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摘要: We give nontrivial bounds for the chromatic number of power graphs $G^{k}$ of a planar

graph $G$ . In particular, we show that they can be colored with $O(\triangle^{\mathrm{L}^{k/\rfloor}}2)$ colors, which is

best possible, and give 2-approximation for square graphs and $O(1)$-approximation for cubic

graphs.
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1 Introduction

The k-th power $G^{k}$ of a graph $G$ is defined on
the same set of vertices as $G$ , and has an edge
between any pair of vertices of distance at most
$k$ in $G$ . The topic of this paper is the coloring of
power graphs, or equivalently coloring the under-
lying graphs so that vertices of distance at most $k$

receive different colors. We focus primarily on the
planar case, long the center of attention for graph
coloring. We upper-bound the chromatic num-
ber by the inductiveness of the graph, $\mathrm{i}\mathrm{n}\mathrm{d}(G)$ , de-
fined to be $\max_{H\subseteq}c\{\min_{v}(dH(v))\}$ , where $H$ runs
through all the subgraphs of $G$ . Inductiveness
leads to an ordering of the vertices, $\{v_{1}, \ldots, v_{n}\}$ ,

such that the pre-order of any $v_{i},$ $d^{+}(v_{i})=|\{v_{j}\in$

$N_{G}(v_{i}):j>i\}|$ , is at most $\mathrm{i}\mathrm{n}\mathrm{d}(G)$ .
The problem of coloring squares of graphs has

been studied recently for its applications to fre-
quency allocation. Transceivers in a radio net-
work communicate using channels at given radio
frequencies. Graph coloring formalizes this prob-
lem well when the constraint is that nearby pairs
of transceivers cannot use the same channel due
to interference. However, if two transceivers are
using the same channel and both are adjacent to a

third station, a clashing of signals is experienced
at that third node. This can be avoided by ad-
ditionally requiring all neighbors of a node to be
assigned different colors. That implies that ver-
tices of distance at most two must receive different
colors, which is equivalent to coloring the square
of the underlying network. Another application
of this problem, from a completely different di-
rection, is that of approximating certain Hessian
matrices, see [9].

Observe that neighbors form a clique in the
square of the graph. Thus, the minimum num-
ber of colors needed to color any square graph
is at least $\triangle+1$ , where $\triangle=\triangle(G)$ is the max-
imum degree of the original graph. As a result,
the number of colors our algorithms use on power
graphs will necessarily be a function of $\triangle$ , and
we are particularly interested in the asymptotic
behavior.

The first reference on coloring squares of planar
graphs is by Wegner [14], who gave bounds on
the clique number of such graphs. In particular,
he gave an instance for which the clique number
is at least $3\Delta/2+1$ (which is largest possible),
and conjectured this to be an upper bound on
the chromatic number, for $\Delta$ large. Some work
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has been done on the case $\Delta=3$ , as listed in [5,
Problem 2.18].

$\mathrm{M}\mathrm{c}\mathrm{C}_{\mathrm{o}\mathrm{r}}\mathrm{m}\mathrm{i}\mathrm{c}\mathrm{k}[9]$ showed that the problem of col-
oring the power of a graph is $\mathrm{N}\mathrm{P}$-complete, for
any fixed power, and a later proof was given by
Lin and Skiena [8]. $\mathrm{M}\mathrm{c}\mathrm{C}_{\mathrm{o}\mathrm{r}}\mathrm{m}\mathrm{i}\mathrm{C}\mathrm{k}$ gave a greedy
algorithm that gives a $O(\sqrt{n})$-approximation for
squares of general graphs. Heggernes and Telle [4]
showed that $\mathrm{d}\mathrm{e}\mathrm{t}\mathrm{e}\mathrm{r}\min_{1\mathrm{i}\mathrm{n}\mathrm{g}}$ if the square of a cubic
graph can be colored with 4 colors or less is NP-
complete, while it is easily determined if 3 colors
suffice.

Ramanathan and Lloyd $[13, 12]$ showed the
problem of coloring squares of planar graphs to
be $\mathrm{N}\mathrm{P}$-complete. They also gave an algorithm
with a performance ratio of 9 and no better. This
was the best previously result known for squares
of planar graphs. More generally, they showed
a constant approximation on graphs of constant
inductiveness, and a $O(q)$-ratio for graphs of in-
ductivensss $q$ . Krumke, Marathe and Ravi [7]
showed more precisely that the ratio is $2q-1$ .
They also gave a polynomial algorithm for graphs
of bounded treewidth and bounded degree, and
used that to give a 2-approximation for bounded-
degree planar graphs.

This paper attempts to further the knowledge
on the colorability and inductiveness of powers of
planar and general graphs. We first show that
for large values of $\triangle$ , squares of planar graphs are
$9\Delta/5+1$-inductive, implying a $9\Delta/5+2$-coloring.
This is the tightest possible, since there are graphs
attaining this bound. We combine this with pre-
vious results for bounded-degree graphs to obtain
a 2-approximation for coloring that holds for all
values of $\Delta$ .

We next show that the power $G^{k}$ of a planar
graph $G$ is $O(\Delta^{\lfloor k/}2\rfloor)$-inductive, for any $k\geq 1$ .
This gives an asymptotically tight algorithmic
bound for the chromatic number of the power
graph. In particular, this yields the first constant
factor approximation for coloring cubes of planar
graphs.

Finally, we consider the problem of approxi-
mately coloring powers $G^{k}$ of general graphs. We

give a construction showing that the problems are
hard to approximate within $\Omega(n^{1/2\epsilon}-)$ , for any
$\epsilon>0$ and any $k\geq 2$ . This nearly matches the
bound known for $k$ even. On the other hand, for $k$

odd, we give an $O(n^{1/2+}/(2k-4))1$-approximation.
This implies that odd powers are a rare class of
graphs where coloring is significantly easier than
finding independent sets, since the latter problem
is hard for this class within $\Omega(n^{1-\epsilon})$ factor, for
any $\epsilon>0[3]$ .

Note the fine distinction between coloring the
power graph $G^{k}$ , and finding a distance-k color-
ing of $G$ . The resulting coloring is naturally the
same. However, in the latter case, the original
graph is given. While it is easy to compute the
power graph $G^{k}$ from $G$ , Motwani and Sudan [10]
showed that it is $\mathrm{N}\mathrm{P}$-hard to compute the k-th
root $G$ of a graph $G^{k}$ . All of the algorithm pre-
sented in this paper $l\Gamma\oplus \mathrm{r}\mathrm{k}$ without knowledge of
the underlying root graph.

The rest of the paper is organized as follows.
We bound the inductiveness of squares of planar
graphs in Section 2, and general powers of planar
graphs in Section 3. We consider the implications
of these bounds to approximate colorings of pow-
ers of planar graphs in Section 4, and give bounds
on the approximability of coloring powers of gen-
eral graphs.

NOTATION: The degree of a vertex $v$ within a
graph $G$ is denoted by $d_{G}(v)$ or simply by $d(v)$

when there is no danger of ambiguity. The max-
imum degree of $G$ is denoted by $\Delta=\triangle(G)$ . For
a vertex $V$ denote by $d_{k}(v)$ the degree of $v$ in $G^{k}$ .
Distance between two vertices $u$ and $v$ in a graph
is the number of edges on the shortest path from
$u$ to $v$ , and is denoted by $d_{G}(u, v)$ . Let $G[W]$ de-
note the $\mathrm{s}\mathrm{u}\mathrm{b}\mathrm{g}_{\Gamma}\mathrm{a}_{\mathrm{P}}$

.
$\mathrm{h}$ of $G$ induced by vertex subset

$W$ .

2 Squares of planar graphs

We first take a look at the main technique we use
to derive bounds on the inductiveness of a square
graph (and more generally, power graphs). The
argument used e.g. to show that planar graphs are
5-inductive is the following. By Euler’s theorem,
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any planar graph contains a vertex of degree at on $G$ (i.e. distances in $G/uv$ are at most those in

most 5. Place one such node first in the induc- $G$). Further, by the second condition, the maxi-
tive ordering, and remove it from the graph. Now mum degree of $G/uv$ stays at most $\Delta$ .
the remaining graph is planar, so inductively we We illustrate the technique first by a simple

obtain a 5-inductive ordering. example. A theorem of Kotzin [6] states that a
The. bound of 5 on the minimum degree of amaximal planar graph contains an edge $uv$ such

planar graph also implies that squares of planar that $d(u)+d(v)\leq 13$ . We first argue that this

graphs are of minimum degree at most $5\Delta$ . This implies that any maximal planar graph $G$ with

would seem to imply a $5\Delta$-ordering. However, $\triangle(G)\geq 11$ is $5\Delta+6$-inductive. We find an
when a vertex is deleted from the graph, its in- edge as guaranteed by Kotzin’s theorem, select
cident edges are deleted as well, so that two re- the vertex of lower degree, contract the edge, and

maining vertices that originally were of distance 2inductively apply the argument on the resulting

apart, may not stay that way. Namely, the prob- maximal planar graph. The degree of the lower

lem is that an induced subgraph does not preserve degree vertex $u$ is at most 6, and that of $v$ at

the paths of length two between vertices within most $13-d(u)$ (including the edge $uv$ ), thus the

the subgraph. Our solution is to replace the dele- number of distance-2 neighbors of $u$ is at most
tion of vertex by the contraction of an incident $(d(u)-1)\Delta+(13-d(u)-1)\leq 5\triangle+6$ . The
edge. degree of the new contracted edge is at most

The contraction of an edge $uv$ in graph $G$ is $(d(u)-1)+(d(v)-1)\leq 11$ , hence maximum de-

the operation of collapsing the vertices $u$ and $v$ gree does not increase. The contracted graph is
into a new vertex, giving the graph $G/uv$ defined also maximally planar, hence this yields a $5\Delta+6-$

by $V(G/uv)=V(G)\backslash \{v\}$ and $E(G)=\{ww\in$ inductive ordering of $G^{2}$ .
$E(G)|w,$ $w’\neq v\}\cup\{uw|vw\in E(G)\}$ . Observe For a non-maximal planar graph $G$ , we first
that if $G$ is planar, then $G/uv$ is also planar. form an arbitrary maximal supergraph $G’$ , find

This is a property of various classes of graphs an inductive ordering as above, and use that to
that are closed under minor operations. By the color $G^{2}$ . Consider a vertex $u$ and let $G_{v}’$ be the

classic theorem of Kuratowski, planar graphs are contracted subgraph when $v$ was selected. $u$ had

precisely those graphs for which repeated contrac- at most 6 neighbors in $G_{u}’$ (including $v$ of degree
tions do not yield supergraphs of $K_{5}$ or $K_{3,3}$ . Mi- at most $13-d_{G’v}(u))$ . Each neighbor $w$ was either
nor closedness holds for various other classes of a contracted node of degree at most 11, or a node
graphs, e.g. partial-k trees, but not $\mathrm{d}$-inductive that had not received any new neighbors. In the

graphs in general. latter case, the degree of $w$ in $G$ is at most $\Delta(G)$ ;

Since our bounds on the inductiveness are func- the other neighbors of $w$ do not count as neigh-
tions of $\triangle$ , it is imperative that the contraction bors of $u$ in $G^{2}$ , unless it is through some other
operations do not increase the maximum degree. path. Hence, we have a $5\Delta+6$-inductive ordering

In summary, in order to show that a power graph of the square of any planar graph with $\Delta\geq 11$ .
$G^{k}$ is $q$-inductive, where $q$ is necessarily a function We can use that to improve the $9\triangle$ inductiveness

of the maximum degree $\Delta$ , we show the existence bound of [13] for every value of $\triangle$ . For smaller
of a vertex $v\in V(G^{k})\backslash =$. $V$

.
$(G)\backslash$ such that values of $\triangle$ , we know that any graph is trivially

$\triangle^{2}$-inductive, and the above also gives us an up-
$\bullet$ $d_{k}(v)\leq q$ , and per bound of 61. In particular, we have that the
$\bullet$ $v$ has a neighbor $u$ such at $d(u)+d(v)-2\leq\Delta$ , square of any planar graph is $8\Delta$-inductive.

(1) We now turn to the main result of this sec-
If such an edge $uv$ exists, $\mathrm{t}\mathrm{h}\langle \mathrm{t}\mathrm{h}\mathrm{e}$ contraction of tion, which is that when $G$ is planar and $\Delta$ large
$uv$ in $G$ yields yield a simplelanar graph $G/uv$

enough, then $G^{2}$ is $\mathrm{L}\frac{9\Delta(G)}{5}\rfloor+1$-inductive. The
whose distance function is dtinated by the one
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following lemma is the key to this result. By our assumption there is no vertex in $V_{l}$ with
at most one neighbor in $V_{h}$ in $G$ and hence in $G’$ .

Lemma 2.1 Let $G$ be a simple planar graph of Therefore, the degree of a vertex in $H$ is at least
maximum degree $\triangle\geq 26$ . Then there exists a that in $G’$ .
vertex $v\in V(G)$ satisfying one of the following Using Euler’s formula for planar graphs, it is
conditions: easy to show that there are at least three vertices

1. $d(v)\leq 25$ and at most one neighbor of $v$ has of $V(H)=V_{h}\cap V(G’)$ with at most 5 neighbors in
degree $\geq 26$ . $H$ , and hence there is such a vertex $v\in V(H)\subseteq$

$\mathit{2}$. $d_{2}(v) \leq \mathrm{L}\frac{9}{5}\triangle\rfloor+1$ and only two neighbors of
$V(G’)$ that is not on the 4-cycle defining $G’$ (if $G’$

was so defined.)
$v$ in $G$ have degree $\geq 26$ .

Consider now a neighbor $u$ of this $v\in V(H)$ .
Proof. We assume that we have a fixed planar Let $m_{uv}$ be the multiplicity of the edge $uv$ in $H$ .
embedding of $G$ , and hence $G$ is a plane graph. By our definition of $G’$ there are at most two
Let $V_{h}=\{v\in V(G) : d(v)\geq 26\}$ and $V_{l}=$ blue edges connecting $u$ and $v$ since the third one
$V(G)\backslash V_{h}$ . If there is a vertex in $V_{l}$ with at most would imply a $\mathrm{f}\dot{\mathrm{o}}$rbidden 4-cycle within $G’$ . Also,
one neighbor in $V_{h}$ , then we are done, so assume there is only one red edge connecting $u$ and $v$ .
the contrary. Hence, if $m_{uv}\geq 4$ there are at least $m_{uv}-3\geq 1$

Call a cycle of four vertices in $G$ forbidden, if green edges connecting $u$ and $v$ in $H$ . We note
exactly two opposite vertices of the cycle are in $V_{h}$ that all the blue and green edges connecting $u$

and the enclosed region formed by the cycle in the and $v$ in $H$ correspond to different vertices of $V_{l}$

plane properly contains at least one vertex in $V_{h}$ . in $G’$ .
If $G$ contains a forbidden 4-cycle then let $G’$ be Let $c_{uv}$ be the number of common neighbors
the subgraph of $G$ induced by the region bounded of $u$ and $v$ in $G’$ (if $u$ and $v$ are connected in $G’$ ,
by a minimal such 4-cycle. (Here, minimal means then both $u$ and $v$ are counted as well.) The com-
that no other 4-cycle is inside.) If $G$ contains no bined closed neighborhood of $u$ and $v$ in $G’$ has
such cycle then let $G’$ be G. precisely $(d_{G};(u)+1)+(d_{G’()}v+1)-Cuv$ vertices.

Consider now the multigraph $H$ with vertex Since $m_{uv}\leq c_{uv}$ (in fact, $m_{uv}+1\leq c_{uv}$ , if $u$ and
set $V_{h}\cap V(G’)$ and with colored edges defined as $v$ are connected in $G’$), we have that this closed
follows. For each edge $uw$ in $E(G’)$ with both neighborhood of $u$ and $v$ in $G’$ is bounded above
$u,$ $w\in V_{h}$ connect $u$ and $w$ with a red edge. For by $(d_{G^{\prime(}}u)+1)+(d_{G’}(v)+1)-m_{uv}$, vertices.
each vertex $v\in V_{l}$ adjacent to $u$ and $w\in V_{h}$ in $G’$ Letting $w$ run through all the neighbors of $v$

and to no other vertex in $V_{h}$ , connect $u$ and $w$ in in $H$ , we note that $\sum_{w}m_{vw}=d_{H}(v)\geq d_{G}J(v)$ .
$H$ with a green edge. Finally for $v\in V_{l}$ adjacent Since $v$ has at most 5 neighbors in $G’$ , there must
to $u_{1},$ $u_{2},$ $\ldots,u_{k}\in V_{h}$ in $G’$ in a clockwise order be a neighbor $u$ of $v$ such that $m_{uv}\geq\lceil d_{G’}(v)/5\rceil$

for $k\geq 3$ , connect $u_{1}$ to $u_{2},$ $u_{2}$ to $u_{3},\ldots,u_{k-1}$ to and hence the combined neighborhood of $u$ and $v$

$u_{k}$ and $u_{k}$ to $u_{1}$ with blue edges in H. is at most
Since $G$ is planar we note that $H$ is also a planar

$d_{G(v)+d_{G}},,(u)+2- \mathrm{r}\frac{d_{G’}(v)}{5}\rceil$

multigraph, and hence, we can assume we have a
drawing of $H$ in the plane such that

$=$ $\lfloor\frac{4d_{G}\prime(v)}{5}\rfloor+d_{G},(u)+2$

1. The vertices of $H$ have the same configura-
tion as they have in the plane graph G. $\leq$ $\lfloor\frac{9\Delta(G\prime)}{5}\rfloor+2$

2. For every pair $\{u, w\}$ of vertices of $H$ con-
$\leq$ $\lfloor\frac{9\Delta(G)}{5\backslash }\rfloor+2$ .

nected by green or blue edges, their order is
the same as the order of the corresponding Since $v\in V(H)\subseteq V_{h}$ is in the interior of the 4-
vertices of $V_{l}$ . cycle defining $G’$ , we have $d_{G’}(v)=d_{G}(v)\geq 26$
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and hence $m_{uv}\geq\lceil d_{G’}(v)/5\rceil\geq 6$ . Hence, $u$ and $v$

are connected by at least 5 nonred edges. Choose
5 consecutive nonred edges between $u$ and $v$ , and
let $z_{1},z_{2,\ldots,5}z$ be the neighbors of $u$ and $v$ in
$G’$ , in a clockwise order, corresponding to these
chosen nonred edges. The edges corresponding to
$z_{2},$ $z_{3}$ and $z_{4}$ are green, since otherwise we would
have a forbidden 4-cycle within $G’$ .

Now, if $z_{i},$ $i\in\{2,3,4\}$ , is adjacent to a vertex
in $V_{l}$ that does not represent a green nor blue edge
between $u$ and $v$ , then by our assumption that ev-
ery vertex in $V_{l}$ has at least two neighbors in $V_{h}$ in
the graph $G’$ , one of these neighbors in $V_{h}$ must be
distinct from $u$ and $v$ and therefore contained in
the region formed by the 4-cycle $(u, Zi-1, v, zi+1)$ .
Again this would imply a forbidden 4-cycle and
contradict our definition of $G’$ .

Therefore, the only vertices of $V_{l}$ that $z_{i}$ can
possibly be adjacent to in $G’$ are $z_{i-1}$ and $z_{i+1}$ .
In particular, the neighbors of $z_{3}$ in $G’$ are among
$\{u, v, z_{2}, z_{4}\}$ , and the neighbors of $z_{2}$ and $z_{4}$ are
among $\{u, v, z1, z\mathrm{s}\}$ and $\{u, v, z_{3},z_{5}\}$ respectively.
In any case, the combined neighborhood of $z_{2}$ and
$z_{4}$ is contained in the closed combined neighbor-
hood of $u$ and $v$ . Hence the number of vertices of
distance at most 2 from $z_{3}$ are at most $\mathrm{L}\frac{9\Delta(G)}{5}\rfloor+2$

(including $z_{3}$ itself). $\square$

Theorem 2.2 If $G$ is a planar graph with $\max-$

imum degree $\Delta\geq 749$ , then $G^{2}$ is $\mathrm{L}\frac{9}{5}\triangle\rfloor+1-$

inductive.

Proof. Assume that $\triangle\geq 25+25-2$ and that
we have a vertex $v$ of $G$ which satisfies the first
condition of Lemma 2.1. If $v$ has a neighbor $u$

of degree 25 or less, then $d_{2}(v)\leq 600+\triangle$ , and
moreover $d(v)+d(u)-2\leq\triangle$ . If $v$ has no neighbor
of degree 25 or less, then it has only one neighbor
$u$ . In this case $d_{2}(v)\leq\triangle$ and $d(v)+d(u)-2\leq\triangle$ .

In the proof of Lemma 2.1 we assumed that
there is no vertex in $V_{l}$ with at most one neighbor
of $V_{h}$ . In that case there is a vertex of $G$ , called $z_{3}$

in the last paragraph of the proof, with $d_{2}(z_{3})\leq$

$\mathrm{L}\frac{9}{5}\triangle\rfloor+1$ . Also, $z_{3}$ has at most two neighbors $z_{2}$

and $z_{4}$ of $V_{l}$ . If $z_{3}$ has no neighbors of $V_{l}$ (that
is, is connected to neither $z_{2}$ nor $z_{4}$ ), then since

the only neighbors of $z_{3}$ in $V_{h}$ are $u$ and $v$ , we
have $d(z_{3})+d(v)-2=d(z_{3})+d(u)-2\leq\triangle$ .
If $z_{3}$ has a neighbor $z_{1}$ or $z_{2}$ of $V_{l}$ , say $z_{1}$ , then,
$d(z_{3})+d(Z_{1})-2\leq\Delta$ .

In any case, we see that we can always find a
vertex $w$ of $G$ with $d_{2}(w) \leq\max\{600+\Delta,$ $\mathrm{L}\frac{9}{5}\triangle\rfloor+$

$1\}$ , and such that $w$ has a neighbor $w’$ with $d(w)+$

$d(w’)-2\leq\Delta$ . $\square$

It turns out that $\frac{9}{5}\triangle+1$ is a sharp upper bound.

Observation 2.3 For any $\Delta_{f}$ there exists a pla-
$nar$ graph $G$ of maximum degree $\Delta$ such that $G^{2}$

is of minimum degree $\frac{9}{5}\triangle+1$ .

Proof. Take a 5-regular planar graph (e.g. the
graph corresponding to the regular icosahedron),
and add to each edge $k$ parallel paths of length 2.
Then, $\Delta=5(k+1)$ . The two vertices adjacent to
a given degree-2 vertex $v$ have a common neigh-
borhood of size $k$ , and the union of their closed
neighborhoods is thus of size $(\Delta+1)+(\triangle+1)-$

$(k+1)= \frac{9}{5}\triangle+2$ (including $v$ itself.) $\square$

3 General powers of planar graphs

In this section we prove the following theorem.
We summarize our explorations in the follow

theorem.

Theorem 3.1 Let $G$ be a planar graph with $\max-$

imum degree $\triangle$ . For any $k\geq 1,$ $G^{k}$ is $O(\triangle^{\mathrm{L}^{k}/2\rfloor} )$-

colorable. Also, there is a family of graphs that
attains this bound. This bound is also asymptot-
ically tight for the clique number, inductiveness,
arboricity, and minimum degree of $G^{k}$ .

Let us first give a construction that matches the
bound of the theorem. Given $k,$ $\triangle\geq 1$ , consider
the tree $T$ of height $\lfloor k/2\rfloor$ where internal vertices
have degree $\triangle$ . The number of vertices in $T$ is

$D_{\Delta,k}=1+\Delta+\triangle(\triangle-1)+\cdots+\triangle(\triangle-1)\mathrm{L}k/2\rfloor-1$

$= \frac{\triangle(\Delta-1)\mathrm{L}^{k/2}\mathrm{J}-2}{\triangle-2}$ .

Observe that $T^{k}$ is a complete graph, thus thus
$\chi(T^{k})=D_{\Delta,k}$ .
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We now turn to proving the upper bound of
the theorem. The rest of this section is divided
up into several subsections, each of which deals
with necessary tools to complete the proof of our
main Theorem 3.1 below. First let us set forth
some useful terminology.

in $W\backslash U$ are of degree 2). By Euler’s formula,
$|E(G’)|\leq 3|U|-6$ . Since each edge of $G’$ corre-
sponds to a distinct vertex of $W\backslash U$ , we have that
$|W|\leq 4|U|-6$ . Thus, $d_{2}\leq 4$ .

Before proving the general case of Theorem 3.3,
let us continue and derive our conclusions.

Notation A $k$ -path is a path of length exactly
$k$ . A $(k, \leq)$ -path is a path of length $k$ or less. If $u$

and $v$ are two given vertices then an $(k;u, v)$ -path
is a path between $u$ and $v$ of length exactly $k$ ,
and finally a $(k, \leq;u, v)$-path is a path between $u$

and $v$ of length $k$ or less. A vertex $w$ is called a
$(k, \leq;u, v)$ -link if $w$ is on every $(k, \leq;u, v)$ -path.
$N(v)$ will denote the set of the neighbors of $v$ in
$G$ , and $N[v]$ the closed neighborhood of $v$ , that is
$N(v)\cup\{v\}$ .

Definition 3.2 For a simple planar graph $G$ , an
integer $k\geq 1$ and a subset $U\subseteq V(G)$ , denote by
$\mathcal{P}_{k}(G;U)$ the set of all $W$ with $U\subseteq W\subseteq V(G)$

and such that any two vertices in $U$ connected by
$a(k, \leq)$ -path in $G_{f}$ are also connected by a $(k, \leq)-$

path in $G[W]$ .

We will derive the following bound on the size of
each minimal element of $P_{k}(c;U)$ , that is linear
in $|U|$ , for any fixed $k$ .

Theorem 3.3 There exists an integer sequence
$(d_{k})_{k\geq 1}$ with $d_{k}\leq 10^{k-1}$ , such that for every con-
nected simple planar graph $G$ , every integer $k\geq 1$

and every $U\subseteq V(G)$ , each minimal element of
$\mathcal{P}_{k}(G;U)$ has at most $d_{k}|U|$ vertices.

Let us get a better grasp of this by examining
the first two cases $k=1,2$ . Clearly $U$ itself is the
only minimal element in $\mathcal{P}_{1}(G;U)$ , for any $U$ and
$G$ , thus $d_{1}=1$ .

For the case $k=2$ , let $W$ be a minimal element
in $\mathcal{P}_{2}(G;U)$ , for a given $U$ . We form a graph $G’$

on vertex set $U$ as follows. For each $w\in W\backslash U$ ,
select a pair $u_{1},u_{2}$ in $U$ for which $w$ is a 2-1ink,
and add an edge $u_{1}u_{2}$ to $G’$ . Note that $G’$ is a sim-
ple graph, since each $w$ was the only path $G[W]$

between the endpoints of the corresponding edge
in $G’$ , and it is planar since it is an edge contrac-
tion of a subgraph of $G[W]$ (where all vertices

Arboricity For a graph $G$ , define its arboricity
as $\mathrm{a}\mathrm{r}\mathrm{b}(G)=\max_{H\underline{\mathrm{C}}G}\mathrm{r}\frac{|E(H)\int}{|V(H)|-1}\rceil$ . By the Nash-
Williams theorem [11] there are $\mathrm{a}\mathrm{r}\mathrm{b}(G)$ edge-
disjoint subforests of $G$ that cover all the edges
$\mathrm{o}\mathrm{f}G$ .

Arboricity is closely related to inductiveness.

Lemma 3.4 For any graph $G$ , we have $arb(G)\leq$

$\dot{i}nd(G)<2arb(G)$ .

Proof. Assume first $\mathrm{i}\mathrm{n}\mathrm{d}(G)=q$. We will show
that $E(G)$ can be partitioned into $q$ forests. Given
alinear arrangement of the vertices, such that the
pre-order is at most $q$ , we arbitrarily color the $q$

edges from a vertex $v_{i}$ to later vertices with $q$

colors. In this way, each color class is acyclic-
since two edges of the same color cannot have the
same first-labeled endpoint–and thus a forest.
Therefore $\mathrm{a}\mathrm{r}\mathrm{b}(G)\leq q$ , proving the first inequality.

For the other inequality, let $\mathrm{i}\mathrm{n}\mathrm{d}(G)=q$ . Let $H$

be a subgraph of $G$ such that $\min_{v}(d_{H}(v))=q$ .
Since $2|E(H)|= \sum_{v}d_{H}(v)\geq q|V(H)|$ , we have
$\mathrm{a}\mathrm{r}\mathrm{b}(G)>|E(H)|/|V(H)|\geq q/2$ , which completes.
our lemma. $\square$

From Lemma 3.4 we have in particular from [13]
that $\mathrm{a}\mathrm{r}\mathrm{b}(G^{2})\leq 9\triangle$ .

Consider now the power graph $G^{k}$ of $G$ . For a
vertex set $U\subseteq V(G)$ , let $E^{k}(U\rangle$ be the edgeset
of the subgraph of $G^{k}$ induced by $U$ . Then, the
arboricity of $G^{k}$ is

$\mathrm{a}\mathrm{r}\mathrm{b}(G^{k})=\max_{V}U\subseteq(G)\lceil\frac{|E^{k}(U)|}{|U|-1}\rceil$ .

Note that every edge in $E^{k}(U)$ is represented by
at least one $(k, \leq)$-path between vertices of $U$ .
Let $W_{U}\in \mathcal{P}_{k}(G;U)$ be a minimal element. By
Theorem 3.3, $|W_{U}|\leq 10^{k-1}|U|$ and we have that
$|E^{k}(U)|$ is less than the number of $(k, \leq)$-paths in
$G[W_{U}]$ . We note that all $(k, \leq)$-paths in $G[W_{U}]$
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connecting two vertices of $U$ , except the $(2, \leq)-$

paths, are represented by an edge $uv$ in $G[W_{U}]k-2$

together with edges $e$ and $e’$ in $G$ , with one end-
point $u$ and $v$ respectively. Hence,

$|E^{k}(.U)| \leq|E^{2}(U)|+v\in G[\sum_{uWU]}d(u)d(vk-2)$
. (2)

Degree products over edges The following
lemma will be used in our inductive argument.

Lemma 3.5 If $G$ is a simple graph of maximum
degree $\Delta$ and $F$ is a forest with $V(F)\subseteq V(G)$ ,
then

$\sum_{uv\in E(F)}d_{G}(u)dG(v)\leq 2\triangle|E(F)|$
.

Proof. For any graph $H$ , with $V(H)\subseteq V(G)$ let

$S(H)= \sum_{uv\in E(H)}d_{G}(u)d_{G}(v)$
.

For each tree $T$ of $F$ , direct its edge away from
an arbitrarily chosen root. Thus, $T$ becomes a
directed tree $T^{d}$ in which every vertex but the root
has indegree one. For each arc $u^{arrow}v$ in $T^{d}$ bound
the summand $d_{G}(u)d_{G}(v)$ from above by $\triangle d_{G}(v)$ .
Then,

where now $W_{U}$ is our minimal element of
$\mathcal{P}_{k}(G;U)$ . By the induction hypothesis we have
that $\mathrm{a}\mathrm{r}\mathrm{b}(G[W_{U}]k-2)\leq\alpha_{k-2}\triangle \mathrm{L}^{\frac{k-2}{2}\rfloor}=a_{k-2}$ and
hence by the Nash-Williams theorem [11] there
are $a_{k-2}$ edge-disjoint forests $F_{1},F_{2,\ldots,a_{k}}F-2$

covering all the edges of $G[W_{U}]^{k-2}$ . By Lemma
3.5, and Theorem 3.3,

$uv \in G[WU]\sum_{k-2}d(u)d(v)$
$=$ $\sum_{i=1v\in E()}^{a_{k-2}}\sum_{uF_{i}}d(u)d(v)$

$\leq$ $\sum_{=i1}^{a_{k2}}-2\triangle|E(F_{i})|$

$\leq$ $a_{k-2}(2\Delta(|WU|-1))$

$<$ $2a_{k-2}\Delta|W_{U}|$

$\leq$ 2 $\cdot 10^{k-1}\alpha k-2\triangle^{\mathrm{L}k}/2\mathrm{J}|U|$ .

Since $k\geq 3$ and $\alpha_{k}\geq 1$ , we can assume $|U|\geq 3$ .
Thus,

$|E^{k}(U)|$ $\leq$ $9\triangle(|U|-1)+2\cdot 10^{k-1}\alpha_{k}-2\Delta^{\mathrm{L}/2\rfloor}k|U|$

$\leq$ 4 $\cdot 10^{k-1}\alpha_{k-2}\triangle \mathrm{L}^{k}/2\rfloor(|U|-1)$.

Thus, $\mathrm{a}\mathrm{r}\mathrm{b}(G^{k})\leq\alpha_{k}\triangle^{\mathrm{L}^{k}/2\rfloor}$ , where $\alpha_{1}=3,\alpha_{2}=9$

and $\alpha_{k}=4\cdot 10^{k-1}\alpha k-2$ . By an easy induction, we
obtain the following lemma.

$S(T)$ $\leq$ $u^{arrow}v \in E(d)\sum_{T}\triangle dG(v)=\triangle(_{v\in V}\sum_{\mathrm{t}T)\backslash \{r\}}dG(v))$

$\leq$ $\triangle(_{v\in V}\sum_{(T)}d_{G}(v))$ .

As $F$ is a $\mathrm{d}\mathrm{i}_{\mathrm{S}\mathrm{j}_{0}}\mathrm{i}\mathrm{n}\mathrm{t}\mathrm{u}\mathrm{n}\prime \mathrm{i}\mathrm{o}\mathrm{n}$ of trees $T_{i}$ , we have that
$S(F)= \sum_{i=1}^{k}s(\tau_{i})\leq 2\triangle|E(F)|$ . $\square$

Arboricity of power graphs. We now want to
show inductively that there is a sequence $(\alpha_{k})_{k=1}^{\infty}$

such that for every planar $G$ with maximum de-
gree $\triangle$ we have

arb $(G^{k})\leq\alpha_{k}\Delta^{\lfloor k/2\rfloor}$ . (3)

We know at this point that $\alpha_{1}=3$ and $\alpha_{2}=9$

satisfy (3). We proceed by induction and consider
general $k\geq 3$ . By (2) we get

$|E^{k}(U)|\leq 9\Delta(|U|-1)+$ $\sum$ $d(u)d(v)$ ,
$uv\in G[W_{U}]^{k-2}$

Lemma 3.6 If $G$ is a planar graph with a $\max-$

imum degree $\Delta_{f}$ and $k$ $\geq$ 1 is an integer,
then we have $arb(G^{k})\leq\alpha_{k}\triangle^{\mathrm{L}^{k}/2\rfloor}$ , where $\alpha_{k}=$

$4^{k-1}10^{k^{2}/}4$ . $\square$

Letting $\alpha_{k}$ be as in the previous lemma, we get
by Lemma 3.4 the following corollary.

Corollary 3.7 For a simpte planar graph $G$ and
an integer $k\geq 1$ , we have that $G^{k}$ is $2\alpha_{k}\Delta^{\lfloor k/2\rfloor_{-}}$

inductive.

Proof of Theorem 3.2 We have already
proved the theorem in the case where $k\in\{1,2\}$ .
When considering the general case of $(k, \leq)-$

paths, we proceed by induction on $k$ and as-
sume $k\geq 3$ . Let $U\subseteq V(G)$ be given. Let
$W\in \mathcal{P}_{k}(G;U)$ be a minimal element. Note that
every vertex $w\in W\backslash U$ is nonremovable, in that
there is a pair of vertices $\{u_{w1,w2}u\}$ in $U$ such
that $w$ is a $(k, \leq;u_{w1}, u_{w}2)$-link in $G[W]$ .
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Let $U’\subseteq W\backslash U$ be the set of vertices of $W$

that are connected to some vertex in $U$ by an
edge. We want to show that there is a constant
$c$ such that $|U’|\leq c|U|$ . We can partition $U’$ as
$U’=U_{1}’\cup U_{2}’\cup U_{3}’$ , where

$U_{1}’=\{v\in U’ : |N(v)\cap U|=1\}$ ,
$U_{2}’=\{v\in U’ : |N(v)\cap U|=2\}$ ,
$U_{3}’=\{v\in U’ : |N(v)\cap U|\geq 3\}$ .

When estimating the sizes of $U_{1}’,$ $U_{2}’$ and $U_{3}’$ , the
easiest case to deal with is $U_{3}’$ . By the following
Lemma 3.8 we have that $|U_{3}’|\leq 2|U|-4$ .

Lemma 3.8 For a simple planar graph with ver-
tex set $U\cup V$ such that every vertex in $V$ is con-
nected to at least three vertices of $U$ , we have that
$|V|\leq 2|U|-4$ .

Proof. The bipartite subgraph on $(U, V, E)$ has
at most $2(|U|+|V|)-4$ edges by Euler’s formula,
but at least $3|V|$ edges by the degree bound on $V$ .

$\square$

The proof of the following bound on $U_{2}’$ is omit-
ted for reasons of space.

Lemma 3.9 $|U_{2}’|\leq 9|U|$ .

We now derive the the final step towards com-
pletion of the proof of Theorem 3.3.

a disjoint union of $U^{*},$ $U_{2’ 3}^{J}U$
’ and $U”$ . For conve-

nience define a map $c$ : $Warrow U^{*}\cup U_{2}’\cup U_{3}’\cup U’’$

by

$c(w)=\{$
$u^{*}$ if $w\in N_{U_{1}’}[u]$ , for $u\in U_{1}$ ,
$w$ otherwise.

Note that every $(k, \leq)$-path between a pair of ver-
tices of $U$ in $G[W]$ gives a $(k-2, \leq)$-path between
a pair of vertices of $U^{*}\cup U_{2}’\cup U_{3}’$ .

Let us now show that every vertex of $U”$ is non-
removable in $C[W]$ when considering $(k-2, \leq)-$

paths between pairs of vertices of $U^{*}\cup U_{2}’\cup U_{3}’$ .
Let $u”\in U’’$ . Since $u”$ is nonremovable in $G[W]$

there is a pair $u,$ $u’$ of vertices of $U$ such that $u”$ is
a $(k, \leq;u, u’)$-link. Pick a fixed $(k, \leq;u, u’)$ -path
$\gamma$ and let $v$ and $v’$ be the endpoints of $\gamma\backslash \{u, u’\}$ .
Now $u”$ is a $(k-2, \leq;v, v’)$-link in $G[W]$ , since
otherwise $u”$ would not be a $(k, \leq;u, u’)$ -link in
$G[W]$ . That $u”$ is a $(k-2, \leq;c(v),$ $C(v’))$-link in
$C[W]$ can be seen as follows. If $u”$ is not such a
link, then there is a $(k-2, \leq;c(v),$ $C(v’))$-path $\gamma’$

not including the vertex $u”$ in $C[W]$ . It then gives
a $(k, \leq;u, u’)$-path $\gamma’’$ in $G[W]$ not including $u”$ ,
which is a contradiction.

By induction hypothesis on $k$ , we now have that
the number of vertices of $C[W]$ are bounded, that
is $|U^{*}\cup U_{2}^{\prime\prime\prime\prime}\cup U_{3^{\cup U}}|\leq d_{k-2}|U^{*}\cup U\prime U_{3}2^{\cup}|’$ . By
previous arguments and the fact that $|U^{*}|=|U|$ ,
we have

Lemma 3.10 For a minimal element $W$ of
$\mathcal{P}_{k}(G;U),$ $|W|\leq 84d_{k-2}|U|$ . $|U^{*}\cup U’\cup U^{\prime J\prime}23^{\cup}U|\leq d_{k-2}(|U|+9|U|+2|U|)=12d_{k-2}|U|$ .

Proof. Let $U_{1}\subseteq U$ be the set of vertices that
have neighbors in $U_{1}’$ . We now have the following
partition

$U_{1}’= \bigcup_{1u\in U}NU^{J}(u)1$

where $N_{U_{1}’}(u)=\{v\in U_{1}’ : uv\in E(G[W])\}$ . Con-
sider the planar graph $C[W]$ we get from $G[W]$

by contracting $N_{U_{1}’}[u]$ to a single vertex $u^{*}$ , for
each $u\in U_{1}$ . Let $U^{*}=\{u^{*} : u\in U_{1}\}\cup(U\backslash U_{1})$ .
If we let $U”=W\backslash (U\cup U’)$ , then clearly $W$ is a
disjoint union of $U,$ $U’,$$U’U’12’ 3$ and $U”$ . In view of
this, $C[W]$ will become a graph whose vertices are

The only thing left to conclude our inductive ar-
gument is to show that $|W\backslash (U\cup U’2\cup U_{3}’\cup U’’)|=$

$|U_{1}’|\leq c|U|$ for some constant $c$ .
Let $u\in U$ be fixed. For each neighbor $v$ of $u$ in

$G[W]$ , let $p_{u}(v)\in U$ be a vertex such that $v$ is a
$(k, \leq;u,p_{u}(v))$-link. We assume further that for
a fixed $u$ and distinct $v$ , all the $p_{u}(v)$ are distinct.

Claim 3.11 With the notation from above, for
each neighbor $v$ of $u$ in $G[W]$ , let $\gamma_{v}$ be a $(k,$ $\leq$

; $u,p_{u}(v))$ -path. Except for the vertex $u$ , all these
paths are $verteX-di_{S}joint\backslash \cdot$

Proof. Assume $\gamma_{v_{1}}$ and $\gamma_{v_{2}}$ have a common ver-
tex $x$ other than $u$ . Hence, for $i=1,2,$ $\gamma_{v_{i}}=$
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$\gamma_{ix}\beta_{i}$ , where $\gamma_{ix}$ is the path from $u$ to $x$ along
$\gamma_{v_{*}}$ and $\beta_{i}$ the path from $x$ to $p_{u}(v_{i})$ along $\gamma_{v_{i}}$ .
If now $l(\gamma_{1x})\leq l(\gamma_{2x})$ , then $\gamma’=\gamma_{1x}\beta_{2}$ is a
$(k, \leq;u,p_{u}(v_{2}))$ -path not including the vertex $v_{2}$ ,
contradicting the definition of $p_{u}(v_{2})$ . $\square$

By Claim 3.11, all the $(k, \leq;u,p_{u}(v))$-paths
from $u$ to each of the $p_{u}(v)$ , are vertex disjoint.
Therefore the number of vertices of $N_{U_{1}’}(u)$ is
less than the number of edges going out of $u^{*}$ in
the contracted graph $C[W]$ . Since each edge in
$C[W]$ connects to at most two vertices of $U^{*}$ , we
have that $|U_{1}’|\leq 2|E(c[W])|$ . Since $|E(C[W])|\leq$

$3|V(c[W])|-6$ and $V(C[W])=U*\cup U2U_{3}’’\cup\cup U^{u}$ ,
we have

$|W|$ $=$ $|U^{*\prime\prime\prime\prime}\cup UU\cup U|2^{\cup}3+|U’|1$

$\leq$ $12d_{k-2}|U|+2|E(c[W])|$

$\leq$ $12d_{k-2}|U|+6|U*\cup U_{23^{\cup}}’\cup U’U^{\prime J}|$

$\leq$ $84d_{k-2}|U|$ .

Theorem 4.1 The problem of coloring squares of
planar graph has a $\mathit{2}- approXimation_{f}$ and coloring
cubes of planar graphs has a constant approxima-
tion.

General graphs We give upper and lower
bounds on the approximability of coloring power
graphs, for the case of general (not necessarily
planar) graphs.

It is easy to see that coloring square graphs
$G^{2}$ is $O(\sqrt{n})$-approximable. Namely, $G^{2}$ is
$\min(\triangle^{2}, n-1)$-inductive, for a performance ratio
of $\min(\triangle, n/\triangle)\leq\sqrt{n}$ . Note that $G^{2t}$ are squares
of $G^{t}$ , and positive results for square graphs trans-
late to all even powers. We can show that to be
essentially tight.

We say that a problem is hard to approximate
within a given factor, if the claim holds under the
assumption that $NP\neq ZPP$ , the class of prob-
lems with polynomial-time zero-error randomized
algorithms.

We see from the above display that $d_{k}=84d_{k-2}$

is sufficient in the case for general $k$ provided
that $d_{k-2}$ is known. Therefore the sequence
$(d_{k})_{k=1}^{\infty}$ defined inductively by $d_{1}=1,$ $d_{2}=4$

and $d_{k}=84d_{k-2}$ will give us the desired con-
stants. A straightforward induction implies that
$d_{k}\leq 10^{k-1}$ , and hence we have Theorem 3.3. $\square$

4 Approximating the chromatic num-

ber of power graphs

Planar graphs We can improve the best ap-
proximation factor known for coloring squares of
planar graphs. Recall that since neighbors in $G$

must be colored differently in $G^{2},$ $\chi(G^{2})\geq\triangle+1$ .
Thus, for $\triangle\geq 748$ , Corollary 3.7 yields a 1.8-
approximation.

For constant values of $\triangle$ , we can use a result
of Krumke, Marathe and Ravi [7]. They stated a
3-approximation, but actually a 2-approximation
easily follows from their approach. Hence, com-
bined we obtain a 2-approximation for any value
of $\Delta$ .

Theorem 31 also immediately gives a $O(1)-$

approximation to coloring cubes of planar graphs.

Theorem 4.2 Let $\epsilon>0$ and $d\geq 1$ . Coloring
power graphs $G^{d}$ is hard to approximate within
$O(n-)1/2\epsilon$ , even if $G$ is known.

Proof. Consider first $d=2$ . Given a graph
$G$ on $N$ vertices, we construct a graph $H$ on
$n=N+N^{2}$ vertices, where $V(H)=\{v_{i},$ $u_{i,j}$ :
1 $\leq\dot{i},j\leq n$ }, $E(H)=\{(v_{i},u_{j},\iota)$ : $(v_{i}, v_{j})\in$

$E(G)\}$ . Observe that if $G$ is $k$-colorable, then
$H$ has a distance-2 coloring with $(k+1)N$ colors,
which can be constructed by $k$-coloring each set
$\{u_{1,i,2,j,\ldots,N,j}uu\}$ and coloring the v-vertices
with additional $N$ colors. On the other hand, if
$H$ has a distance-2 $qN$-coloring, then $G$ is $q\log$ n-
colorable, obtained by greedily using the largest
distance-2 color class of $H$ as the first color in $G$

and recursing on the remaining graph. In fact,
when $q=N^{\Omega(1)}$ , then $G$ is $O(q)$-colorable.

Since it is hard to determine whether a given
graph on $N$ vertices is $N^{\epsilon}$-colorable or $\Omega(N^{1-6})-$

chromatic [2], it is also hard to determine whether
the optimal distance-2 coloring of a given graph
on $n$ vertices uses at most $o(N^{1+\epsilon})=o(n1/2+\epsilon/2$

or at least $\Omega(N^{2-\epsilon})=\Omega(n^{1-\epsilon/2})$ colors.
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A similar argument holds for other $d>1$ . For
the case of $d=2t$ , with $t>1$ , we construct
the following graph $H$ on $tN+N^{2}$ vertices, when
given a graph $G$ on $N$ vertices. The graph con-
sists of $G$ , a path of $t-1$ vertices attached to each
vertex of $G$ , and a set of $N$ vertices attached to
the end node of each path.

For the case of $d=2t$ , we use a construction
similar to the theorem above, except a path of
$t-1$ vertices lies between each $v_{i}$ vertex and the
corresponding $u_{i,x}$ vertices. $\square$

We note that $\mathrm{N}\mathrm{P}$-hardness reduction of Lin and

[3] M. M. $\mathrm{H}\mathrm{a}\mathrm{l}\mathrm{l}\mathrm{d}6\mathrm{r}\mathrm{s}\mathrm{s}\mathrm{o}\mathrm{n}$ , J. Kratochvll, and J. A. Telle.
Independent sets with domination constraints. In
Proceedings of the 25th International Conference
on Automata, Languages, and Programming (ICALP),
volume 1443 of Springer Lecture Notes in Com-
puter Science, Aalborg, Denmark, July 1998. To
appear in Discrete Appl. Math.

[4] P. Heggernes and J. A. Telle. Partitioning graphs
into generalized dominating sets. Nordic J. Com-
puting, $5(2):128-143$ , Summer 1998.

[5] T. R. Jensen and B. Toft. Graph Coloring Prob-
lems. Wiley Interscience, 1995.
http: $//\mathrm{w}\mathrm{w}\mathrm{w}$ . imada. $\mathrm{s}\mathrm{d}\mathrm{u}.\mathrm{d}\mathrm{k}/\mathrm{R}\mathrm{e}\mathrm{s}\mathrm{e}\mathrm{a}\mathrm{r}\mathrm{c}\mathrm{h}/\mathrm{G}\mathrm{r}\mathrm{a}\mathrm{p}\mathrm{n}\mathrm{c}\mathrm{o}\mathrm{l}/$.

Skiena [8] yields nearly the same result, or a
$(n/d)^{1/2-\epsilon}$-hardness.

On the positive side, we can obtain nontrivial
approximation for coloring all power graphs. In
contrast with the Independent Set problem [3],
the coloring problem becomes easier in odd pow-
ers.

Theorem 4.3 Coloring $G^{2t-1}\dot{i}sO(n/2+1/14t-2))1-$

approximable.

Proof. Let $d=2t-1$ and $D$ be the maximum
over all vertices $v$ of the number of vertices within
distance $t-1$ from $v$ . Then, the clique size of $G^{d}$

is at least $D$ . By averaging, there exists a vertex
in of degree at most $D^{1/\langle t-1}$ ) in $G$ . Hence, it is
of degree at most $D^{2+1/(-}t1$ ) in $G^{d}$ , and by induc-
tion, $G^{d}$ is $D^{2+1/(-}t1$)-inductive. Thus, the per-
formance ratio of an inductive coloring algorithm
is at most $\min(D^{1+1/}(t-1), n/D)\leq n^{()/(-}t-12t1)$ .
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