, for any e € Eg(X) — High(X), there is
an e € High(X) with lca(e') < lca(e) and for any
two eq,es € High(X), neither lca(e;) < Ilca(ez)
nor lca(ey) < lca(er) (thus High(X) contains
those edges e with the highest lca(e)).

The subgraph T[D(u)] of T induced by D(u) is
called the subtree at u (which is connected). A
vertex u is called a leaf vertez if v has no child,
and is called a fringe verter if all the children
of u are leaf vertices. For a vertex u € V, let
LEAF (u) (resp., FRINGE(u)) denote the set of
all leaf vertices (resp., fringe vertices) in the sub-
tree T[D(u)]. An edge f = (u,v) € F withu <v
is called a leaf edge (resp., fringe edge) of v if v is
a leaf vertex (resp., a fringe vertex). The subtree
T[D(u)] at a vertex u is called a leaf tree if u is a
fringe vertex.

We call a subtree T[D(v)] I-closed in G if G has
no edge between LEAF(v) and D(v). Clearly,
T = T[D(r)] is l-closed.

3 Decomposing the problem

In this section, we describe how a given instance
(T = (V,F),G = (V,E)) of the 2-ECST prob-
lem can be decomposed into smaller problem in- -
stances. For a subset F' C F, we define

e B(F') as the size of the smallest set E' C F
that covers F' (where E’ does not necessarily

cover edges in F' — F'),

o E(F') as the set of all edges in E that cover
at least one edge in F”,

o F' as the set of all edges in F' covered by
E(F') (where trivially F' C F).
(For example, if we consider the set Fj,., s of all
leaf edges in an I-closed subtree T[D(v)], then any
edge ¢ = (u,u’) € E(Fqyf) satisfies {u,u'} C
D(v), and hence Fllza’f is contained in T[D('u)])
Assume that there are subsets F, Fs, ..., F}, C
F such that

E(Fi)ﬂE(Fj>=@,1_<_i<j$k

(hence F; N F; = (). Since there is no edge e € F
that can cover two edges from distinct F; and Fy,
it holds

B(F) 2 B(F1) + B(Fy) + - - + B(Fk).

Suppose that we are able to compute an edge set
E?® C E that covers F; and satisfies |[EfP"| <
cB(F;) for some constant c. Then E%® = E** U
- -+ U ELP" becomes a c-approximation solution to
the original problem (T, G), provided that E%*
covers the entire F.

Let us consider a procedure for finding such F;
and E;**. With initial setting F/ := F, E' := E
and ¢ := 1, we repeat the following procedure until
all edges in F are covered.

Choose a subset F; C F', and compute
a subset EP® C E' that covers F; and
satisfies |Ef?*| < cA(F;). Let FY' (2 F;)
- denote the set of all edges covered by
EP®.
Let F':= F'—F!; B :== E' - E{*%; { :=
i+1. (To remove F! from F' effectively,
we contract all vertices in V(F') into a
single vertex if the graph (V(F)), F!') is
connected.) O

Importantly, F; C F! implies E(F;)NE(F;41) =0
for any choice of Fjy; in the (i + 1)-th iteration.
If F' becomes empty after the i*-th iteration,
EP*U. . .UEZP® covers F and is a c-approximation
solution.

163

4 Lower bounds

Let Fieqas and Fypinge be respectively the sets of
leaf edges and fringe edges in T[D(v)]. In this sec-
tion, we introduce some lower bounds on 3(Fjeqf)
and ﬁ(Fleaf U Ffringe)‘

'LEMMA 4.1 (lower bound) Let G = (V,E) be

a graph and T = (V, F) be a tree rooted at r with
ENF = 0. For a non-leaf vertez v in T, let Fie,p
be the set of all leaf edges in the subtree T[D(v)],
and let Ejeq5 be the set of all edges e = (u,u’) € E
with u,w’ € LEAF(v). Then

ﬂ(Fleaf) 2 ILEAF(’U)I - |M*|a

where M* C E is a mazimum matching in the
graph (LEAF (v), Ejeqg).

Proof: Omitted. O

Let us derive a stronger lower bound on
B(Fiear U Fringe). For this, we introduce prime
edges of type-1 and type-2. For a leaf tree T[D(u)]
with exactly two leaf vertices {w,w'} = Ch(u),
we call an edge g = (w,w') € E a prime edge of
type-1. Let f = (v",v') € F (v" < v') be an edge
in T such that FRINGE(v') — v’ contains ex-
actly one fringe vertex v, and LEAF(v') contains

-exactly three leaf vertices ui,us and uz (where

{u1,u2} = Ch(v) and ug € Ch(v') are assumed
without loss of generality). We call edges (u3,u;)
and (u3,uz) prime edges of type-2 if

for i = 1,2, {(uy,u2), (wi,u3)} C Eg(u;) _
and w € D(v') — ug3 for all (1)
(ui, w) € Eg(u;).

See Fig. 1 (where (uy, u3) is a prime edge of type-1
by definition). In this case, the edge f = (v",v') €
F is called a pseudo-fringe edge, and the vertices
in D(v') —u3 — D(v) are called pseudo-fringe ver-
tices. We denote by PFRINGE(u) the set of
fringe and pseudo-fringe vertices in T[D(u)].

LEMMA 4.2 (lower bound) Let G = (V,E) be
a graph and T = (V, F) be a tree rooted at v with

root

prime edges of type-2 uy

a prime edge of type-1

X 1: Definition of prime edges of type-2, and
pseudo-fringe edges and vertices.

ENF = 0. For a vertexv € V — LEAF(r) —
FRINGE(r), let Ejeqr be the set of all edges
e = (u,v') € E with u,u’ € LEAF(v), Eprime
be the set of prime edges of type-1 and type-2 in
FEieaf, Fieas be the set of leaf edges in T[D(v)],
and Ffringe be the set of fringe or pseudo-fringe
edges in T[D(v)]. Then for Fy = Fiear U Fringe,

2 1
B(R) 2 2|LEAF ()| - 31M°),

where M* C E is a mazimum matching in the
graph (LEAF(v), Eieaf — Eprime)-

Proof: Omitted. O

We call a subtree T[D(v)] lf-closed if G has
no edge between LEAF (u) U PFRINGE(u) and
D(u). Clearly, T = T[D(r)] is If-closed. A
subtree T[D(v)] is called minimally If-closed if
T[D(wv)] is If-closed and there is no proper sub-

tree T[D(u)] of T[D(v)] which is [f-closed.

5 Some reducible cases

In this section, we show four cases where we can
reduce the size of a given instance (T, G) without
loss of generality.

Case-1. There is an I-closed leaf tree T[D(v)]:
Now F,l;:f = Fleaf. In this case, a smallest set
E2Pt C E that covers the set Fieqy of all leaf edges

164

in T[D(v)] can be found by the next procedure
(P1).

(P1) Compute a maximum matching M* in the
graph (Ch(v), Ejeqr), and choose an arbi-
trary edge e, € Eg(w) for each unmatched
vertex w € Ch(v) — V(M*) (where Eg(w) #
¢ by the 2-edge-connectivity of T+ E). Re-
tain E%' = M*U{ey | w € Ch(v) -V (M*)}
as part of the solution to cover the current
T. Contract all vertices in Ch(v)U{v} into a
single vertex v’ both in T' and G, and delete
any resulting self-loops (where the vertex v’
becomes a new leaf vertex in the resulting

tree).

Obviously, E2P¢ covers Fe,f, and satisfies | EJFP| =
|M*|+|Ch(v)| — 2|M*| = |LEAF(v)| — |M*|. By
Lemma 4.1, |E%PY| = B(Fleas) is the minimum

among all subsets of E that cover Fieqf. a

For a fringe vertex v, let u € Ch(v). Vertex u
is called isolated if u is not adjacent via edges in
Eg(u) to any sibling (i.e., other child) of v. Note
that u is isolated if |Ch(v)| = 1. Vertex u is called
trivial if |[Eg(u)| = 1; we must use the unique edge
in Eg(u) to cover the leaf edge f = (v,u). For
a nontrivial u, let Eg(u) = {e1 = (u,v1),e2 =
(u,v2),...,ep = (u,vp)}, where p = |Eg(u)| > 2.
An edge e; = (u,v;) with v; = v is called re-
dundant if Eg(u) contains some e; = (u,v;) with
v; # v. If all edges in Eg(u) are multiple edges of
(v,u), then we choose an arbitrary edge (say e;)
in Eg(u) and call the other edges e;, i = 2,...,p
redundant. (Even if G is originally simple, our al-
gorithm will repeat contracting some vertices and
may produce multiple edges in the resulting G.)
It is not difficult to see that there is an optimal
subset E°P C F that covers F' without using any
redundant edge.

Case-2. There is a leaf tree T[D(v)] such that
T[D(v)] is not Il-closed and there is an isolated
leaf vertex u € Ch(v) (this includes the case of
|Ch(v)| = 1): There is the parent v/ = p(v) of
v (since v is not the root by the non-I-closedness

of T[D(v)]). Let I, denote the set of all isolated
vertices in Ch(v).

For each non-trivial leaf vertex u € I, (if any),
we first remove all redundant edges in Eg(u) from
G. For each trivial leaf vertex u' € I, such that
Eg(u') = {(v/,v)} (if any), we retain the edge
(u',v) as part of the solution to cover the original
T and contract ' and v into a vertex both in T'
and G. Now if there remains an isolated vertex
u" € I,, then any edge in E covering the leaf
edge f = (v,u”) also covers the fringe edge f/ =
(v',v) of v, because Eg(u") contains no redundant
edge. Thus B(F) = B(F — f'). For this reason,
we contract the end vertices of the fringe edge
f' = (v',v) into a single vertex both in T and G,
and delete any resulting self-loops. The procedure
in Case-2 is described as follows.

(P2) For each non-trivial leaf vertex u € I, re-
move all redundant edges in E(;(u) from G.
For each trivial leaf vertex v’ € I, such that
Eg(u') = {(v/,v)}, retain the edge (u/,v) €
E¢(u') and contract u’ and v into v. If there
remains an isolated vertex in I,, then con-

tract v’ = p(v) and v into a vertex.

]

Case-3. There is a leaf tree T[D(v)] such that
T[D(v)] is not Il-closed, |Ch(v)| = 3 holds, and
Ch(v) contains no isolated vertex: We first re-
move all redundant edges incident to u € Ch(v).
If there is a trivial vertex u € Ch(v) (ie.,
[Eg(u)| = 1), then choose such a vertex u. Now
the edge e € Eg(u) connects u and a sibling
u' € Ch(v) of u (éince u is not isolated). To cover
the leaf edge f = (v, u), the edge e = (u,u') must
be used. Therefore, we retain the edge (u,u') as
part of the solution, and contract {u,v’,v} into
a single vertex v both in T and G, deleting any
resulting self-loops.

On the other hand, if |Eg(u)| > 2 holds for all
u € Ch(v), then we claim that the fringe edge
f' = (v',v) € F, where v' = p(v), can be con-
tracted without loss of generality. Let Ch(v) =

165

{u1,u2,u3}. Consider an arbitrary subset E' C E
that covers all edges in T'. Suppose that E’ con-
tains no edge between Ch(v) and D(v). That is,
all leaf edges in T[D(v)] are covered by (at least)
two edges e; = (uj,u;),es = (uj,up) € E’. Since
T[D(v)] is not I-closed, E contains an edge eg be-
tween a vertex u € Ch(v) and w € D(v). If there
is such an edge ep = (w, u;) (resp., eg = (w,up)),
then we easily see that E = (E' — e1) U {eg}
(tesp., E = (B’ — e3) U {eo}) covers all edges in
T. If all such edges ep are incident to u;, then by
|Ec(ui)] > 2, E contains an edge e3 = (ug,up).
In this case, E = (E' — {e;, ea}) U {eo, e3} covers
all edges in T'. In any case, we can assume that at
least one edge between Ch(v) and D(v) is used in
E’. For this reason, we contract the end vertices
of the fringe edge f’' = (v',v) into a single vertex
both in T and G, and delete any resulting self-
loops. The procedure in Case-3 is summarized as

follows.

(P3) Remove all redundant edges incident to u €
Ch(v). If there is a trivial vertex u € Ch(v),
retain the edge (u,u') € Eg(u) and contract
{u,u',v} into a single vertex v. Otherwise,
contract the fringe edge f' = (v/,v).

Given a solution E' to the instance (T7,G') re-
sulting from contracting f’, we can modify E' (if
necessary) so that f’is also covered in the original
instance (T, G) without increasing the size of E'.

a

Case-4. There is an edge f' = (v",v') in T
(v" < v') such that FRINGE(v') — v' contains
exactly one fringe vertex v (where its leaf tree
T[D(v)] is not I-closed and no child in Ch(v) is
isolated), LEAF(v') contains exactly three leaf
vertices uj,us and ug (where {u;,us} = Ch(v)
and uz € Ch(v') are assumed without loss of gen-
er@}ity), and there is an edge (u3,us) € E, but f'
is not a pseudo-fringe edge. See Fig. 2.

Since u; is assumed to be a non-isolated ver-
tex, it has edge (ui,up) € Eg(u;). We show
that if no edge in Eg(u;) is incident to any ver-
tex D(v') U {u3}, then we can retain (u1,ug) as

-root

2: Ilustration for a subtree T[D(v')] in Case-4.

part of the solution to cover T. Let E* be a
smallest edge set E* C E covering F, and as-
sume that E* contains an edge (ui,w) € E with
w € D(v') — uz, but do not contain (uy,up). To
cover the leaf edge (v,u2) € F, E* has some
edge ¢ = (ug,w') € Eg(ug) — (u,uz). It
is clear that (E* — (u1,w)) U {(u1,uz)} (resp.,
(E* = {(u1,w), €'}) U{(u1,u2), (u2,u3)}) still cov-
ers F if w' ¢ D(v') = (resp., if w' € D(v') —').
Thus, removal edges in Eg(u1) — (ur,ug) from E
never increases 3(F), and we can contract D(v)
into a single vertex after retaining '(ul, ug) as part
of the solution to cover T'.

Assume that Eg(u;) contains an edge (u1,w)
such that w = ug or w € D(v'). For the edge
f' = (v",v"), we next claim that (F) = B(F - f')
holds if there is an edge (uy,w) € Eg(uy) with
w € D(v'). To see this, consider the instance
(T',G") obtained from the current (7', G) by con-
tracting v” and v’ into a single vertex, and let
E** C E be a smallest edge set covering the
edges in T (i.e., F — f'). Assume that E**
does not cover f’ in T (otherwise we are done).
Thus, the edges in T[D(v')] are covered by two
edges (say er,ez) in E** by the minimality of
|E**|. For the edge e3 =
es = (u1,w) € Eg(uy) with w € D(v"), we see
that (E** — {e1,e2}) U {e3,eq4} covers all edges in
T. Therefore, B(F) = B(F — f') and we contract
the end vertices of edge f' = (v”,v') into a single

(ug,ug) and an edge

166

vertex both in 7 and G, deleting any resulting
self-loops.

The remaining case is that (u1,us) € Eg(uy).
Since f' is not a pseudo-fringe edge (i.e., (1) does
not hold), there is an edge (u2,w’) € Eg(ug) with
w' € D(v') and in this case we can also contract f'
by applying the above argument exchanging the
roles of u; and u3. The procedure in Case-4 is
summarized as follows.

(P4) If no edge in Eg(u;) is incident to any vertex
D(v') U {u3}, then retain (uy,us) as part of
the solution to cover T and contract D(v)
into a single vertex. Otherwise contract edge

7=).

Given a solution E** to the instance (T",G") re-
sulting from contracting f’, we can modify E** (if
necessary) so that f' is also covered in the origi-
nal instance (7, G) without increasing the size of
E*.

O

branch vertex
upper-part

S

middle-part

lower-part

a leaf vertex or a fringe or
pseudo-fringe vertex

g

3:
per-parts of a chain Pr(uy,ug).

Definition of lower-, middle- and up-

6 Structureof T+ FE

A leaf vertex is called a thorn vertez if its par-
ent is not a fringe vertex, and a vertex u is called
a branch verter if w = 7 or Ch(u) contains at
least two non-leaf vertices. Let THORN(v) de-
note the set of all thorn vertices in T[D(v)]. Note

that the number of branch vertices is at most
|FRINGE(v)|. For each branch vertex u, a path
Pr(u,w’) with w' € D(u) is called a chain of u if '
is a fringe or branch vertex and Pr(u,u') — {u, v’}
contains no fringe or branch vertex. (Thus any
internal vertex u” in a chain has exactly one non-
leaf vertex in Ch(x"”).) The number of chains in
a tree T[D(v)] is at most 2|FRINGE(v)| — 1.

In what follows, we assume that T+ E is 2-edge-
connected and T[D(v)] is a minimally {f-closed
subtree of T'. In this case, v is the root of T'[D(v)]
and is treated as a branch vertex. Consider a
chain Pr(uy,ux) of T[D(v)], where uy < -+ < ug
for V(Pr(uy,ux)) = {u1,...,ur} (see Fig. 3).
Let u, be the lowest vertex in {uj,...,ux} such
that all the edges in Pr(uji,ua) are covered by
a single edge (t,t') € E (where ¢ > 2 since
such (t,t') exists by the
T+E), and call the subpath Pr(uy,us).the upper-
The edge (t,t') € E

2-edge-connectivity of

part of chain Pp(uy,ug).

that defines u, is called the upper-edge of the

chain, where lca((t,t')) < u; < t holds and ¢
may belong to D(uy). Similarly the highest ver-
tex up € {uy,...,ux} such that the edges in
Pr(up,uy,) are covered by a single edge (s,s’) €
E with s € LEAF(ux) U PFRINGE (ug) — ug
(where up = uy, if no such (s, s') exists), and call
the subpath Pr(up,ur) the lower-part of chain
Pr(uy,ug). If up # ug, the edge (s,s') € E
that covers the lower-part is called the lower-edge
of chain Pr(u;,ux), where s’ possibly belongs to
E(Tl). If uy < up, then there must be a thorn
vertex zg € D(up) — (D(ug) U {up}) such that an
edge e € E connects zp and a vertex in D(w)
(otherwise T'[D(up)] would be If-closed). We say
that a subpath Pr(u;,u;) has a thorn vertex w if
the parent p(w) is contained in Pr(u;, uj).
Consider an edge g = (z1,z2) € F such that
both parents p(x1) and p(z2) belong to the same
chain Pp(ui,ux); p(z1) = p(zq) is assumed with-
out loss of generality. In this case, we denote the
parents p(z1) and p(z2) by up(g) and dwn(g), re-
spectively. Such edge g is called a swing edge if
path Pr(p(z1),p(z2)) has no thorn vertex other

167

than z; and z2 (some other edge e € E may be
incident to x1, 22 or Pr(p(z1), p(x2))). See Fig. 4,
where g1, g2, g3 are not swing edges.

‘D N DT NI

X 4: Definition of swing edges g.

up(g)=dwn(g)
4 (w) up(g) dwn(g) p() pOw) uy
ohe- L4) (s o,
Wik
Toming iz g YED() T e D)

5: Definition of binding edges e, of a swing
edge g in the case of (B1).

up(g)=dwn(g)
uy PO up(e) ¥ dwn(g) W)
o -
l’ ,I’
. r D zg/l
xl/ ...g.—— xz X I 12 4
N S N
w \ binding edge & w binding edge 4

X 6: Definition of binding edges e, of a swing
edge g in the case of (B2).

Fi

up(g) dwn(g)

no i)inding edgeof g

[X] 7: Definition of a succeeding tree of a solo edge
g.

If - wgy1 = up—1, then the sub-
path Pr(uqe+1,up—1) is called the middle-part of
chain Pr(ui,ui). In this case, for a swing edge
g = (z1,23) € E with ugq1 =< up(g) < dwnv(g) =
(w;y) € E a binding
edge of g if ey satisfies one of the following (B1)
and (B2). '

up—1, we call an edge eg =

(B1) w,y € THORN(v) and up(ey) < up(g) =
dwn(g) < dwn(ey) (see Fig. 5).

(B2) {w} = {w,y}NTHORN(v), p(w) < up(g) =
y and path Pr(p(w), max(dwn(g),y)) has a
thorn vertex z; € THORN (v)—{z1, z2, w} -
D(uy,), where possibly y € D(ug) (see Fig. 6).

'Notice that for any binding edge ¢; = (w,y), it
must hold p(w) € D(uy) — up in cases (B1) and
(B2) and y & D(ug) in case (B1) by the choice of
u, and ug.

A swing edge g € E is called a solo edge if

(B3) a1 < uplg) < dwn(g) < w1, and g has
no binding edge in (B1) or (B2).

For a solo edge g = (z1,72) € E defined on the
chain Pr(uy,u), we define the succeeding tree
of ¢ as follows. Let tmin be the highest vertex in
Pr(dwn(g),ur)—{dwn(g), ux} such that thereis a
thorn vertex z € THORN (v) — {z1, %2} incident
t0 tmin. (By definition of u; and the minimal
[f-closedness of T'[D(v)], there exists such thorn

" vertex z9.) Let f = (vg,tmin) € F be the edge
with v, < tmen (possibly v, = dwn(g)). We call
this vertex v,y the succeeding verter of g, and call
the subtree T[D(vy)] the succeeding tree of g. See
Fig. 7.

7 Covering minimally [f-closed

subtrees

Let T[D(v)] be a minimally [f-closed subtree
in T (where we can assume that v is not a fringe
vertex in T by Case-1). Such a T[D(u)] always
exits, since T = T[D(r)] is [f-closed. In this sec-
tion, we consider how to choose edges from E to
cover all edges in the T'[D(v)].

7.1 Outline
Assume that none of Cases-1,2,3 and 4 holds in
T[D(v)]. Thus T[D(v)] satisfies that

(A1) Every fringe vertex u satisfies |Ch(u)| # 1,3,
and each non-root and non-fringe vertex v’ €
D(v) with |LEAF(v')| = 3 satisfies (1),

168

(A2) Every fringe vertex u has an edge e =
(w,w') € E such that {w,w'} C Ch(u).

In this section, we assume that the following
condition holds in a given minimally [f-closed tree

T[D(v)].

(A3) For any solo edges g € E on the middle-
part of a chain in T[D(v)], its succeeding tree
T[D(v,)] has at most five leaf vertices (i.e.,

ILEAF(v,)] < 5).

(We discuss in section 8 the case in which con-
dition (A3) does not hold.) If there are three
disjoint solo edges g,¢’,¢"” on a path from v and
to a leaf vertex w in T[D(v)]. For the highest
edge g among these three edges, it is easy to see
that |LEAV (vg)| > 6 for its succeeding vertex vg.
Thus, if (A3) holds, then there are at most two
disjoint solo edges in the path from v to any fringe
vertex in T{D(v)].

We sketch a procedure COVER for computing
a subset E%% C E that covers all edges in a min-
imally [f-closed subtree T[D(v)]. Let Fie.5 be
the set of leaf edges in T[D(v)], and Ejeqs de-
(u,v) € E with
C Ejeqy be the set

note the set of all edges e =
u,u' € LEAF(v), and Eprime
of prime edges. The procedure consists of the fol-

lowing three phases, where the details of Phases-2
and 3 are described in the next subsections.

Procedure COVER

If [LEAF (v)| < 3, then it is easy to find a sub-
set E%® C F that covers T[D(v)] and satisfies
%,B(Fleaf U Ffringe)-In what follows, |LEAF(v)| >
4 is assumed.

Phase-1 (Covering all leaf edges in T[D(v))):
Compute a maximum matching M* C E in the
graph (LEAF(v), Eieaf — Eprime), and denote by
W the set of unmatched vertices in LEAF(v). A
prime edge g € Eprime is called an unmatched
prime edge if both end vertices of g are un-
matched, and denote by M| (resp., M3) the set
of all unmatched prime edges of type-1 (resp., of
type-2). For each unmatched prime edge (w,w’)

of type-2, where w < w', we see by (1) that
there is an unmatched prime edge (w,w”) of
type-2 such that w” is the sibling of w’ (also
(w',w") € M]). For each such pair of unmatched
prime edges (w,w’) and (w,w"), we choose arbi-
trarily one of them, and denote by M} the result-
ing set of unmatched prime edges of type-2 (hence
M) = M)/2).

For each vertex w € W — V(M] U M}) (where
Eg(w) # 0 by the 2-edge-connectivity of T + E),
choose an edge e, € Eg(w) as follows. If w is

incident to a binding edge e, in (B1) or (B2) for

a swing edge g with w < up(g), then let e, = ¢,
(by choosing one arbitrarily if there is more than
such binding edge). Otherwise, let e,, € High(w).

For each ¢ = (u,u’) € M], we choose an
edge el9) as follows. If no unmatched prime
edge of type-2 is adjacent to g, then let €9 ¢
High({u,v/,p(v)}). Otherwise, if an unmatched
prime edge (w,u) of type-2 is adjacent to g,
then let e(9) € High(D(p(w))). Denote E; =
M*UM{UMIU{e® | g€ M{}U{ey | w €
W —V(M]u M)}

Phase-2 (Merging 2-edge-connected com-
ponents in T + E;): Consider all nontrivial 2-
edge-connected components in T'+ E;. To reduce
the number of those components, we choose an
appropriate set Fy C E — Ey of edges which com-
bine different components in T + Ej.

Phase-3 (Making T'[D(v)] 2-edge-

connected): For each 2-edge-connected compo-
nent B in T + (Ey U E3) containing an edge
in M*, we choose an edge e®) € High(X) for
X =V(B)N(LEAF(v) U FRINGE(v)). Let E3
be the set of the edges e(B) chosen for all those
components B. (To be precise, Phase-3 of our al-
gorithm may divide some 2-edge-connected com-
ponent into several components (without separat-
ing two end vertices of any edge in M{ U M) or
may treat some 2-edge-connected components as
a single component before computing (&) for each
component B.) Output E?? = E, UE,UFE3. O

169

The solution E%* = E,UE,UE;5 covers all the
edges in T'[D(v)], as will be shown in the next sub-
section. We first note that |[F)| = |[LEAF(v)| —
|M*| holds, because by [W| = |LEAF (v)|—2|M*|,
we have |Ey| = |M*|+|M{|+|M}|+|{e) |
9 € Mi}|+H{ew | w € W V(M UM} =
|LEAF(v)| — |[M*|. Hence we have

|E**| < |LEAF(v)| = |M*| + |E,| + | Es].

Let us assume that Fy and Ej3 are chosen so that
the next two properties hold.

PROPERTY 7.1 |E| + |E3| < |M*|. a

PROPERTY 7.2 For some constant § > 0, (2 +
O)(|Ez2| + |Es|) < |LEAF (v)|. O

For the set F, of all leaf and fringe edges in
T[D(v)], we see by Lemma 4.2 that 8(F,) >
3(2|LEAF (v)| — |M*|). Therefore, -

3(|LEAF(v)] - [M*| + |By| + | B
2|LEAF(v)| — | M*|
3|LEAF(v)|

2[LEAF (v)| = (|Ea| + | Bs))

(by Property 7.1 and by [LEAF(v)|

+{Bs| + |By| < 2|LEAF(v)

which follows from Property 7.2)

3|LEAF(v)]

2|LEAF(v)| — EjlralLEAF(v)l

(by Property 7.2)

6130 6

3+420°

Lo
pF) =

IA

IA

3420

which is strictly smaller than 2 unless § = 0. We
design Phases-2 and 3 such that Property 7.1 and
Property 7.2 with some 6 > 0 hold.

7.2 Phases-2 and 3

In" this subsection, we describe the details of
Phases-2 and 3, and then prove some properties
of the obtained sets E, and Fj.

Phase-2 (Merging 2-edge-c6nnected com-
ponents in T + E;):

‘Step 1. A matching edge g = (z,2') € M* with
2,72/ € THORN(v) is called upward in a chain
Pr(uy,ug) in T[D(v)] if

(B4) both z and 2’ are incident to Pr(u,ux), and
one of z and 2’ is incident to Pr(uy,ue) —
uy, where Pr(uj,u,) is the upper-part of
Pr(uy,ug)

(note that g is not upward if p(z) = uy or p(z') =
ug). A chain Pr(ui,u) is called active if it has
at least one upward matching edge and Pr(uy, 1q)
does not belong to a single 2-edge-connected com-
ponent in T+ E;. A branch vertex u; is also called
active if it has an active chain Pp(uq,ug).

For each active chain P = Pp(uj,ux) in
T[D(v)], we choose its upper-edge e(P). For each
active branch vertex v', let Eypper(v') be the set of
the upper-edges e(P) chosen for all active chains
P = Pr(v' = uy,ug) of v'. Let Eypper denote the
union of Eypper(v’) for all active branch vertices

v,

Step 2. Consider the graph T + (E1 U Eypper)-
A 2-edge-connected component A in this graph is
called small if it contains a matching edge g =
(z1,72) € M*, but has no leaf vertex other than
1 and 9.

By (A1) and (A2) and M* N Eppime = @, the
two leaf vertices z; and z3 in a small component
A are both thorn vertices. From definitions (B1)-
(B3), the matching edge g = (z1,%2) in a small
component A satisfies one of the following cases.

(a) g is not a swing edge, ie., the path
Pr(p(z1),p(x2)) between the parents p(z;) and
p(z3) contains a branch vertex. (In the following
(b) and (c), g is assumed to be a swing edge.)
(b) One of the parents p(x;) and p(z2) belongs to
the lower-part of a chains.

(c) Both p(z1) and p(x2) belong to the middle-
part of the same chain, where

(1) g has a binding edge ey = (w,y) € E satisfy-
ing one of (B1) and (B2), or

(2) g is a solo edge.

170

In the case (c)-(1), we choose a binding edge
ey for each g (even if there is more than one
binding edge). Initially set Emerge := 0, and let
A = {Aj,...,Ap} be the set of all small compo-
nents satisfying (c)-(1). The binding edge e; of
the swing edge g in an A4; € A is called merging if

(B5) adding e, to the current graph T + (E; U
EuppeTUEmerge) merges at least three 2-edge-
connected components; each of which con-
tains at least one matching edge, into a single
2-edge-connected component.

We repeatedly apply the following procedure until
no new merging edge is found.

MERGE Find an A; € A such that the
binding edge ey, of the matching edge g;
in A; is merging in the current graph
T + (E1 U Eypper U Emerge). Add ey, to
Ererge, letting A := A — A;. Ol

Let E} := Eypper U Emerge-

Phase-3 (Making T[D(v)] 2-edge-
connected): Consider all 2-edge-connected com-
ponents C in T + (E1 U Ej) containing an edge
in M*, and apply the following steps after letting
E3 :=0.

Step 3. Consider the 2-edge-connected compo-
nents C in T + (E1 U Ej) such that

E(C) N M* # 0 and |E(C) N M*| = |E(C) N Ej|.

By procedure MERGE, this can occur only when
E(C)NE) C Eypper holds and the edges in E(C)N
M?* are all upward, where each e € E(C) N M*
corresponds to an upper-edge € € E(C) N Eypper
by Step 1.

For each of such components C, we partition
E(C) n M* into subsets M, (v1),..., My, (vq)
such that the upward matching edges in each
M, (v;) are defined on some chains Pr(vi,u) of
the same branch vertex v;. For each v;, let C,, de-
note the graph which consists of upward edges in

Mg, (vi)U Eu,;per(vi) (for notational convenience),
and choose an edge e(B) ¢ High(V (M, (v;))) for
component B = C,,. In this case, e® is adja-
cent to an upward matC_hing edge ¢’ € M;‘p(v,-).
Let eP) ¢ Eupper(v;) be the upper-edge of P =
Pr(v;,) that has the matching edge g'. See
Fig. 8. If lca(elP)) < v;, then we replace e(P)
by e(B):

171

(LEAF(v)UFRINGE(v))), where V(A(P;)) de-
note the set of all vertices in the small components
in A(P;). Let B be the set of all these compo-
nents B = A(P;) computed in this step.

For the final Eypper and F3 computed in the

above procedure, we denote Fy = Evypper U Emerge
and EP* = F, U FEy U Ej. O

Es3 := E3U {e(B) 1 Eupper(vi) — Eupper(’Ui)— { e(P)}, We now show that the obtained E%% covers all

updating Cy, := Cy, + elB) — e(P), (Otherwise
(ie., if v; < lca(e(P))) we do nothing by setting
e®) to be empty.) Let B3 denote the set of all
these components B = C,, computed in this step.

!
1
1
]
1
1
L
1
1

upper-edge?,

________ P)

8: Ilustration for Step 3.

Step 4.
connected components in T+ (E; U F}) not con-
sidered in Step 3. For each component B that

Consider the remaining 2-edge-

contains an edge in M™*, but is not a small com-
ponent satisfying (b), let E3 := E3 U {eB)}
by choosing an edge e(B) € High(X) for X =
V(B) N (LEAF(v) U FRINGE(v)). Let B5 be
the set of all these components B computed in
this step.

Step 5.
small components satisfying (b) into subsets
A(Py),..., A(P;) such that all components in
each A(P;) are defined on the same chain P;. We
treat each A(P;) as a single component B. For
each component B = A(P,), let Ej := E3U{e(B)}
by choosing an edge e(B) e High(V(A(R)) n

Finally, we partition the set of all

edges in T[D(v)] (for this we do not need condi-
tion (A3)).

LEMMA 7.1 Let G = (V,E) be a graph and T =
(V,F) be a tree-rooted at v with ENF = such
that T+ E = (V,F UE) is 2-edge-connected. Let
T[D(v)] be a minimally Lf-closed subtree satisfy-
ing conditions (A1) and (A2). Then the subset
E®* = Ey U Ey U E3 C E obtained by the proce-
dure COVER covers all edges in T[D(v)].

Proof: Omitted. O

Now we estimate the size of E**%, For each

B € B33 U B5t U B55, we first show
|E(B) N M*| 2 |E(B) N Ez| + |[E(B) N E3|. (2)

By construction of Phase-2, any edges in E} are
chosen so that if the resulting 2-edge-connected
component C has p edges from Ej, then C has
at least p + 1 matching edges, except for the case
in Step 3. In Step 3, each component C with
|E(B)NM*| = |E(B)N E}] is divided into several
components B = C,,, for which an upper-edge
E(B) N E} is discarded or no edge ¢(® is add to
Es3. Each e(B) ¢ B is chosen for a component B
which contains a matching edge in M*. Therefore,
(2) holds, and we have Property 7.1

|M*| 2 | Es| + | Es).

If the minimally If-closed subtree T[D(v)] satis-
fies condition (A3),A then we can show the next

property.

CLAIM 7.1 (2 + 0)(|E2| + |Es|) < |LEAF(v)|
holds for 0 = —27-

Proof: Omitted. O

Therefore, from the argument at the end of sec-
tion 7.1, we have the following result.

LEMMA 7.2 Let G = (V,E) be a graph and T =
(V,F) be a tree rooted at v with ENF = § such
that T+ E = (V, FUE) is 2-edge-connected. Let
T[D(v)] be a minimally lf-closed subtree satis-
fying conditions (A1) — (A3). Then the subset
E®¥% = BiUEyUE3 C E obtained by the procedure
COVER satisfies |E®*| < 1.923(F,) for the set
F, of leaf and (pseudo-)fringe edges in T[D(v)].

0

8 Reduction by COVER

We consider the remaining case in which a given
minimally {f-closed tree T[D(v)] does not satisfy

" condition (A3).
g € E on the middle-part of a chain in T[D(v)]
such that its succeeding tree T'[D(v,)] has at least
six leaf vertices (i.e., |[LEAF(vg)| > 6). We apply
procedure COVER to find an approximate solu-

That is, there is a solo edges

tion to cover the edges in the tree T[D(vg)].

LEMMA 8.1 For a solo edge g = (z1,22) € E de-
fined on a chain Pr(uy,ux) (u1 < ug) in a min-
imally 1f-closed tree T[D(v)], let vy be the suc-
ceeding vertex of g, and let w* be the highest ver-
tex among all vertices in Pr(uy,uy) that are in-
cident to a vertez in D(vg) — vg via an edge in
E (see Fig. 7). Then for Fy = E(T[D(vg)]) and
z = min(w*, up(g)), it holds

Fy — F, C {f1, 2} UE(Pr(z,vy)),
where fi and fo are the two leaf edges adjacent to
g.
Proof: Omitted. O

Given an edge set B/ C E that covers Fy =
E(T[D(vq)]), we note here that an edge set
E" can be constructed to cover Fy U {f1, f2a} U
E(Pp(z,v,))(2 F,) by adding to E' at most three
edges (two edges to cover {f1, f2} and one to cover
E(Pr(x,vg))).

172

LEMMA 8.2 For a solo edge g € E defined on a
chain Pr(uy,ur) (u1 < ug), let vy be the succeed-
ing vertez of g. Assume that T[D(vg)] satisfies
condition (A1) — (A3). For |LEAF(vg)| > 6 and
any fized € > 0, an edge set E¥ C E that cov-
ers f’; and has size |[ET| < (1.92 + €)B(Fy) can

" be found in the same time complexity of COVER

applied to T[D(vy)].
Proof: Omitted. O

If there is a solo edges g such that
|LEAV (vg)| > 6 for its succeeding vertex vy, then
we can apply Lemma 8.2 to find a (1.92 + ¢€)-
approximation solution to cover the edges in the

tree T[D(v,)).

9 Entire description

We are now ready to describe the entire algo-
rithm. Given a graph H = (V| E’) and a subset
X C V, we denote by H/X the graph obtained
from H by contracting X into a single vertex and
deleting all the resulting self-loops.

APPROX
Input: A graph G = (V,E) and a tree T = (V, F)
rooted at r with ENF = @ such that T+ F =
(V, F U E) is 2-edge-connected, and
a constant € > 0.
Output: A subset E' C E that covers F' and has
size |E'| < (1.92 + €)B(F).
E' =
while T contains more than one vertex do
while one of Cases-1,2,3 and 4 holds do
Execute procedures (P1),(P2),(P3), (P4)
in Cases-1,2,3,4, respectively, and add
to E’ the edges retained by the procedure
end; /* while */
/* Conditions (A1) and (A2) hold. */
Choose a minimally [f-closed subtree T[D(v)];
if condition (A3) holds in T[D(v)] then
Compute an edge set E*?? C E which
covers edges in T[D(v)] '
by procedure COVER,;

E':= E' U B~

For X = {the end vertices of edges

f € F covered by E’*} T :=T/X

and G := G/X;

else /* T[D(v)] has a solo edge g such that

its succeeding tree T[D(v,)]

contains at least six leaf vertices. */

Choose such succeeding tree T'[D(vy)];

F,, := {all edges in T[D(v,)]};

Compute an edge set ET C E which

covers f;’;; by Lemma 8.2 with

constant € > 0;

E =B UE*;

For X = {the end vertices of edges f € F

covered by E*}, T:=T/X and G := G/X
end; /* while */
Output E’ (after modifying E’, if necessary,
so that the edges f’ contracted in Cases-3
and 4 are also covered in T without, increasing
the size of E). O

By using the least common ancestor algorithm
[5, 9] and the maximum matching algorithm [8],
the above algorithm can be implemented to run
in O(n/?m + n?) time.

THEOREM 9.1 Given a graph G = (V,E) and
a tree T = (V,F) with ENF = 0 such that
T+ FE = (V,FUE) is 2-edge-connected, the prob-
lem of finding a smallest 2-edge-connected span-
ning subgraph H = (V,F U E') containing T is
(1.92 + €)-approzimable in O(nl/2
for any fized constant € > 0, where n = |V| and
m=|EUF|. i

m + n?) time

SEYH

[1] J. Cheriyan, A. Seb6 and Z. Szigeti: “An
improved approximation algorithm for min-
imum size 2-edge connected spanning sub-
graphs,” Lecture Notes in Computer Science,
1412, Springer-Verlag, IPCO’98 (1998) 126-
136.

[2] J. Cheriyan and R. Thurimella: “Approximat-
ing minimum-size k-connected spanning sub-

173

graphs via matching,” Proc. 37th IEEE Symp.
on Found. Comp. Sci. (1996) 292-301.

[3] K. P. Eswaran and R. E. Tarjan: “Augmenta-
tion problems,” SIAM J. Computing, 5 (1976)
653-665.:

[4] G. N. Frederickson and J. JaJi: “Approxi-
‘mation algorithms for several graph augmen-
tation problems,” SIAM J. Computing, 10
(1981) 270-283.

(5] D. Harel and R. E. Tarjan: “Fast algorithms
for finding nearest common ancestors,” SIAM
J. Computing, 13 (1984) 338-355.

[6] S. Khuller and R..Thurimella:
mation algorithms for graph augmentation,”

“Approxi-

Proc. 19th International Collogquium on Au-
tomata, Languages and Programming Confer-
ence (1992) 330-341.

[7] S. Khuller and U. Vishkin: “Biconnectivity
approximations and graph carvings,” J. ACM,
41 (1994) 214-235.

[8] S.Micali and V. V. Vazirani: “An O(\/[V]|E|)
algorithm for finding maximum matching in
general graph,” Proc. 21st IEEE Symp. on
Found. Comp. Sci. (1980) 17-27.

[9] B. Schieber and U. Vishkin: “On finding low-
est common ancestors: simplification and par-
allelization,” SIAM J. Computing, 17 (1988)
1253-1262.

[10] S. Tsukiyama, K. Koike and I. Shirakawa:
“An algorithm to eliminate all complex trian-
gles in a maximal planar graph for use in VLSI
floor-plan,” Proc. ISCAS’86 (1986) 321-324.

