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Abstract: In this paper we show some graph theoretical properties of intersection graphs
on rectallgles and that the minimum coloring problem can be approximated within ratio
$O((\log|V(G)|)^{2})$ for the intersection graphs represented by set, $\mathrm{s}$ of rectangles on the plane.
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1 Definitions and notation

Let $G=(\mathrm{f}/^{r_{i}}E)$ be a graph. We denote the
subgraph of $G$ induced by $\mathfrak{s}\prime\prime\subseteq V$ by $G[V’]j$ the
degree of vertex $u$ in $G$ by $d_{C7}(u)’$. the maximum
degree of vertex in $C_{\tau}$ by $\Delta_{G}$ . the neighborhoods
of $v$ bv $\wedge’ \mathrm{V}_{G}(v)$ . and $\{\iota’\}\cup\wedge j\backslash \tau_{G}(v)$ by $\wedge j\backslash ^{\tau}_{G}+(v)$ . If $G$

is understood. then we often omit the inscription
$c_{\tau}$ in $d_{G}.(?l)\mathit{1}^{\cdot}G_{i}\triangle\underline{i}\backslash _{G^{1(\iota)}\prime}^{r},$. and $\wedge \mathrm{i}\backslash _{G(v)}^{r+}’$ .

Let $\mathcal{F}=\{S_{1}\ldots..S_{k}\}$ be a family of nonempty
subset of a set $S$ . We will call the pair (F. $S$)
$repreSentat_{?on}$ . We will refer to the set $S$ as the
host and the subsets $S_{i}$ as objects. A graph $G$ is an
intersection graph represented by a representation
$(\mathcal{F}_{j}S)$ if $G=(\mathcal{F}^{\cdot}, E)$ such that $\forall S_{i}.S_{j}\in F(i\neq$

$j)_{i}$ {Si. $S_{j}$ } $\in E$ iff $Si\cap S_{j}\neq\emptyset$ . Let $\mathcal{R}=(\mathcal{F}=$

$\{S_{1_{\mathit{1}\text{ノ}}}\ldots. .s_{k}\}.S)$ be a representation. We will say
that $\mathcal{R}$ is $un\dot{i}t$ if the objects of $F$ have the same
shape. $R$ is injective if $S_{i}=S_{j}$ implies $\dot{i}=j$ (i.e.
the subsets are distinct). Objects we consider in
the paper are open.

A closed (open) rectangle on the plane is a set
$R_{i}$ of points such that $\exists(x_{1\cdot y1})\text{ノ}.(x_{2}., y_{2})(x_{1}\leq$

$x_{2}.y_{1}\leq y_{2})$ for which $R_{i}=\{(x_{l}.y)|x_{1}\leq x\leq$

$x_{2}$ . $y_{1}\leq y\leq y_{2}$ } $(\{(x, y)|x_{1}<x<x_{2,}.y_{\mathrm{J}}<$

$y<y_{2}\}$ respectively). $\mathrm{Y}\backslash ^{7}\mathrm{e}$ denote the projection
of a rectangle a on the $\mathrm{x}$-axis ( $\mathrm{y}$-axis) $I_{x}(R_{i})$

$(I_{\mathrm{t}},(Ri)\mathrm{r}\mathrm{e}\mathrm{s}\mathrm{p}\mathrm{e}\mathrm{c}\mathrm{t}\mathrm{i}\mathrm{V}\mathrm{e}1_{3}r)$ . Let $R$ be a sets of rectangles
on the plane. $R$ is $x$-axis ( $y$ -axis) non-proper if
$\forall R_{i}.R_{j}\in RI_{x}(R_{i})\subset I_{x}(R_{j}\neq)$ and $I_{x}(R_{j})\subset I_{x}(R_{j}\neq)$

$((I_{y}(R_{i})\subset I_{\tau},(R_{j}\neq)$ and $I_{\iota},(JR_{j})\subset I_{\mathrm{t}}\neq/(Ri))$ respec-
tively). $R$ is strongly non-proper if $R$ is $\mathrm{x}$ and

$\mathrm{y}$-axis non-proper.
Let $I$ be a sets of intervals on the real line. A

graph $G$ is an interval graph represented by $I$ if
$G$ is an intersection graph represented by $I$ (so
the host is the real line in this case). Let $MI=$
$\{A_{1_{}}\ldots. .A_{k}\}$ be a set such that $A_{i}(\forall 1\leq i\leq k)$

is a $\mathrm{u}\mathrm{l}\dot{\mathrm{u}}\mathrm{o}\mathrm{n}$ of intervals on the real line. A graph $G$

is a multiple interval graph represented by $MI$ if
$G$ is an intersection graph represented by $MI$ (so
the host is the real line in this case).

2 Known techniques

In the section. we will review several techniques
(and properties) which are useful in designing ap-
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proximation algorithms for the problems.

2.1 Claw $\mathrm{e}\mathrm{e}$ property

. A graph is $k$ claw-free if the graph does not
have $I_{11,k}^{\nearrow}$ as induced subgraph (See [18]). A set

of graphs is claw-free if there is a positive integer
$k$ such that all graphs in the set are $k$ claw-free.
For example. the following types of intersection
graphs have claw-free property.

Unit intersection graphs

Most of intersection graphs with unit repre-

sentations have the claw-free property. For
example. a graph represented by unit iso-

oriented rectangles on the plane is a 5 claw-
free graph. A graph represented by unit disks
on the plane is $\mathrm{a}\overline{(}$ claw-free graph (in our def-
inition all objects we consider are open) (See

[15] $)$ .

Representations with objects of bounded area

Let $C_{\tau}$ be a graph represented by a set $\mathrm{o}\mathrm{b}.|\mathrm{e}\mathrm{C}\mathrm{t}\mathrm{s}$

$\mathcal{F}$ on the plane with following two properties;
there is a positive integer $\lambda$. such that the area
of each $\mathrm{o}\mathrm{b}.|\mathrm{e}\mathrm{C}\mathrm{t}$ in $F$ is at most $k$ . and any two

intersecting objects in $F$ share a region with

an area of at least one. Then it is easy to see
that all grapll represented bv $F$ on the plane

are $k+1$ claw-free graphs.

The claw-free property plays an $\mathrm{i}\mathrm{m}\mathrm{p}\mathrm{o}\mathrm{r}\mathrm{t}|\mathrm{a}\mathrm{n}\mathrm{t}$ role
in the two (or more) dimensional packing prob-

lem (See [2. 15]). because packing problem can be

thought as a maximum independent set problem $i$

and it is known that the independent number of

a 3 claw-free weighted graph can be computed in

polynomial time [16] and also tllat the indepen-

dent number of a $k$ claw-free graph can be approx-
$\mathrm{i}_{11}1\mathrm{a}\mathrm{t}\mathrm{e}\mathrm{d}$ within ratio of $(k+1)/2$ for unweighted
graphs [10] and $k$ for weighted graphs [11].

2.2 The most left object strategy

be the vertex corresponding to the most left objec-
$\mathrm{t}$ in a representation of $G$ . Then since $G[^{}arrow\backslash ^{r_{C}}’(+v7)]$

is a 3 claw-free graph, we have $\alpha(G[_{\wedge}\nwarrow_{G}^{+}r(v)])\leq 2$ .
$\mathrm{S}\mathrm{i}\mathrm{m}\mathrm{i}\mathrm{l}\mathrm{a}\mathrm{r}13_{i}^{r}$ for an intersection graph $G$ of unit disks

on the plane. we have $\alpha(G[_{\wedge^{/}}\mathrm{V}^{+}G(v)]\mathrm{I}\leq 3$ (note

that in our definition all objects we consider are
open) [15]. Clearly if $G$ is an intersection graph of
strongly non-proper rectangles ( $\mathrm{a}\mathrm{n}\mathrm{d}/\mathrm{o}\mathrm{r}$ unit desk)

on the plane then so is an induced subgraph of
$G$ . Hence the intersection graphs of strongly non-
proper rectangles on the plane ( $\mathrm{a}\mathrm{n}\mathrm{d}/\mathrm{o}\mathrm{r}$ of unit
disks on the plane [15] $)$ have the following prop-
erties: Let $\mathcal{I}$ be a set of intersection graphs.. $\exists$ a small integer $k$ sudu that $\forall G\in \mathcal{I}$ . $\exists v\in$

$V(G)$ for whidi $\alpha(G[\wedge \mathrm{v}_{G}+(v)])\leq k$ .. $\forall C_{7}\in \mathcal{I}$ and $\forall V’\subseteq V(G)$ . $G[V’]\in \mathcal{I}$ .

Using this properties. Marathe et al. showed bet-

ter approxinlation algoritlrms for minimum color-

ing problem and maximum independent set prob-
lem for unit disk graphs [15]. The method in [15]
leads the the following proposition (See conclud-
ing remarks in [15] $)$ . The proofs (for minimum
coloring problem) is quite similar to the unit disk
case presented in [15]. hence are omitted.

Proposition 2.1 Let $\mathcal{I}$ be a set of graphs with
$propert_{i}es$ that (1) $\exists$ a small inteqer $k$ such that
$\forall G\in \mathcal{I}$ . $\exists v\in l^{arrow}(C_{\mathrm{T}})$ for which $\mathfrak{a}(C7[-\backslash ^{\mathcal{T}+}((’\mathrm{T}L|)])\leq k$ ,

and (2) $\forall G\in \mathcal{I}$ and $\forall V’\subseteq l^{\Gamma}(c7)$ . $G[l^{\gamma\prime}|\in \mathcal{I}$ .
Then. minimum, $col_{or}\dot{i}n.q$ problem and $(unwe\dot{i}ght-$

$ed)$ maximum independent set problem for $\mathcal{I}$ can
be approximated within ratio of $k$ .

Corollary 2.2 Let $R$ be a strongly non-proper
set of rectangles on the plane. Then mini,mum

colo $7\mathrm{v}ng$ problem and (unweighted) maximum in-

dependent set probl.$e7n$ for intersection graphs rep-

resented by $R$ can be $approxi_{J}mated$ within ratio of
2.

2.3 Shifting strategy

Hochbaum and Maass illtroduced a method.

Let $C_{\tau}$ be an intersection graph of strongly non-
proper rectangles on the plane. and let $v\in V(G)$

called shifting strategy. which applies to cover-
ing and pacldng problems ill the plane in order
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to yield a polynomial time approximation scheme
$[8_{J}.9]$ .

2.4 Decomposition strategy

In [14], S.Khanna et al. introduced the fol-
lowing simple and useful technique to partition a
graph $G$ represented by rectangles on the plane in-
to $O((\mathrm{i}\mathrm{o}\mathrm{g}|V(G)|)^{2})9$ claw-free induced subgraph-
$\mathrm{s}$ of $G$ : Partition the set of given rectangles into
$\lceil\log|V(G)|1^{2}$ classes $(\dot{i}_{\mathrm{L}}\backslash j)’.1\leq\dot{i}\leq\lceil\log|V(G)|1$

and $1\leq j\leq\lceil\log|V(G)|1$ . The class $(\dot{i}_{\mathit{1}}.j)$ com-
prises all rectangles with width $\in[2^{i-1}+1_{i}2^{i}]$ .
and $\mathrm{h}\mathrm{e}\mathrm{i}\mathrm{g}\mathrm{h}\mathrm{t}\in[\underline{9}^{j-1}+1,2^{j}]$ . Then it is easy to see
that each intersection graph represented by rect-
angles in class $(\uparrow,\cdot j)$ (on $\mathrm{t}1_{1}\mathrm{e}$ plane) is a 9 claw-free
graph. We wvill refer to the technique as decom-
$pos?,t_{8}on$ strategy.

Decomposition strategy is very simple but use-
ful. For example. $\backslash \backslash ^{\tau}\mathrm{e}$ can give much more simple
proof than one in chapter 6 in [4] for the following
theorem by using decomposition strategy.

Theorem 2.3 $\tau(n)\geq 7?/\lceil\log_{2}n\rceil$ for all $n\geq 3$ ,
where $\tau(n)=\mathrm{m}\mathrm{a}\supset\overline{\mathrm{L}}\{k|$ every $i,nterval$ graph of size
$n$ has a 3 claw-free induced subgraph of size $k$ }.

3 Results

3.1 Graph thoretical properties of
rectangle graphs

Forbidden induced subgraphs

Lemma 3.1 Let $R$ be a set of rectangles on the
plane. And let $G$ be the $\dot{i}ntersection$ graph repre-
sented by R. Then, $G$ does not have an octahedron
as an induced subgraph.

Chromatic number and clique number

$\lceil\triangle(G)/4\rceil$ and $\Delta(G)+1\geq \text{ノ}\backslash ’(c)$ . By using the
most left object strategy, we can show the follow-
ing slightly better upper bound.

Proposition 3.2 Let $C_{7}$ be an intersection graph
represented by a strongly non-proper set of rect-
angles on the plane. Then the chromatic number
of $G$ is at most two $t\dot{i}meS$ the clique number of $G$

plus one.

Proof. Let $\mathcal{G}$ be the set of intersection graphs
represented by a strongly non-proper set of rect-
angles on the plane. Any $G\in \mathcal{G}$ has a vertex
$v$ such that $d_{G}(v)$ is at most $2\omega$ . For any in-
duced subgraph $G’$ of $C_{\tau}$ . $C_{\tau}’$ is also in $\mathcal{G}$ , and
$\omega(G^{f})\leq\omega(C_{\tau})$ . $\mathrm{T}\mathrm{h}\mathrm{u}\mathrm{s}$ . $,\chi(c)\leq 2\omega(G)+1$ . $\square$

3.2 An approximation algorithm for
mininlum coloring problem

Theorem 3.3 The $\min,$imum coloring problem
can be approximated $w\dot{i}th?.n$ ratio $O((\log|V(G)|)^{2})$

for the $intersect?,’ on$ graphs represented by sets of
rectangles on the plane.

Proof. By using decompositon strategy. we
have at most $O((\log|V(C7)|)^{2})9\mathrm{c}\mathrm{l}\mathrm{a}\backslash \mathrm{v}$-free sub-
graphs $C_{\tau_{ij}}$ of $C_{\tau}(1\leq i.j\leq 1o\mathrm{g}|V(c_{\tau})|)$ . Ob-
viously for each subgraph $G_{ij,}$. X $(c_{\tau_{ij}})\leq\backslash (G)$ .
From propositon 2.2. the problem for each sub-
graph $G_{ij}$ can be approximated within ratio 7.
This means that

$\sum_{ij}(7\cross\chi(C_{7}ij))\leq\sum_{ij}(7\cross\chi(C_{\tau}))$

is $O((\log|V(G)|)^{2})\cross\lambda(G)$ . thus the proof is com-
plete. $\square$

4 Summary

Maximum independent set problem

Let $R$ be a set of rectangles on the plane. And
let $C_{\mathrm{T}}$ be the intersection graph represented by
$R$ . In [1]. Asplund and Gr\"unbaum showed that
$4\omega(c_{\tau})^{2}>\chi(G)$ . If $R$ is strongly non-proper,
then we have $4\omega(G)+1\geq\lambda’(G)$ , because $\omega(G)\geq$
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Minimum coloring problem [7] $\mathrm{D}.\mathrm{S}$ .Hochbaum, Efficient bounds for the sta-
bleset. vertex cover and set packing problem-
$\mathrm{s}_{i}$ Discrete Appl. Math. 6 (1983) 243-254.

*1: From corollary 2.2.

*2: Fron proposition 2.1 and decomposition s-
trategy.
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