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Abstract: This paper presents a combinatorial $\mathrm{P}^{01}\mathrm{y}\mathrm{n}\mathrm{o}\mathrm{m}\mathrm{i}\mathrm{a}1$ -time algorithm for minimizing
submodular set functions. The algorithm employs a scaling scheme that uses a flow in the
complete directed graph on the underlying set with each arc capacity equal to the scaled
parameter. The resulting algorithm runs in time bounded by a polynomial in the size of
the underlying set and the largest length of the function value. The paper also presents a
strongly polynomial-time version that runs in time bounded by a polynomial in the size
of the underlying set independent of the function value. These are the first combinatorial
algorithms for submodular function minimization that run in (strongly) polynomial time.
Key words: submodular function, combinatorial optimization, strongly polynomial-time
algorithm

1. Introduction
$\mathrm{G}\mathrm{r}\ddot{\mathrm{o}}\mathrm{t}_{\mathrm{S}}\mathrm{C}\mathrm{h}\mathrm{e}1$, Lov\’asz, and Schrijver [14] revealed the Polynomial-time equivalence between the optimiza-
tion and separation problems in combinatorial optimization via the ellipsoid method. Since then, many
combinatorial problems have been shown to be Polynomial-time solvable by means of their framework.
The problem of minimizing submodular (set) functions is among these problems. Since the ellipsoid
method is far from being efficient in practice and is not combinatorial, efficient combinatorial algo-
rithms for submodular function minimization have been desired for a long time.

Submodular functions arise in various branches of mathematical engineering such as combinatorial
optimization and information theory. Examples include the matroid rank function, the cut capacity
function, and the entropy function. In each of these and other applications, the base polyhedron
associated with the relevant submodular function often plays an important role. See Lov\’asz [21]
and Fujishige [12] for fundamental results about submodular functions and for close connections to
convexity.

Linear optimization problems over base polyhedra are efficiently solvable by the greedy algorithm
of Edmonds [4]. Thus Gr\"otschel, Lov\’asz, and Schrijver [14] assert that the submodular function mini-
mization, which is equivalent to the separation problem, is solvable in polynomial time by the ellipsoid
method. Later, they also devised a strongly Polynomial-time algorithm within their framework using
the ellipsoid method [15].

A first step towards a combinatorial strongly polynomial-time algorithm was taken by Cunningham
$[2, 3]$ , who devised a strongly Polynomial-time algorithm for testing membership in matroid polyhe-
dra as well as a pseudopolynomial-time algorithm for minimizing submodular functions. Recently,
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Narayanan [24] improved the running time bounds of these $\mathrm{c}\mathrm{o}\mathrm{I}\mathrm{n}\mathrm{b}\mathrm{i}\mathrm{n}\mathrm{a}\mathrm{t}_{\mathrm{o}\mathrm{r}}\mathrm{i}\mathrm{a}1$ algorithms by a round-
ing technique. Based on the minimum-norm base characterization of minimizers due to Fujishige
$[10, 11]$ (cf. [12, \S 7.1 $(\mathrm{a})]$ ), Sohoni [26] gave another combinatorial pseudopolynomial-time algorithm
for submodular function minimization.

For the problem of minimizing a symmetric submodular function over proper nonempty subsets,
Queyranne [25] presented a combinatorial strongly polynomial-time algorithm, extending the undi-
rected minimum cut algorithm of Nagamochi and Ibaraki [22]. See also Nagamochi and Ibaraki [23]
for a slight extension.

In this paper, we present a combinatorial polynomial-time algorithm for submodular function min-
imization. Our algorithm uses an augmenting path approach with reference to a convex combination
of extreme bases. Such an approach was first introduced by Cunningham for minimizing submodular
functions that arise from the separation problem for matroid polyhedra [2]. This was adapted for
general submodular function minimization by Bixby, Cunningham, and Topkis [1] and improved by
Cunningham [3] to obtain a pseudopolynomial-time algorithm.

These previous methods use the set of arcs of the Hasse diagrams of the partial orders associated
with the extreme bases. They are inefficient since the lower bound on the size of each augmentation is
too small. In traditional network flow problems, it is possible to surmount this difficulty by augmenting
only on paths of sufficiently large capacity [6]. However, it has proved difficult to adapt this scaling
approach to work in the setting of submodular function minimization, mainly because the amount of
augmentation is determined by exchange capacities multiplied by the convex combination coefficients,
which can be exponentially small in the size of the underlying set.

To overcome this difficulty, we augment the arc set of the Hasse diagrams with the complete
directed graph on the underlying set, letting the capacity of this additional arc set depend directly
on our scaling parameter. This technique was first introduced by Iwata [19], who used it to develop
the first polynomial-time capacity-scaling algorithm for the submodular flow problem of Edmonds and
Giles [5]. This algorithm was later refined by Fleischer, Iwata, and $\mathrm{M}\mathrm{c}\mathrm{C}_{0}\mathrm{r}\mathrm{m}\mathrm{i}\mathrm{c}\mathrm{k}[7]$ into one of the
fastest algorithms for submodular flow. Our work in this paper builds on ideas in this latter paper to
develop a capacity-scaling, augmenting-path algorithm for submodular function minimization. The
running time of the resulting algorithm is weakly polynomial, i.e., bounded by a polynomial in the
size of the undelying set and the largest length of the function value.

We then modify our scaling algorithm to run in strongly polynomial time, i.e., in time bounded
by a polynomial in the size of the underlying set, independently of the largest length of the function
value. To make a weakly polynomial-time algorithm run in strongly polynomial time, Frank and
Tardos [8] developed a generic preprocessing technique that is applicable to a fairly wide class of
combinatorial optimization problems including the submodular flow problem and testing membership
in matroid polyhedra. However, this framework does not apply to submodular function minimization.
Instead, we devise a combinatorial algorithm that repeatedly detects an element that belongs to every
minimizer or an ordered pair of elements with the property that if the first belongs to a minimizer
then the second does.

There are some practical problems, in dynamic flows [17], facility location [27], and multi-terminal
source coding $[9, 16]$ , where the polynomial-time solvability relies on a submodular function minimiza-
tion routine. Goemans and Ramakrishnan [13] discussed a class of submodular function minimization
problems over restricted families of subsets. Their solution is combinatorial modulo submodular func-
tion minimization on distributive lattices. Our algorithm can be used to provide combinatorial strongly
polynomial-time algorithms for these problems.

This paper is organized as follows. Section 2 provides preliminaries on submodular functions.
Section 3 presents a scaling algorithm for submodular function minimization, which runs in weakly
polynomial time. Section 4 is devoted to the strongly polynomial-time algorithm. In Section 5, we
give a brief discussion on extensions.
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2. Preliminaries

Denote by $\mathrm{Z}$ and $\mathrm{R}$ the set of integers and the set of reals, respectively. Let $V$ be a finite nonempty
set of cardinality $|V|=n$ . The set of functions $x$ : $Varrow \mathrm{R}$ forms a linear space $\mathrm{R}^{V}$ . A vector in
$x\in \mathrm{R}^{V}$ is usually identified with a modular function $x:2^{V}arrow \mathrm{R}$ defined by $x(X)= \sum\{x(v)|v\in X\}$

$(X\subseteq V)$ . For each $u\in V$ , we denote by $\chi_{u}$ the unit vector in $\mathrm{R}^{V}$ such that $\chi_{u}(v)=1(v=u)$ and
$=0(v\in V\backslash \{u\})$ .

A function $f$ : $2^{V}arrow \mathrm{R}$ is said to be submodular if it satisfies

$f(X)+f(Y)\geq f(X\cup Y)+f(X\cap Y)$ (X, $\mathrm{Y}\subseteq V$ ).

We suppose that $f(\emptyset)=0$ without loss of generality throughout this paper. For basic notation and
facts about submodular functions, see Lov\’asz [21] and Fujishige [12], for example.

We define the submodular polyhedron $\mathrm{P}(f)$ and the base polyhedron $\mathrm{B}(f)$ associated with the
submodular function $f$ by

$\mathrm{p}(f)$ $=$ $\{x|x\in \mathrm{R}^{V}, \forall X\subseteq V : x(X)\leq f(X)\}$,
$\mathrm{B}(f)$ $=$ $\{x|x\in \mathrm{p}(f), x(V)=f(V)\}$ .

A vector $x\in \mathrm{B}(f)$ is called a base. For any base $x\in \mathrm{B}(f)$ and any distinct $u,$ $v\in V$ define the
exchange capacity

$\sim \mathrm{c}(x, u, v)=\max\{\alpha|\alpha\in \mathrm{R}, x+\alpha(\chi_{u}-\chi_{v})\in \mathrm{B}(f)\}$ . (2.1)

The exchange capacity can be expressed as

$\overline{\mathrm{c}}(x, u, v)=\min\{f(X)-X(x)|X\subseteq V, u\in X, v\in V\backslash X\}$ . (2.2)

We call an extreme point of $\mathrm{B}(f)$ an extreme base. For any extreme base $y\in \mathrm{B}(f)$ define

$D(y)=\{X|X\subseteq V, y(X)=f(X)\}$ .

Then, $D(y)$ is a distributive lattice, i.e., $X,$ $Y\in D(y)$ implies $X\cup \mathrm{Y},$ $X\cap Y\in D(y)$ . A set $X\in D(y)$ is
called tight for $y$ . Since $y$ is an extreme base, $D(y)$ is simple, i.e., a maximal chain in $D(y)$ is of length
$n=|V|$ . Hence, there exists a unique poset $P(y)=(V, \preceq_{y})$ on $V$ such that the set of (lower) ideals of
$P(y)$ coincides with $D(y)$ . Note that for distinct $u,$ $v\in V$ we have $\overline{\mathrm{C}}(y, u, v)>0$ if and only if $v\preceq_{y}u$

in $\mathcal{P}(y)$ . Denote by $H(y)=(V, A(y))$ the Hasse diagram of the poset $P(y)$ . Given an extreme base
$y$ , we can construct the Hasse diagram $H(y)$ in $\mathrm{O}(n^{2})$ time by using the evaluation oracle [1] (cf. [12,
pp. 62-63]).

A fundamental operation in our algorithm is to transform an extreme base $y\in \mathrm{B}(f)$ to another
extreme base $y’=y+\sim \mathrm{c}(y, u, v)(x_{u}-\chi_{v})$ for $u,$ $v\in V$ with $(u, v)\in A(y)$ , i.e., $(u, v)$ being an arc
of the Hasse diagram $H(y)$ . The new extreme base $y’$ thus obtained is adjacent to $y$ in the base
polyhedron [12, Theorem 3.47]. Computing exchange capacities in general is as hard as minimizing
submodular functions. However, Lemma 2.2 given below shows that if $y\in \mathrm{B}(f)$ is an extreme base,
then the exchange capacity $\sim \mathrm{c}(y, u, v)$ can be $\mathrm{e}\mathrm{a}s$ ily computed for all $(u, v)\in A(y)$ . We denote by $J_{y}(u)$

the principal ideal of $\mathcal{P}(y)$ generated by $u$ . That is, $J_{y}(u)$ is the unique minimal ideal of $P(y)$ that
contains $u$ . Note that $J_{y}(u)$ is the same as $\mathrm{d}\mathrm{e}\mathrm{p}(y, u)$ in [12]. We require the following easy technical
lemma, which also appears in [1].

Lemma 2.1: For an extreme base $y\in \mathrm{B}(f)$ , if $X$ is tight and $u$ is maximal in $X$ with respect $to\preceq_{y}$ ,
then $X\backslash \{u\}$ is also tight for $y$ . $\blacksquare$

Lemma 2.2: For an extreme base $y\in \mathrm{B}(f)$ let $(u, v)\in A(y)$ . Then we have

$\sim \mathrm{c}(y, u, v)=f(J_{y(u)\backslash }\{v\})-y(J_{y}(u)\backslash \{v\})$. (2.3)
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Proof. Let $X$ be a minimal minimizer in the right-hand side of (2.2). Since $y(J_{y}(u))=f(J_{y}(u))$ and
$y(X\cup J_{y}(u))\leq f(X\cup J_{y}(u))$ , it follows from the submodularity of $f$ that

$f(x\mathrm{n}J_{y}(u))-y(x\cap J_{y(u))}\leq f(X)-y(x)$,

which implies by the definition of $X$ that $X\subseteq J_{y}(u)$ . Since $u$ is maximal in $J_{y}(u),$ $J_{y}(u)\backslash \{u\}$ is tight
by Lemma 2.1. Since $(u, v)\in A(y),$ $v$ is maximal in $J_{y}(u)\backslash \{u\}$ . Hence, $J_{y}(u)\backslash \{u, v\}$ is also tight.
Since $y(X\backslash \{u\})\leq f(X\backslash \{u\})$ , the submodularity of $f$ further implies

$f(J_{y}(u)\backslash \{v\})-y(J_{y}(u)\backslash \{v\})\leq f(X)-y(x)$ .

Thus we obtain (2.3). $\blacksquare$

For any vector $x\in \mathrm{R}^{V}$ , we denote by $x^{-}$ the vector in $\mathrm{R}^{V}$ defined by $x^{-}(v)= \min\{0, x(v)\}$ for
$v\in V$ . The following fundamental lemma easily follows from a theorem of Edmonds [4] on the vector
reduction of polymatroids (see [12, Corollaries 3.4 and 3.5]).

Lemma 2.3: For a submodular function $f$ : $2^{V}arrow \mathrm{R}$ we have

$\max\{x^{-}(V)|x\in \mathrm{B}(f)\}=\min\{f(X)|X\subseteq V\}$ .

If $f$ is integer-valued, then the maximizer $x$ can be chosen from among integral bases. $\blacksquare$

We will not use the integrality property indicated in the latter half of this lemma. Lemma 2.3
shows a min-max relation of strong duality. A weak duality is described as follows: for any base
$x\in \mathrm{B}(f)$ and any $X\subseteq V$ we have $x^{-}(V)\leq f(X)$ . We call the difference $f(X)-X^{-}(V)$ a duality gap.
Note that, if $f$ is integer-valued and the duality gap $f(X)-x^{-}(V)$ is less than one for some $x\in \mathrm{B}(f)$

and $X\subseteq V$ , then $X$ minimizes $f$ .

3. A Scaling Algorithm

The present section gives a combinatorial algorithm for minimizing an integer-valued submodular
function $f$ : $2^{V}arrow \mathrm{Z}$ with $f(\emptyset)=0$ . We assume an evaluation oracle for the function value of $f$ . Let
$M$ denote an upper bound on $|f(X)|(X\subseteq V)$ . Note that we can easily compute $M$ by $\mathrm{O}(n)$ calls for
the evaluation oracle.

3.1. Algorithm Outline

As indicated earlier, our algorithm uses an augmenting path approach to submodular function mini-
mization [1, 2, 3]. As with previous algorithms, we maintain a base $x\in \mathrm{B}(f)$ as a convex combination
of extreme bases $y_{i}\in \mathrm{B}(f)(i\in I)$ , so that $x= \sum_{i\in I}\lambda_{i}yi$ . Roughly speaking, these previous algo-
rithms seek to increase $x^{-}(V)$ by augmenting from vertices $v$ with $x(v)<0$ to vertices $u$ with $x(u)>0$

along paths of arcs in $\bigcup_{i\in I}A(y_{i})$ . The algorithms stop with an optimal $x$ when there are no more
$\mathrm{a}\mathrm{u}\mathrm{g}\mathrm{m}\mathrm{e}\mathrm{n}^{\mathrm{e}}v\mathrm{i}\mathrm{n}\mathrm{g}$paths. The corresponding minimizer $X$ is determined by the set of vertices reachable from
vertices $v$ with $x(v)<0$ .

To adapt this procedure to a scaling framework, we augment the arc set $\bigcup_{i\in I}A(y_{i})$ with the
complete directed graph on $V$ and let the capacity of this graph depend directly on our scaling
parameter $\delta$ , an idea first introduced for submodular flows in [19]. In this regard, we actually concern
ourselves with a vector $z=x-\partial\varphi$ where $\varphi$ : $V\mathrm{x}Varrow \mathrm{R}$ is maintained as skew-symmetric, i.e.,
$\varphi(u, v)+\varphi(v,u)=0$ for $u,$ $v\in V$ , and $\delta$-feasible in that it satisfies capacity $\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{S}\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{i}\mathrm{n}\mathrm{t}\mathrm{s}-\delta\leq\varphi(u, v)\leq\delta$

for every $u,$ $v\in V$ . The function $\varphi$ can be regarded as a flow in the complete directed graph $G=(V, E)$

with the vertex set $V$ and the arc set $E=V\mathrm{x}V$ . The boundary $\partial\varphi:Varrow \mathrm{R}$ of $\varphi$ is defined by

$\partial\varphi(v)=\sum_{u\in V}\varphi(u, v)$
$(v\in V)$ . (3.1)
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We start with $x\in \mathrm{B}(f)$ as an extreme point, which is easily obtainable using the greedy algorithm,
and $\varphi$ as the zero flow. Thus, initially $z^{-}(V)=x^{-}(V)\geq-nM$ . We seek to increase $z^{-}(V)$ , and in
doing so, obtain improvements in $x^{-}(V)$ , via the $\delta$-feasibilty of $\varphi$ .

The algorithm consists of scaling phases with a positive parameter $\delta$ . It starts with $\delta=M$ , cuts $\delta$

in half at the beginning of each scaling phase, and ends with $\delta<1/n^{2}$ . Each $\delta$-scaling phase maintains
a $\delta$-feasible flow $\varphi$ , and uses the residual graph $G(\varphi)=(V, E(\varphi))$ with the arc set

$E(\varphi)=\{(u, v)|u, v\in V, u\neq v, \varphi(u, v)\leq 0\}$ . (3.2)

Intuitively, $E(\varphi)$ consists of the arcs through which we can augment the flow $\varphi$ by $\delta$ without violating
the capacity constraints.

A phase starts by preprocessing $\varphi$ to make it $\delta$-feasible, and then repeatedly searches to send flow
along augmenting paths in $G(\varphi)$ from $S:=\{v|v\in V, x(v)\leq\partial\varphi(v)-\delta\}=\{v|v\in V, z(v)\leq-\delta\}$

to $T:=\{v|v\in V, x(v)\geq\partial\varphi(v)+\delta\}=\{v|v\in V, z(v)\geq\delta\}$. Such a directed path is called a
$\delta$-augmenting path.

If there are no $\delta$-augmenting paths, then the algorithm checks the set of arcs in $\bigcup_{i}A(y_{i})$ to try to
augment along these arcs individually. Such an augmentation changes both $x$ and $\varphi$ together without
changing $z$ and may increase the set of vertices reachable from $S$ in $G(\varphi)$ . This is an extension of a
technique for handling exchange capacity arcs in submodular flows first developed in [7]. Once a $\delta-$

augmenting path is found, the algorithm augments the flow $\varphi$ by $\delta$ through the path without changing
$x$ . As a consequence, $z^{-}(V)$ increases by $\delta$ in one iteration.

3.2. Algorithm Details

We now describe the scaling algorithm more precisely. Figure 1 provides a formal description, where
$\triangle^{+}W$ is the set of arcs in $\bigcup_{i\in I}A(y_{i})$ that leave $W$ .

At the beginning of the $\delta$-scaling phase, after $\delta$ is cut in half, the current flow $\varphi$ is $2\delta$-feasible.
Then the algorithm modifies each $\varphi(u, v)$ to the nearest value within the interval $[-\delta, \delta]$ to make it
$\delta$-feasible. This may decrease $z^{-}(V)$ for $z=x-\partial\varphi$ by at most $\delta$ . The rest of the $\delta$-scaling phase
aims at increasing $z^{-}(V)$ by augmenting flow along $\delta$-augmenting paths.

Let $W$ denote the set of vertices reachable by directed paths from $S$ in $G(\varphi)$ . For each $i\in I$ ,
consider $U_{i}=\{u|u\in W, \exists v\in V\backslash W, v\preceq_{y_{i}}u\}$. Then $U_{i}$ is empty if and only if no arc in $H(y_{i})$ leaves
W.

$H(y_{i})$

for some $i\in I$ has an arc leaving $W$ , the algorithm repeatedly picks up an admissible pair of $i\in I$

and $u\in W$ . It scans the pair $(i, u)$ by applying the operation Push $(i, u, v)$ to each arc $(u, v)\in A(y_{i})$

with $v\in V\backslash W$ .
The operation Push $(i, u, v)$ , depicted in Figure 2, starts with reducing the flow through $(u, v)$ by

$\alpha=\min\{\delta, \lambda_{i}\overline{\mathrm{c}}(y_{i}, u, v)\}$ . It is called saturating if $\alpha=\lambda_{i^{\mathrm{C}}}^{\sim}(yi, u, v)$ , and nonsaturating otherwise. A
saturating Push $(i, u, v)$ updates $y_{i}$ as $y_{i}:=y_{i}+\overline{\mathrm{c}}(y_{i}, u, v)(\chi_{u}-\chi_{v})$ while nonsaturating one adds
to $I$ a new index $k$ with $y_{k}:=y_{i}+\overline{\mathrm{c}}(y_{i}, u, v)(\chi u-\chi_{v})$ and $\lambda_{k}=\alpha/\sim \mathrm{c}(y_{i}, u, v)$ and updates $\lambda_{i}$ as
$\lambda_{i}:=\lambda_{i}-\alpha/\sim \mathrm{c}(y_{i}, u, v)$ . Consequently, $x$ moves to $x+\alpha(\chi_{u}-\chi_{v})$ in either case. Thus $z=x-\partial\varphi$ is
invariant.

Each time the algorithm applies the push operation, it updates the set $W$ of vertices reachable
from $S$ in $G(\varphi)$ . If Push $(i, u, v)$ is nonsaturating, it makes $v$ reachable from $S$ in $G(\varphi)$ , and hence $W$ is
enlarged. Therefore, we encounter at most $n$ nonsaturating pushes before we find a $\delta$-augmenting path
or all the admissible pairs disappear. A scan continues until $W$ increases, or all arcs $(u, v)\in A(y_{i})$

with $v\in V\backslash W$ disappear. In the first case, the scan is interrupted. Thus, if a scan is completed, all
pushes are saturating.

If we find a $\delta$-augmenting path, the algorithm augments $\delta$ units of flow along the path, which
effectively increases $z^{-}(V)$ by $\delta$ . We also compute an expression for $x$ as a convex combination of at
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SFM $(f)$ :

Input: $f$ : $2^{V}arrow \mathrm{Z}$

Output: $X\subseteq V$ minimizing $f$

Initialization:
$xarrow \mathrm{a}\mathrm{n}$ extreme base in $\mathrm{B}(f)$

$Iarrow\{i\},$ $y_{i}arrow x,$ $\lambda_{i}arrow 1$ ,
$\varphiarrow 0$ ,
$\deltaarrow M$

While $\delta\geq 1/n^{2}$ do
$\deltaarrow\delta/2$

For $(u, v)\in E$ do
If $\varphi(u, v)>\delta$ then $\varphi(u, v)arrow\delta$

If $\varphi(u, v)<-\delta$ then $\varphi(u, v)arrow-\delta$

$Sarrow\{v|x(v)\leq\partial\varphi(v)-\delta\}$

$Tarrow\{v|x(v)\geq\partial\varphi(v)+\delta\}$

$W$ –the set of vertices reachable from $S$ in $G(\varphi)$

While $S\neq\emptyset,$ $T\neq\emptyset$ and $\Delta^{+}W\neq\emptyset$ do
While $W\cap T=\emptyset$ and $\triangle^{+}W\neq\emptyset$ do

Find an admissible pair $(i, u)$ of $i\in I$ and $u\in W$ .
$Zarrow\{v|v\in V\backslash W, (\tau\iota, v)\in A(y_{i})\}$

Repeat
Find a vertex $v\in Z$ and Push $(i, u, v)$ .
Update $W$ and $Z$ .

until $Z=\emptyset$ or $|W|$ increases.
If $W\cap T\neq\emptyset$ then

Let $P$ be a directed path from $S$ to $T$ in $G(\varphi)$ .
For $(u, v)\in P$ do $\varphi(u, v)$ $-\mbox{\boldmath $\varphi$}(u, $v$ ) $+\delta,$ $\varphi(v, u)arrow\varphi(v, u)-\delta$

Update $S,$ $T$ and $W$ .
Express $x$ as $x= \sum_{i\in I}\lambda_{iyi}$ by possibly smaller affinely independent

subset $I$ and positive coefficients $\lambda_{i}>0$ for $i\in I$ .
If $S=\emptyset$ then $X=\emptyset$ else if $T=\emptyset$ then $X=V$ else $X=W$
End.

Figure 1: A scaling algorithm for submodular function minimization.
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Figure 2: Algorithmic description of the operation Push $(i, u, v)$ .

most $n$ affinely independent extreme bases $y_{\uparrow}(i\in I)$ , chosen from the current $y_{i}’ \mathrm{s}$ . This computation
is a standard linear programming technique of transforming feasible solutions into basic ones by using
Gaussian elimination. Since a new index $k$ is added to $I$ only as a result of a nonsaturating push,
$|I|\leq 2n$ after finding an augmenting path. Thus, computing a new expression for $x$ requires $\mathrm{O}(n^{3})$

time.
A $\delta$-scaling phase ends when either $S=\emptyset,$ $T=\emptyset$ , or we find the set $W$ of vertices reachable from

$S$ in $G(\varphi)$ being disjoint with $T$ and having no leaving arcs in $\bigcup_{i\in I}A(y_{i})$ .

3.3. Correctness and Complexity

We first show that the use of the push operation results in correct and effcient augmentations.
For a saturating Push $(i, u, v)$ , we denote the new $y_{i}$ by $y_{i^{l}}$ and the previous one by $y_{\dot{i}}$ . By

Lemma 2.2, $J_{yi}(u)\backslash \{v\}$ is tight for $y_{i’}$ . Thus,

$J_{y_{i’}}(u)\subseteq J_{y_{i}}(u)\backslash \{v\}$ . (3.3)

For any $w\in W$ with $J_{y_{i}}(w)\subseteq W$ , we have

$J_{y’}.\cdot(w)=J_{y}(iw)\subseteq W$. (3.4)

These two facts are fundamental in the following argument.

Lemma 3.1: Afler a saturating Push $(i, u, v)$ , if $u\in U_{i}$ and $v\in V\backslash W$ , then $(i, u)$ remains admissible.

Proof. Note that no other vertex than $v\mathrm{e}\mathrm{n}\mathrm{t}\mathrm{e}\mathrm{r}\mathrm{s}|W$ after Push $(i, u, v)$ . We show that for any vertex
$w\in W$ either $w\not\leq_{y_{i}’}u$ or $w\not\in U_{i}$ holds aftqr the push. It follows from (3.3) that $w\not\leq_{y_{i}}u$ implies
$w\not\leq_{y_{i}’}u$ . On the other hand, since $(i, u)$ is an admissible pair, $w\prec_{y_{i}}u$ implies $J_{y_{i}}(w)\subseteq W$ . Then it
follows from (3.4) that $J_{y_{i}’}(w)\subseteq W$ . Thus, $w\prec_{yi}u$ implies $w\not\in U_{i}$ after the push. $\blacksquare$

Lemma 3.2: For a vertex $v\in V\backslash W$ , Push $(i, u, v)$ is not repeated during a scan of $(i, u)$ .
$1$

Proof. This follows immediately from repeated applications of (3.3). $\blacksquare$

Lemma 3.3: Once $(i, u)$ is scanned, it does not become $admi_{\mathit{8}}sible$ again before the next augmentation.
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Proof. After scanning $u$ , there are no arcs in $A(y_{i})$ leaving both $u$ and $W$ . In addition, by the
minimality of $u$ , there is no path from $u$ to a vertex $w\in U_{i}$ . Hence $J_{yi}(u)\subseteq W$ . By (3.4) this
property is maintained until the next augmentation along a directed path from $S$ to $T$ . Hence $u$ does
not reenter $U_{i}$ before the next augmentation. $\blacksquare$

Lemmas 3.1 and 3.2 imply that there are at most $n-1$ pushes in a scan, whereas Lemma 3.3
implies that there are at most $2n^{2}$ scans before an augmenting path is found.

We now investigate the number of iterations in each $\delta$-scaling phase. To do this, we prove relaxed
weak and strong dualities. The next lemma shows a relaxed weak duality.

Lemma 3.4: For any base $x\in \mathrm{B}(f)$ and any $\delta- fea\mathit{8}ible$ fiow $\varphi$ , the vector $z=x-\partial\varphi$ satisfies
$z^{-}(V)\leq f(X)+\delta$ for any $X\subseteq V$ .

Proof. For any $X\subseteq V$ we have $x(X)\leq f(X)$ and $\partial\varphi(X)\geq-\delta$ , and hence $z^{-}(V)\leq z(X)\leq$

$f(X)+\delta$ . $\blacksquare$

A relaxed strong duality is given as follows.

Lemma 3.5: At the end of each $\delta$ -scaling phase, the following $(\mathrm{i})-(\mathrm{i}\mathrm{i}\mathrm{i})$ hold for $x$ and $z=x-\partial\varphi$ .

(i) If $S=\emptyset$ , then $x^{-}(V)\geq f(\emptyset)-n^{2}\delta$ and $z^{-}(V)\geq f(\emptyset)-n\delta$ .

(ii) If $T=\emptyset$ , then $x^{-}(V)\geq f(V)-n^{2}\delta$ and $z^{-}(V)\geq f(V)-n\delta$ .

(iii) If $S\neq\emptyset$ and $T\neq\emptyset$ , then $x^{-}(V)\geq f(W)-n^{2}\delta$ and $z^{-}(V)\geq f(W)-n\delta$ .

Proof. When the $\delta$-scaling phase finishes with $S=\emptyset$ , we have $x(v)>\partial\varphi(v)-\delta\geq-n\delta$ for every
$v\in V$ , which implies $x^{-}(V)\geq f(\emptyset)-n^{2}\delta$ as well as $z^{-}(V)\geq f(\emptyset)-n\delta$ . Similarly, when the $\delta-$

scaling phase finishes with $T=\emptyset$ , we have $x(v)<\partial\varphi(v)+\delta\leq n\delta$ for every $v\in V$ , which implies
$x^{-}(V)\geq x(V)-n^{2}\delta=f(V)-n^{2}\delta$ as well as $z^{-}(V)\geq x(V)-n\delta$ .

When the $\delta$-scaling phase ends with $S\neq\emptyset$ and $T\neq\emptyset$ , we have a vertex subset $W\underline{\subseteq}V$ such
that $S\underline{\subseteq}W\subseteq V\backslash T$ and there exists no arc leaving $W$ in $G(\varphi)$ nor in $H(y_{i})$ for any $i\in I$ . Then

we have $\partial\varphi(W)<0$ and $y_{i}(W)=f(W)$ for every $i\in I$ . Since $x\in \mathrm{B}(f)$ is the convex combination
of $y_{i}’ \mathrm{s}$ , the latter implies $x(W)=f(W)$ . By the definitions of $S$ and $T$ , we also have $x(v)>$

$\partial\varphi(v)-\delta\geq-n\delta$ for every $v\in V\backslash W$ and $x(v)<\partial\varphi(v)+\delta\leq n\delta$ for every $v\in W$ . Therefore we
have $x^{-}(V)=x^{-}(W)+x^{-}(V\backslash W)\geq x(W)-n\delta|W|-n\delta|V\backslash W|=f(W)-n^{2}\delta$ as well as $z^{-}(V)=$

$z^{-}(W)+Z-(V\backslash W)\geq x(W)-\partial\varphi(W)-|W|\delta-\delta|V\backslash W|\geq f(W)-n\delta$ . $\blacksquare$

Lemma 3.5 implies that at the beginning of the $\delta$-scaling phase, after $\delta$ is cut in half, $z^{-}(V)$ is at
least $f(X)-2n\delta$ for some $X\subseteq V$ . Making the current flow $\delta$-feasible decreases $z^{-}(V)$ by at most
$\delta$ . Each $\delta$-augmentation increases $z^{-}(V)$ by $\delta$ . Since $z^{-}(V)$ is at most $f(X)+\delta$ at the end of
a $\delta$-phase by Lemma 3.4 the number of $\delta$-augmentations per phase is at most $n^{2}+n$ for all phases
after the first. Since $z^{-}(V)=x^{-}(V)\geq-nM$ at the start of the algorithm, setting the initial $\delta=M$

is more than sufficient obtain a similar bound on the number of augmentations in the first phase.
As an immediate consequence of Lemmas 2.3 and 3.5, we also obtain the following.

Theorem 3.6: The algorithm obtains a minimizer of $f$ at the end of the $\delta$ -scaling phase with $\delta<1/n^{2}$ .

Proof. By Lemma 3.5, the output $X$ of the algorithm satisfies $x^{-}(V)\geq f(X)-n^{2}\delta>f(X)-1$ . It
follows from Lemma 2.3 and the integrality of $f$ that $X$ is a minimizer of $f$ . $\blacksquare$

Theorem 3.7: Algorithm SFM runs in $\mathrm{O}(n^{7}\log(nM))$ time.
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Proof. The algorithm starts with $\delta=M$ and ends with $\delta<1/n^{2}$ , so the algorithm consists of
$\mathrm{O}(\log(nM))$ scaling phases. Each scaling phase finds $\mathrm{O}(n^{2})\delta$-augmenting paths. To find an augment-
ing path, we scan each admissible pair $(i, u)$ for $i\in I$ and $u\in V$ at most once, and there are $\mathrm{O}(n^{2})$

admissible pairs, since $|I|\leq 2n$ . In addition, we make at most $n-1$ interrupted scans. Thus, the total
number of scans per augmentation is $\mathrm{O}(n^{2})$ . Each scan uses at most $n-1$ push operations. When
a push operation is performed, we compute the associated exchange capacity (see Lemma 2.2) and
construct the Hasse diagram for the new extreme base, which takes $\mathrm{O}(n^{2})$ time. Thus the total time
for a scan is $\mathrm{O}(n^{3})$ . After each scan or each non-saturating push, we must determine a new admissible
pair, which takes $\mathrm{O}(n^{3})$ time by topological sort. Thus, the time spent per augmenting path is $\mathrm{O}(n^{5})$ .
After each augmentation, we also update the expression $x= \sum_{i\in I}\lambda_{iy_{i}}$ , which takes $\mathrm{O}(n^{3})$ time and
hence is not a bottleneck. Thus the overall complexity of SFM is $\mathrm{O}(n^{7}\log(nM))$ . $\blacksquare$

In this section, we have shown a weakly polynomial-time algorithm for minimizing integer-valued
submodular functions. The integrality of a submodular function $f$ guarantees that if we have a
base $x\in \mathrm{B}(f)$ and a subset $X$ of $V$ such that the duality gap $f(X)-X-(V)$ is less than one, $X$ is a
minimizer of $f$ . Except for this we have not used the integrality of $f$ . It follows that for any real-valued
submodular function $f$ : $2^{V}arrow \mathrm{R}$, if we are given a positive lower bound $\epsilon$ for the difference between
the second minimum and the minimum value of $f$ , the present algorithm works for the submodular
function $(1/\epsilon)f$ and runs in $\mathrm{O}(n^{7}\log(nM/\epsilon))$ time, where $M$ is an upper bound on $|f(X)|(X\subseteq V)$ .

4. A Strongly Polynomial-Time Algorithm

This section presents a strongly polynomial-time algorithm for minimizing submodular functions using
the scaling algorithm in Section 3. The new algorithm exploits the following proximity lemma.

Lemma 4.1: At the end of the $\delta$ -scaling phase, if $x(w)<-n^{2}\delta$ , then $w$ belongs to every minimizer
of $f$ .

Proof. Let $X$ be any minimizer of $f$ . Since $x^{-}\in \mathrm{P}(f)$ , there exists a vector $y\in \mathrm{P}(f)$ with $x^{-}\leq y\leq 0$

such that $y(V)=f(X)$ . Note that $y(v)=0$ for each $v\in V\backslash X$ . By Lemma 3.5, there exists a
subset $Y\subseteq V$ such that $x^{-}(V)\geq f(\mathrm{Y})-n^{2}\delta$. Then we have $y(w)-x(w)\leq y(V)-x^{-}(V)\leq$
$f(X)-f(\mathrm{Y})+n^{2}\delta\leq n^{2}\delta$ . This implies $y(w)<0$ due to the assumption, and hence $w\in X$ . $\blacksquare$

Let $f$ : $2^{V}arrow \mathrm{R}$ be a submodular function and $x\in \mathrm{B}(f)$ an extreme base whose components are
bounded from above by $\eta>0$ . Assume that there exists a subset $Y\subseteq V$ such that $f(Y)\leq-\kappa$ for some
positive parameter $\kappa$ . We then apply the scaling algorithm starting with $\delta=\eta$ and the extreme base
$x\in \mathrm{B}(f)$ . After $\lceil\log_{2(n^{3}\eta}/\kappa$) $\rceil$ scaling phases, $\delta$ becomes less than $\kappa/n^{3}$ . Since $x(\mathrm{Y})\leq f(\mathrm{Y})\leq-\kappa$ , at
least one element $w\in \mathrm{Y}$ satisfies $x(w)<-n^{2}\delta$ . By Lemma 4.1, such an elem.ent $w$ belongs to every
minimizer of $f$ . We denote this procedure by Fix$(f, x, \eta)$ .

We now discuss how to apply this procedure to design a strongly polynomial-time algorithm for
minimizing a submodular function $f$ . If $f(V)>0$ , we replace the value $f(V)$ by zero. The set of
minimizers remains the same unless the minimum value is zero, in which $\mathrm{c}$.ase we may assert that $\emptyset$

minimizes $f$ .
An ordered pair $(u, v)$ of distinct vertices $u,$ $v\in V$ is said to be compatible with $f$ if $u\in X$ implies

$v\in X$ for every minimizer $X$ of $f$ . Our algorithm keeps a directed acyclic graph $D=(V, F)$ whose arcs
are compatible with $f$ . Initially, the arc set $F$ is empty. Each time the algorithm finds a compatible
pair $(u, v)$ with $f$ , it adds $(u, v)$ to $F$ . When this gives rise to a cycle in $D$ , the algorithm contracts
the strongly connected component $U\subseteq V$ to a single vertex and modifies the submodular function $f$

by regarding $U$ as a singleton. . !..
For each $v\in V$ , let $R(v)$ denote the set of $\mathrm{v}\mathrm{e}\mathrm{r}\mathrm{t}\mathrm{i}\dot{\mathrm{c}}\mathrm{e}\mathrm{s}\mathrm{r}\mathrm{e}\mathrm{a}\mathrm{C}\mathrm{h}\mathrm{a}\mathrm{b}.\mathrm{l}\mathrm{e}$ from $v$ in $D$ and $f_{v}$.

$\mathrm{t}\mathrm{h}\dot{\mathrm{e}}$ submodular
function on the subsets of $V\backslash R(v)$ defined by

$f_{v}(x)=f(x\cup R(v))-f(R(v))$ $(X\subseteq V\backslash R(v))$ .
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An ordering $(v_{1}, \cdots, v_{n})$ of $V$ is called $con\mathit{8}iStent$ with $D$ if $i<j$ implies $(v_{i}, v_{j})\not\in F$ . Consider an
extreme base $x\in \mathrm{B}(f)$ obtained by the greedy algorithm with a consistent ordering $(v_{1}, \cdots , v_{n})$ . That
is, let $x(v_{1})=f(\{v_{1}\})$ and $x(v_{j})=f(\{v_{1}, v_{2,\ldots,j}v\})-f(\{v_{1}, v2, \ldots, v_{j}-1\})$ for $j=2,$ $\ldots,$

$n$ . The
extreme base obtained from a consistent ordering is also called consistent. Then it follows from the
submodularity of $f$ that any consistent extreme base $x\in \mathrm{B}(f)$ satisfies $x(v)\leq f(R(v))-f(R(v)\backslash \{v\})$

for each $v\in V$ .
In each iteration, the algorithm computes

$\eta=\max\{f(R(v))-f(R(v)\backslash \{v\})|v\in V\}$ . (4.1)

If $\eta\leq 0$ , an extreme base $x\in \mathrm{B}(f)$ consistent with $D$ satisfies $x(v)\leq 0$ for each $v\in V$ , which implies
that $V$ minimizes $f$ . If in addition $f(V)=0$, then the original function may have had a positive value
of $f(V)$ . Therefore, the algorithm returns $\emptyset$ or $V$ as a minimizer, according to whether $f(V)=0$ or
$f(V)<0$ .

If $\eta>0$ , let $u$ be an element that attains the maximum in the right-hand side of (4.1). Then we
have $f(R(u))=f(R(u)\backslash \{u\})+\eta$ , which implies either $f(R(u))\geq\eta/2>0$ or $f(R(u)\backslash \{u\})<-\eta/2<0$

holds.
In the former case $(f(R(u))\geq\eta/2)$ , we have $f_{u}(V\backslash R(u))=f(V)-f(R(u))\leq-\eta/2$. The

algorithm finds a consistent extreme base $x\in \mathrm{B}(f_{u})$ by the greedy algorithm with an ordering
$(v_{1}, \cdots, v_{k})$ of $V\backslash R(u)$ such that $i<j$ implies $(v_{i}, v_{j})\not\in F$ . That is, let $x(v_{1})=f_{u}(\{v_{1}\})$ and
$x(v_{j})=f_{u}(\{v_{1}, v2, \ldots , v_{j}\})-f_{u}(\mathrm{f}v1, v2, \ldots, vj-1\})$ for $j=2,$ $\ldots,$

$k$ . Then the extreme base $x\in \mathrm{B}(f_{u})$

satisfies $x(v)\leq f(R(v\rangle)-f(R(v)\backslash \{v\})\leq\eta$ . Thus we may apply the procedure Fix $(f_{u}, X, \eta)$ to find an
element $w\in V\backslash R(u)$ that belongs to every minimizer of $f_{u}$ . Since $\kappa=\eta/2$ , the procedure terminates
within $\mathrm{O}(\log n)$ scaling phases. Consequently, we obtain a new pair $(u, w)$ that is compatible with $f$ .
Hence the algorithm adds the arc $(u, w)$ to $F$ .

In the latter case $(f(R(u)\backslash \{u\})<-\eta/2)$ , we compute an extreme base $x\in \mathrm{B}(f)$ consistent with $D$

by the greedy algorithm, and then apply the procedure Fix$(f, x, \eta)$ to find an element $w\in R(u)$ that
belongs to every minimizer of $f$ . Since $x(v)\leq\eta$ for every $v\in V$ and $\kappa=\eta/2$ again, the procedure
terminates within $\mathrm{O}(\log n)$ scaling phases. Note that every minimizer of $f$ includes $R(w)$ . Thus it
suffices to minimize the submodular function $f_{w}$ , which is now defined on a smaller underlying set.
Figure 3 provides a formal description of the strongly polynomial-time algorithm.

Theorem 4.2: The algorithm in Figure 3 computes a minimizer of a submodular function in $\mathrm{O}(n^{9}\log n)$

time, which is strongly polynomial.

Proof. Each time we call the procedure Fix, the algorithm adds a new arc to $D$ or deletes a set
of vertices. This can happen at most $n^{2}$ times. Thus the overall running time of the algorithm is
$\mathrm{O}(n^{9}\log n)$ , which is strongly polynomial. $\blacksquare$

5. Concluding Remarks

This paper presents a strongly polynomial-time algorithm for minimizing submodular functions defined
on Boolean lattices. We now briefly discuss minimizing submodular functions defined on more general
lattices.

Consider a submodular function $f$ : $Darrow \mathrm{R}$ defined on a distributive lattice $D$ represented by a
poset $P$ on $V$ . Then the associated base polyhedron is unbounded in general.

An easy way to minimize such a function $f$ is to consider the reduction of $f$ by a sufficiently large
vector. As described in [12, p. 56], we can compute an upper bound $\hat{M}$ on $|f(X)|(X\in D)$ . Let
$f’$ be the rank function of the reduction by a vector with each component being equal to $\hat{M}$ . The
submodular function $f’$ is defined on $2^{V}$ and the set of minimizers of $f’\mathrm{c}\mathrm{o}\mathrm{i}\mathrm{n}\mathrm{C}\mathrm{i}\mathrm{d}\mathrm{e}\mathrm{S}$ with that of $f$ . Thus,
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$\mathrm{p}_{1}\mathrm{g}_{\mathrm{U}\mathrm{r}}\mathrm{e}s$ : A strongly polynomial-time algorithm for submodular function minimization.
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we may apply our algorithms. However, each evaluation of the function value of $f’$ requires $\mathrm{O}(n^{2})$

elementary operations in addition to a single call for the evaluation of $f$ . Consequently, this approach
takes $\mathrm{O}(n^{9}\min\{\log(n\hat{M}), n\mathrm{l}2\mathrm{o}\mathrm{g}n\})$ time.

Alternatively, we can slightly extend the algorithms in Sections 3 and 4 by keeping the base
$x\in \mathrm{B}(f)$ as a convex combination of extreme bases $y_{i}’ \mathrm{s}$ plus a vector in the characteristic cone of
$\mathrm{B}(f)$ . The latter can be represented as a boundary of a nonnegative flow in the Hasse diagram of $P$ .
This extension enables us to minimize $f$ in $\mathrm{O}(n^{7}\min\{\log(n\hat{M}), n2\log n\})$ time.

Submodular functions defined on modular lattices naturally arise in linear algebra. Minimization
of such functions has a significant application to computing canonical forms of partitioned matrices
$[18, 20]$ . It remains an interesting open problem to develop an efficient algorithm for minimizing
submodular functions on modular lattices, even for those specific functions that arise from partitioned
matrices.
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