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On approximation algorithms for intersection graphs of
rectangles
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Abstract: In this paper we show some graph theoretical properties of intersection graphs

on rectangles and that the minimum coloring problem can be approximated within ratio

O((log |V (G)[)?) for the intersection graphs represented by sets of rectangles on the plane.
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1 Definitions and notation

Let G = (V,E) be a graph. We denote the
subgraph of G induced by V' C V by G[V'], the
degree of vertex u in G by dg(u), the maximum
.degree of vertex in G by Ag, the neighborhoods
of v by Ng(v), and {v} U Ng(v) by NL(v). f G
is understood, then we often omit the inscription
G in dg(u), Ag, Ng(v), and NJ(v).

Let F = {S1,.... 5k} be a family of nonempty
subset of a set 5. We will call the pair (F,S)
representation. We will refer to the set S as the
host and the subsets S; as objects. A graph G is an
intersection graph represented by a representation
(F,8) if G = (F,E) such that ¥S;,S; € F (i #
1), {88} e Eiff ;N85 #0. Let R = (F =

that R is unit if the objects of F have the same
shape. R is injective if S; = 5; implies i = j (i.e.
the subsets are distinct). Objects we consider in
the paper are open.

A closed (open) rectangle on the plane is a set
R; of points such that 3(wi,y1), (z2,y2) (z1 <
x2,y1 < ya) for which R; = {(z,y) | 21 < z <

22, Y1 Ly <y} ({(2,y) |21 <@ < g, gy <
y < y2} respectively). We denote the projection
of a rectangle R; on the x-axis (y-axis) I,(R;)
(I,(R;) respectively). Let R be a sets of rectangles
on the plane. R is z-azis (y-azis) non-proper if
VR;,R; € R I.(R;) %Ir(Rj) and I,(R;) glx(R,{)
((Iy(R;:) eg(Rj) and Iy(Rj_)gfy(Ri)) respec-
tively). R is strongly non-proper if R is x and
y-axis non-proper.

Let I be a sets of intervals on the real line. A
graph G is an interval graph represented by I if
G is an intersection graph represented by I (so
the host is the real line in this case). Let MI =

is a union of intervals on the real line. A graph G
is a multiple interval graph represented by M1T if
G is an intersection graph represented by MI (so
the host is the real line in this case).

2 Known techniques

In the section, we will review several techniques

(and properties) which are useful in designing ap-



proximation algorithms for the problems.

2.1 Claw-free property

A graph is k claw-free if the graph does not
have I as induced subgraph (See [18]). A set
of graphs is claw-free if there is a positive integer
k such that all graphs in the set are k claw-free.
For example, the following types of intersection

graphs have claw-free property.
Unit intersection graphs

Most of intersection graphs with unit repre-
sentations have the claw-free property. For
example, a graph represented by unit iso-
oriented rectangles on the plane is a 5 claw-
free graph. A graph represented by unit disks
on the plane is a 7 claw-free graph (in our def-

inition all objects we consider are open) (See

[15])-
Representations with objects of bounded area

Let G be a graph represented by a set objects
F on the plane with following two properties;
there is a positive integer &k such that the area
of each object in F is at most k, and any two
intersecting objects in F share a region with
an area of at least one. Then it is easy to see
that all graph represented by F on the plane
are k + 1 claw-free graphs.

The claw-free property plays an important role
in the two (or more) dimensional packing prob-
lem (See [2, 15]), because packing problem can be
thought as a maximum independent set problem,
and it is known that the independent number of
a 3 claw-free weighted graph can be computed in
polynomial time [16] and also that the indepen-
dent number of a k claw-free graph can be approx-
imated within ratio of (k + 1)/2 for unweighted
graphs [10] and k for weighted graphs [11].

2.2 The most left object strategy

Let G be an intersection graph of strongly non-

proper rectangles on the plane, and let v € V(G)
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be the vertex corresponding to the most left objec-
t in a representation of G. Then since G[NZ (v)]
is a 3 claw-free graph, we have a(G[NZ (v)]) < 2.
Similarly, for an intersection graph G of unit disks
on the plane, we have a(G[NA(v)]) < 3 (note
that in our definition all objects we consider are
open) [15]. Clearly if G is an intersection graph of
strongly non-proper rectangles (and/or unit desk)
on the plane then so is an induced subgraph of
G. Hence the intersection graphs of strongly non-
proper rectangles on the plane (and/or of unit
disks on the plane [15]) have the following prop-
erties: Let Z be a set of intersection graphs.

¢ 3 a small integer k such that VG € T, Jv €
V(G) for which a(G[N‘t W) <k,

e VG €T and VV' C V(G), G[V'] € 1.

Using this properties, Marathe et al. showed bet-
ter approximation algorithms for minimum color-
ing problem and maximum independent set prob-
lem for unit disk graphs [15). The method in [15]
leads the the following proposition (See conclud-
ing remarks in {15]). The proofs (for minimum
coloring problem) is quite similar to the unit disk

case presented in [15], hence are omitted.

Proposition 2.1 Let T be a set of graphs with
properties that (1) 3 a small integer k such that
VG e I, v € V(G) for which a(G[Ng(v)]) <k,
and (2) VG € T and YV' C V(G), G[V'] € T.
Then, minimum. coloring problem and {unweight-
ed) mazimum independent set problem for I can
be approzimated within ratio of k.

Corollary 2.2 Let R be a strongly non-proper
set of rectangles on the plane. Then minimum
coloring problem and (unweighted) mazimum in-
dependent set problem for intersection graphs rep-
resented by R can be approzimated within ratio of

2.

2.3 Shifting strategy

Hochbaum and Maass introduced a method,
called shifting strategy, which applies to cover-

ing and packing problems in the plane in order



to yield a polynomial time approximation scheme
(8, 9].

2.4 Decomposition strategy

In [14], S.Khanna et al. introduced the fol-
lowing simple and useful technique to partition a
graph G represented by rectangles on the plane in-
to O((log |V(G)])?) 9 claw-free induced subgraph-
s of G: Partition the set of given rectangles into
flog [V(G)[1? classes (5,),1 < i < [log |V(G)]]
and 1 < j < [log|V(G)[]. The class (i, ;) com-
prises all rectangles with width € [2¢7! + I,Zi],
and height € [2771 4 1,27]. Then it is easy to see
that each intersection graph represented by rect-
angles in class (7, j) (on the plane) is a 9 claw-free
graph. We will refer to the technique as decom-
posttion strateqy.

Decomposition strategy is very simple but use-
ful. For example, we can give much more simple
proof than one in chapter 6 in [4] for the following
theorem by using decomposition strategy.

‘Theorem 2.3 7(n) > n/[logyn] for all n > 3,
where T(n) = max{k | every interval graph of size
n has a § claw-free induced subgraph of size k}.

3 Results

3.1 Graph thoretical properties of

rectangle graphs
Forbidden induced subgraphs

Lemma 3.1 Let R be a set of rectangles on the
plane. And let G be the intersection graph repre-
sented by R. Then, G does not have an octahedron

as an induced subgraph.

Chromatic number and clique number

Let R be a set of rectangles on the plane. And
let G be the intersection graph represented by
R. In [1], Asplund and Griinbaum showed that
4w(@)? > x(G). If R is strongly non-proper,
then we have 4w(G) 41 > x(G), because w(G) >
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[A(G)/4] and A(G) +1 > x(G). By using the
most left object strategy, we can show the follow-
ing slightly better upper bound.

Proposition 3.2 Let G be an intersection graph
represented by a strongly non-proper set of rect-
angles on the plane. Then the chromatic number
of G 15 at most two times the clique number of G
plus one.

Proof.
represented by a strongly non-proper set of rect-

Let G be the set of intersection graphs

angles on the plane. Any G € G has a vertex
v such that dg(v) is at most 2w. For any in-
duced subgraph G’ of G, G is also in G, and
w(G') < w(G). Thus, x(G) < 2w(G) + 1. o

3.2 An approximation algorithm for
minimum coloring problem

Theorem 3.3 The minimum coloring problem
can be approzimated within ratio O((log [V(G)|[)?)
for the intersection graphs represented by sets of
rectangles on the plane.

Proof. By using decompositon strategy, we
have at most O((logIV(G)D?) 9 claw-free sub-
graphs Gj; of G (1 < 4,5 < log|V(G)]). Ob-
viously for each subgraph Gjj, x(Gy;) < Y(G).
From propositon 2.2, the problem for each sub-
graph G;; can be approximated within ratio 7.
This means that Z(T X x(Gij)) < Z(T X x(@))
ij ij
is O((log |V(G)D2)Jx x(G), thus the pjroof is com-
plete. =]

4 Summary

Maximum independent set problem

object unweighted weighted
unit disk - PTAS [12], 3 [15] | ——

unit rectangle | PTAS [8,9],2* | ——

SNP rectangles | 2 *1 3.25 [2]
rectangles — O(logn) [14]




- Minimum coloring problem

object injective | no restriction
unit disk — 3 [15]

unit rectangle | —— 2 *1

SNP rectangles | —— 2 ¥
rectangles . — O((logn)?) *2

x1: From corollary 2.2.

*2: From proposition 2.1 and decomposition s-

trategy.
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