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Abstract: Given a graph G, a designated vertex r and a natural number k, we wish to find

k “ independent ” spanning trees of G rooted at r, that is, k spanning trees such that, for any

vertex v, the k paths connecting r and v in the k trees are internally disjoint in G. In this

paper we give a linear-time algorithm to find k independent spanning trees in a k-connected

maximal planar graph rooted at any vertex.
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1 Introduction

Given a graph G = (V, E), a designated ver-
tex r € V' and a natural number &, we wish to
find k spanning trees T1,Tb, - - -, T, of G such that,
for any vertex v, the k paths connecting r and v
in Ty, Ty, - - -, T} are internally disjoint in G, that
is, any two of them have no common intermedi-
ate vertices. Such k trees are called k£ indepen-
dent spanning trees of G rooted at r. Five inde-
pendent spanning trees are drawn in Fig. 1 by
thick lines. Independent spanning trees have ap-
plications to fault-tolerant protocols in networks
[BI96, DHSS84, IR88, OIBI96].

Given a graph G = (V, E) of n vertices and
m edges, and a designated vertex » € V, one
can find two independent spanning trees of G
rooted at any vertex in linear time if G is bi-
connected [BTV96, BTV99, IR88], and find three
independent spanning trees of G rooted at any
vertex in O(mn) and O(n?) time if G is tricon-

nected [BTV96, BTV99, CM88].
tured that, for any £ > 1, every k-connected

It is conjec-

graph has k independent spanning trees rooted at
any vertex [KS92, ZI89]. For general graphs with
k > 4 the conjecture is still open, however, for
planar graphs the conjecture is verified by Huck
for k = 4 [H94] and k = 5 [H99] (i.e., for all pla-
nar graphs, since every planar graph has a ver-
tex of degree at most 5 [W96, p269] means there
is no 6-connected planar graph). The proof in
[H99] yields an algorithm to actually find &k inde-
pendent spanning trees in a k-connected planar
graph, but it takes time O(n3). On the other
hand, for k-connected maximal planar graphs we
can find k independent spanning trees in linear
time for £k = 2 [BTV96, BTV99, IR88], k = 3
[BTV96, BTV99, S90] and k = 4 [MTNN98].

In this paper we give a simple linear-time al-
gorithm to find five independent spanning trees
of a 5-connected maximal planar graph rooted
at any designated vertex. Note that, since there
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independent
11,T5,T3,T4 and T5 of a graph G rooted at
r.

spanning trees

is no 6-connected planar graph, our result, to-
gether with previous results [BTV96, BTV99,
IR88, MTNN98, S90], yields a linear-time algo-
rithm to find k¥ independent spanning trees in
a k-connected maximal planar graph rooted at
any designated vertex. Our algorithm is based on
a “ 5-canonical decomposition” of a 5-connected
maximal plahar graph, which is a generalization
of an st-numbering [E79], a canonical ordering
[K96], a canonical decomposition [CK93, CK97],
a canonical 4-ordering [KH94] and a 4-canonical
decomposition [MTNN98, NRN97].

The remainder of the paper is organized as
follows. In Section 2 we introduce some defini-
tions. In Section 3 we present our algorithm to
find five independent spanning trees based on a
5-canonical decomposition. In Section 4 we give
an algorithm to find a 5-canonical decomposition.
Finally we put conclusion in Section 5.
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2  Preliminaries

In this section we introduce some definitions.

Let G = (V, E) be a connected graph with ver-
tex set V' and edge set E. Throughout the paper
we denote by n the number of vertices in G, and
we always assume that n > 5. An edge Jjoining
vertices u and v is denoted by (u,v). The degree
of a vertex v in G, denoted by d(v,G) or simply
by d(v), is the number of neighbors of v in G.
The connectivity £(G) of a graph G is the mini-
mum number of vertices whose removal results in
a disconnected graph or a single-vertex graph K;.
A graph G is k-connected if K(G) > k. A path
in a graph is an ordered list of distinct vertices
V1,02, -, v such that v;_jv; is an edge for all 4,
2 < i < 1. We say that two paths having com-
mon start and end vertices are internally disjoint
if their intermediate vertices are disjoint. We also
say that a set of paths having common start and
end vertices are internally disjoint if every pair of
paths in the set are internally disjoint.

A graph is planar if it can be embedded in the
plane so that no two edges intersect geometrically
except at a vertex to which they are both incident.
A planar graph G is mazimal if all faces including
the outer face are triangles in some planar em-
bedding of G. Essentially each maximal planar
graph has a unique planar embedding except for
the choice of the outer face. A plane graph is a
planar graph with a fixed planar embedding. The
contour Co(G) of a biconnected plane graph G
is the clockwise (simple) cycle on the outer face.
We write Co(G) = (w1, ws, - -, wp) if the vertices
w1, w2, -, wp on Co(Q) appear in this order.

3 Algorithm

In this section we give our algorithm to find
five independent spanning trees of a 5-connected
maximal planar graph rooted at any designated
vertex.

Given a 5-connected maximal planar graph
G = (V,E) and a designated vertex r € V, we



first find a planar embedding of G in which r is
located on Cy(G). Let G = G — {r} be the plane
subgraph of G induced by V — {r}. In Fig. 2 (a)
G is drawn by solid and dotted lines, and G’ by
solid lines. Since G is 5-connected, d(r) > 5. We
may assume that all the neighbors r1,72,-- -, 74(r)
of r in G appear on C,(G') clockwise in this or-
der. Now Co(G') = (ry,72,"" ,Ta(r))- We add
to G two new vertices 1 and 7y, join 7, with
r1,r2 and r3, and join vy with 74,75, -, Tg(). Let
G" be the resulting plane graph, where vertices
T1,Tb,T3,T4,Tt and Tg() appear on Co(G") clock-
wise in this order. Fig. 2 (b) illustrates G .

Let I = (Wy,Wa,---,Wy,) be a partition of
the vertex set V — {r} of G'. We denote by G,
1 < k < m, the plane subgraph of G" induced
by {rs} UW1U WaU---UWj. We denote by Gy,
0 < k < m — 1, the plane subgraph of G in-
duced by Wiy1 UWiia U---UWn U{ri}. We as-
sume that if 1 < k < m and Wy = {u1,ug, -, u}
then vertices uy,us,--,u; consecutively appear
on C,(Gy) clockwise in this order. Note that for
k = 1 we don’t assume such a condition. A par-
tition IT = (Wy, Wa, -+ -, Wy,) of V — {r} is called
a 5-canonical decomposition of G if the following
three conditions (col)—(co3) are satisfied.

(col)Wy1 = {ri,r2, 73} U{u2, u3,"*, uaer,)-2}
where vertices ug,u3,---,Ugqr,)—2 are the
neighbors of ry except r1,73,7h, and Wy, =

{ray-1,rar)}

(co2) For each k, 1 < k < m, Gy is triconnected,
and for each k, 0 < k < m — 1, Gy, is bicon-
nected (See Fig. 3.); and

(co3) For each k, 1 < k < m, one of the following
two conditions holds (See Fig. 3. The vertices
in Wy, are drawn in black dots):

(a) |Wk| > 2, and each vertex u € Wy satisfies
d(u,.Gk) =3 and d(u, Gk—l) > 3; and

(b) |Wi| = 1, and the vertex u € Wy, satisfies
d(u,G) > 3 and d(u, Gg-1) > 2.
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Fig. 2 (b) illustrates a 5-canonical decomposi-
tion of @ = G — {r}, where G' are drawn in
solid lines and each set W; is indicated by an
oval drawn in a dotted line. A 5-canonical decom-
position is a generalization of an “st-numbering”
[E79], a “canonical ordering” [K96], a “canonical
decomposition” [CK93, CK97], a “canonical 4-
ordering” [KH94] and a “4-canonical decomposi-
tion” [MTNN98, NRN97]. .

I 2: (a) Five-connected plane graph G and (b)
plane graph G".
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3: Two conditions for (co3).

We have the following lemma. We will give a
proof of Lemma 3.1 in Section 4.

Lemma 3.1 Let G = (V,E) be a 5-connected
maximal plane graph, and let r be a designated
vertex on C,(G). Then @ = G — {r} has a 5-
canonical decomposition II. Furthermore II can
be found in linear time. '



We need a few more definitions to describe
our algorithm. For a vertex v € V — {r} we
write N (v) = {v1,v2,+ -, v40)} if V1,02, ", Vg()
are the neighbors of vertex v in G and appear
around v clockwise in this order. To each vertex
v € V — {r} we assign five edges incident to v
in G"as the right leg rl(v), the tail t(v), the left
leg ll(v), the left hand lh(v) and the right hand
rh(v) as follows. We will show later that such
an assignment immediately yields five indepen-
dent spanning trees of G. Let v € W}, for some
k, 1 < k < m, then there are the following four
cases to consider.

Case 1: k = 1. (See Fig. 4(a).)

Now Wy = {rla T2, 7’3} U{u2’ U3y -y ud(?‘z)—Z}'

We may assume that vertices uz, us, - - -, Ug(ry)—2

consecutively appear on C,(G;) clockwise in
this order. Let u; = r3,ug =, Ug(ry)—1 = T1
and ug(,) = rp. For each u; € Wy — {rp}
we define rl(u;) = (us, uir1), t(wi) = (us,r2),
W(uw;) = (uiyui—1), th{u;) = (u;,v1), and
rh(ui) = (ti,V4(u;)-3) Where we assume
N(us) = {ui-1, v1,v9, -+, V4(u;)-3, Bitr1,T2}-
For ro we define ri(ry) = (rg,r1), t(rs) =
(7‘2,7”5), ll(T‘z) = (7‘2,'[‘3), lh(?‘2) = (TQ,UQ),
and rh(rz) = (r2, Ug(r,)—2)-

Case 2: W}, satisfies Condition (a) of (co3). (See
Fig. 4(b).)
Let Wi = {u1,u,---,w}. Since d(u;, Gy) =
3 for each vertex u; and G is maximal pla-
nar, vertices ui,us,---,u; have exactly one
common neighbor, say v, in Gy. Let wup
be the vertex on C,(Gy) preceding u;, and
let ;41 be the vertex on C,(G)) succeeding
u;. For each u; € Wy we define ri(u;) =
(ui, uit1), tHwi) = (us,v), U(w;) = (ui, ui—1),
lh(’u,i) = (u,;,vl), and rh('u,z-) = (ui,'ud(uz.)_;;)
where we assume N(w;) = {u;j_1,v1,v9, -+,
Vd(u;)-3) Yit1, V}-

Case 3: W; satisfies Condition (b) of (co3).
(See Fig. 4(c).)

27

Let Wy = {u}, let u' be the vertex on

C,(Gy) preceding u, and let 4" be the ver-

tex on Cy(Gy) succeeding u. Let N(u) =

{u',vl,vg,---,vd(u)_l}, and let v’ = v, for

some z, 3 < x < d(u) — 2. Then ri(u) =

(w,0"), #(u) = (urvy-r), U(w) = (u,0),
- Ih(u) = (u,v1), and rh(u) = (u,vy_1).

Case 4: k = m. (See Fig. 4(d).)

Now W,, = {Td(r)-—la"'d(r)}- Let up =
T, U1 = T4r)-1, U2 = Tq4y) and uz =

Tt For each uw; € W, we define

ri(ui) = (ui,v1), t(w) = (ui,v40)-3),
H(ui) = (i, Vaus)-2), th(w) = (ui,ui-1),
and rh(u;) = (uj,u;y1) where we assume
N (ui) = {uit1,v1,02, " -, Vg(u;)—2, Yi—1}-

@
[2] 4: Assignment.

We are now ready to give our‘algorithm.

Procedure FiveTrees(G,r) .
begin



1 Find a planar embedding of G such that r €
Co(G);

2 Find a 5-canonical decomposition II =
(W1, Wa, -+, Wp,) of G — {r};

3 For each vertex v € V — {r} find
rl(v),t(v), l(v),lh(v) and rh(v);

4 Let Ty be a graph induced by the right legs
of all vertices in V — {r};

5 Let T; be a graph induced by the tails of all
vertices in V — {r};

6 Let Ty be a graph induced by the left legs of
all vertices in V — {r};

7 Let Tj;, be a graph induced by the left hands
of all vertices in V — {r};

8 Let T, be a graph induced by the right
hands of all vertices in V — {r};

9 Regard vertex rp in trees Ty, T3 and Ty as
vertex 7,

10 Regard vertex r; in trees Ty, and Tp as ver-
tex r;
11  return T,;,T;, Ty, Ty, and T,y as five inde-

pendent spanning trees of G.
end

We then verify the correctness of our algorithm.
Assume that G = (V, E) is a 5-connected maxi-
mal planar graph with a designated vertex r € V/,
and that Algorithm FiveTrees finds a 5-canonical
decomposition IT = (W1, Wa, -+, Wp,) of G — {r}
and outputs Ty, Ty, Ty, Ty, and Tpp. We first have
the following lemma.

Lemma 3.2 Let 1 < k < m, and let TX be a
graph induced by the right legs of all vertices in
Gy — {rp}. Then TE is a spanning tree of Gy.

Proof We prove the claim by induction on k.
Clearly the claim holds for &£ = 1.
We assume that 1 < k < m —1 and TF is

a spanning tree of G, and we shall prove that

k+1
Trl

following three cases to consider.

is a spanning tree of Gr4i. There are the

Case 1: kK < m—2 and Wy satisfies Condition
(a) of (co3).
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B 5: The three cases for Lemma 3.2.

Case 2: k < m—2 and Wy satisfies Condition
(b) of (co3).

Case 3: k=m — 1.

For each case Tfl“ is a spanning tree of G4 as

shown in Fig. 5; (a) for Case 1; (b) for Case 2;

and (c) for Case 3. Q.E.D.
We then have the following lemma.

Lemma 3.3 T, T, Ty, Tip, and T5p, are spanning
trees of G.

Proof By Lemma 3.2, T]} is a spanning tree of
Gm, and hence T,; in which r} is regarded as r is
a spanning tree of G.

Similarly T3, Ty, Tip, and T,p are spanning trees
of G. Q.E.D.

Let v be any vertex in V — {r}, and let
P, P;, Py, Py, and P, be the paths connecting r
and v in Ty, Ty, Ty, Ty and Ty, respectively. For
any vertex u in V — {r} we write rank(u) = k
if u € Wy; rank(r) is undefined. If an edge
(v,u) of G’ is either a leg or a tail of vertex v,
and (v,w) of G is a hand of v, then rank(u) <
rank(v) < rank(w), and additionally if v # 7o
then rank(u) < rank(w). See Fig. 4. Now we
have the following lemma.

Lemma 3.4 Every pair of paths P, € {P,, P;, Py}
and P, € {Pj,, P} are internally disjoint.

Proof We prove only that Py and P, are in-
ternally disjoint. Proofs for the other pairs are
similar. If v = r; then Py = (v,7). If v = ry(
then P, = (v,7). If v = ro then Py = (v,7r1,71)



and P, = (v,u4(ry)-2,---). Therefor P,; and
P, are internally disjoint if v is r;, ry or Td(r)-
Thus we may assume that v # T1,72,Ta(r). Let
Py = (v,v1,v2,---,v,7), then v; = r;. Let
FPrp = (v,u1,ug,---,uy,7), then uy = Ta(r)- The
definition of a right leg implies that rank(v) >
rank(vy) > rank(vg) > --- > rank(v;), and the
definition of a right hand implies that rank(v) <
rank(u1) < rank(ug) < .-+ < rank(uy). Thus
rank(v)) < < rank(vg) < rank(v) <
rank(v) < rank(u;) < rank(uy) < --- <
rank(uy).
rank(u;) since v # ro. Therefore P, and P,y
are internally disjoint. Q.E.D.
. If rl(v) = (v,u) then we say (v, u) is an incom-
ing right leg of w. Similarly, if ¢(v) = (v,u) then

We furthermore have rank(vy) <

(v,u) is an incoming tail of u, and if ll(v) = (v, u)
then (v, u) is an incoming left leg of u.
We have the following lemma.

Lemma 3.5 Let u € V — {r}, l(u) = (u,v),
ri(u) = (u,u"), and N(u) = {vo, v1,° -+, vau)-1}-
One may assume that v = vy and u' = v, for
some 2, 3 < z < d(u) —2. Then all incoming right
legs of u appear consecutively around u. Also all
incoming tails of u appear consecutively around
u, and all inéoming left legs of u appear consecu-
tively around u. Furthermore ll(u), the incoming
right legs, incoming tails, incoming left legs and
rl(u) appear clockwise around u in this order.

X 6: Illustration for Lemma 3.5.
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Proof Ifu =ry then the claim is clearly holds.
(In this case there is no incoming legs of u.) Thus
we assume u # ro.

If (us,uw) is the tail of u; € W then u €
Co(Gk-1) and u ¢ C,(Gy). (See Fig. 4.) Thus if
t(ui) = (us,u) and ¢(u;) = (uj,u) then {u;,u;} €
Wj, for some k. Therefore all incoming tails of u
appear consecutively around u. (See Fig. 4.)

If1 <4< 2z-1and ri(v;) = (v;,u), then
(vi—1,u) & Co(Gt), and either t(u) = (u,v;_1),
rl(vi-1) = (vi—1,u) or U(u) = (u,v;—;) hold. (If
rank(v;) = rank(u) then t(u) = (u,v;_1). Oth-
erwise assume rank(v;) = k. Now edge (v;—1,u)
is on Cy(Gg-1). If rank(vi—1) < rank(u) then
U(u) = (u,vi-1). If rank(vi—1) > rank(u) then
rl(vi—1) = (vi-1,u). See Fig. 4.) Thus if u has
an incoming right leg e then the edge preceding e
around u clockwise is either an incoming right leg

~ of u, t(u) or ll(u). Since t(u) and ll(u) always ap-

pear consecutively around u, therefore all incom-
ing right legs of u appear consecutively around
u and ll(u) precedes them. Similarly all incom-
ing left legs of u appears consecutively around u
and rl(u) succeeds them. Thus the claim holds.
Q.E.D.

Lemma 3.5 immediately implies the following
lemma.

Lemma 3.6 A pair of paths Py, P; € {P,, P;, Py}
may cross at a vertex u, but do not share a vertex
u without crossing at u.

From the definitions of a left leg , a tail and a
right leg one can immediately have the following
lemma. -

Lemma 3.7 Let 1 <k <m, u # ry and u € Wj.
Then u is on C,(Gy). Let u' be the succeed-
ing vertex of u on C,(Gy). Assume that the or-
dered set N (u) starts with u'. Let rl(u) = (u, v'),
t(u) = (u,v") and U(u) = (u, v"). Then v', v",
v" appear in N(u) in this order.

We then have the following lemma.



Lemma 3.8 A pair of paths Py, P, € {P,;, P;, Py}
are internally disjoint. Also Py, Py are internally
disjoint.

Proof We prove only that P, and Py are in-
ternally disjoint. Proofs for the other cases are
similar. Suppose for a contradiction that F,; and
Py share an intermediate vertex. Let w be the
intermediate vertex that is shared by P,; and Py
and appear last on the path P, going from r to
v. Now w # ry because ry has degree one in
both T}; and T};. Then P,; and Py cross at w by
Lemma 3.6. However, the claim in Lemma 3.7
holds both for k = rank(v) and v = v and for
k = rank(w) and u = w, and hence P, and Py
Q.E.D.
By Lemmas 3.4 and 3.8 we have the following

do not cross at w, a contradiction.

lemma.

Lemma 3.9 T,;,T;, Ty, i, and Ty, are five inde-
pendent spanning trees of G rooted at r.

Clearly the running time of Algorithm Five-
Trees is O(n). Thus we have the following the-
orem. '

Theorem 3.10 Five independent spanning trees
of any 5-connected maximal planar graph rooted
at any designated vertex can be found in linear
time.

4 Proof of Lemma 3.1

In this section we give an algorithm to find a
5-canonical decomposition. Then we show it runs
in linear time. First we need some definitions.

Let G = (V, E) be a 5-connected maximal plane
graph, let r be a designated vertex on Co(G),
and let H be a triconnected plane subgraph of
G" such that 1y, € Co(H). Let Co(H) = (rp =
Wy, Wo, -+, W)-

A set of edges (vi,u), (ve,u), -+, (vp,u) in H
is called a fan with center u if (1) u ¢ Co(H),
(2) the neighbors of u on C,(H) are vy, va, - -, Up,
called leaves, and they appear in C,(H) clockwise
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in this order, and (3) either A = 2 and H does not
have edge(vq,vs), or h > 3. Assume a set of edges
('vl, u), (7)2, u), .
Now, for 1 < i< h—1, v; = w, and v;}1 = wp
hold for some a, b such that 1 < a < b < I,
and let C; be the cycle consisting of the sub-
path (wg, Wet1,- -, ws) of Co(H) and two edges
(wp, u), (v, we). Each plane subgraph F; of H in-
side C; (including C;) is called a piece of F. F;
is called an empty piece if a +1 = b. If F; is

-+, (vp,u) is a fan F with center u

an empty piece then C; is a triangle face of H.
(Since G is 5-connected, if a +1 = b then F; has
no vertex in the proper inside.) Note that by the
definition if a fan has exactly two leaves then it
has exactly one piece and the piece is not empty.
Also note that F has exactly h — 1 pieces, and if
v1 # rp then none of pieces of F' contains ry. If
none of pieces of F contains a distinct fan, then
F is a minimal fan.

A cut-set is a set of vertices whose removal
results in a disconnected graph. Since G is 5-
connected and maximal planar, every cut-set of
H consisting of three vertices has (1) exactly one
vertex not in C,(H) and (2) exactly two vertices
in C,(H). Thus each cut-set of H consisting of
three vertices corresponds to a center of a fan and
its two leaves.

We have the following lemmas.

Lemma 4.1 If a vertex v € Co(H) is contained
in none of fans of H (Note that, however, v may

" be contained in a piece of a fan.), then H — {v} is

triconnected, where H —{v} is the plane subgraph
of H obtained from H by deleting v and all edges
incident to v.

Lemma 4.2 If all pieces of a fan F =
(v1,u), (vo,u), -+, (vp,u) of H is empty (Now
d(v1) > 4, d(vy) > 4 and, for j = 2,3,---,h —
1, d{vj) = 3.) and u # ry, then H —
{ve,v3, -+, Vp—1} is triconnected, where H —
{vo,v3,-++,Vp—1} IS a plane subgraph of H ob-
tained from H by deleting ve,vs, -+, vp—1 and all
edges incident to them.



Now we gi\?e our algorithm to find a 5-canonical
decomposition.

First, by Condition (col) we can find W,,. Now
Gm—1 is biconnected since G,,,_; is a triangle cy-
cle. Since G = (V, E) is 5-connected, the vertex
set V — {r} induces a 4-connected graph G'. And
‘G, is obtained from G’ by adding a new vertex ry
adjacent three vertices of G'. Now G, is tricon-
nected since a graph obtained from a k-connected
graph G by adding a new vertex adjacent k ver-
tices of G is also k-connected [W96, p145]. Also
Gm—1 is triconnected, since otherwise G,,—; has
a cut-set S with two or less vertices and then
SUW,, is a cut-set of G with four or less ver-
tices, a contradiction. Thus for £k = m — 1 and
m, Gy, is triconnected, and for k = m — 1, G}, is
biconnected. Clearly r1,79,73 ¢ W,,.

Then, inductively assume that we have cho-
sen Wy, W1, -+ -, Wiy such that for each k =
1,141, -, m, Gy is triconnected, and for each k =
4,i+1,---,m =1, Gy is biconnected, r1,r2,73 ¢
Wi UWn-1U---UWiy1 and each Wy, k = i +
1,2+2,---,m, satisfies either (col) or (co3). Now
we can choose W; as follows. We have two cases.
If G; has exactly one vertices in the proper inside
of G; then it is 7 and we have done by setting
all vertices in G; except rp as W;. Otherwise we
canfind W; CV -Wp,, UWy—1U--- W,y such
that (1) Gj—1 is triconnected, (2) G;_; is bicon-
nected, (3) ri,72,7r3 ¢ Wi, (4) W; satisfies (co3),
as follows.

Let F = (vl,ﬁ),(vg,u),---,(vh,u) be a mini-
mal fan of G;. Note that G; always has a fan
(rp,72), (r3,72), - -, (r1,72) With center ro implies

G; always has a fan.

If every piece of F is empty then F has
three or more leaves, and we can set W; =
{va,vs,--+,up_1}. Now if A > 4 then W; sat-
isfies (a) of (co3) and G;_; is triconnected by
Lemma 4.2, and G;_; is biconnected since each
vertex in W; has degree exactly three in G; means
each vertex in W; has two or more neighbors in
G;. Similarly if b = 3 then W; satisfies (b) of
(co3), and G;_; is triconnected by Lemma 4.2,
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and G;_; is biconnected as above.

Otherwise, let F’ be a non-empty piece of F.
Now F” has four or more vertices on C,(G;) since
otherwise G' has a cut-set with four or less ver-
tices, a contradiction. Now there exists at least
one vertex of F' on C,(G;) such that (1) it is not
a leaf of F, and (2) it has two or more neigh-
bors in G;. (Since otherwise each vertices of F
on Co(G;) except the two leaves wg, w, of F' has
at most one neighbor in G;, and for G is maximal
planar each neighbor in Gj is a common vertices,
say z, and {u, wa,wb,z} forms a cut-set, a con-
tradiction.) Thus we can find W; satisfying (b) of
(co3). Now G- is triconnected by Lemma 4.1,
and G;_; is biconnected.

Thus we can find a 5-canonical decomposition.
By maintaining a data-structure to keep fans and
the number of neighbors in G; for each vertex, the
algorithm runs in linear time.

5 Conclusion

In this paper we give a linear-time algorithm
to find k independent spanning trees of a k-
connected maximal planar graph rooted at any
designated vertex. It is remained as future work
to find a linear-time algorithm for planar graphs,
which are not always maximal planar.

SE 3

[BI96] F. Bao and Y. Igarashi, Reliable
broadcasting in product networks with
Byzantine faults, Proc. 26th Annual
International Symposium on Fault-
Tolelant Computing (FTCS'96) (1996)

262-271.

G. Di Battista, R. Tamassia and L.
Vismara, OQuiput-sensitive reporting of
disjoint paths, Technical Report CS-96-

25, Department of Computer Science,
Brown University (1996).

[BTV96]



[BTV99]

[CK93]

[CK97]

[CM88]

[DHSS84]

[E79]

[H94]

[H99]

[TR8S)]

[K96]

G. Di Battista, R. Tamassia and
L.Vismara, Output-sensitive reporting
of disjoint paths, Algorithmica, 23
(1999) 302-340.

M. Chrobak and G. Kant, Convez

grid drawings of 3-connected planar

graphs, Technical Report RUU-CS-93-
45, Department of Computer Science,
Utrecht University (1993).

M. Chrobak and G. Kant, Convez grid
drawings of 3-connected planar graphs,
International Journal of Computational
Geometry and Applications, 7 (1997)
211-223.

J. Cheriyan and S. N. Maheshwari,
Finding nonseparating induced cycles
and independent spanning trees in 3-
connected graphs, J. Algorithms, 9

(1988) 507-537.

D. Dolev, J. Y. Halpern, B. Simons
and R. Strong, A new look at fault
tolerant network routing, Proc. 16th
Annual ACM. Symposium on Theory of
Computing (1984) 526-535.

S. Even, Graph Algorithms, Computer
Science Press, Potomac (1979).

A. Huck, Independent trees in graphs,
Graphs and Combinatorics, 10 (1994)
29-45.

A. Huck, Independent trees in planar
graphs, Graphs and Combinatorics, 15
(1999) 29-77.

A. Ttai and M. Rodeh, The multi-tree
approach to reliability in distributed
networks, Information and ComputaQ
tion, 79 (1988) 43-59.

C. Kant, Drawing planar graphs using
the cononical ordering, Algorithmica,

116 (1996) 4-32.

[KH94]

[KS92]

32

G. Kant and X. He, Two algorithms
for finding rectangular duals of planar
graphs, Proc. 19th Workshop on Graph-
Theoretic Concepts in Computer Science
(WG'93), Lect. Notes in Comp. Sci.,
790, Springer (1994) 396-410.

S. Khuller and B. Schieber, On in-
dependent spanning trees, Information
Processing Letters, 42 (1992) 321-323.

[MTNN98] K. Miura, D. Takahashi, S. Nakano

[NRN97]

[OIBI96]

[S90]

[W96]

[Z189)

and T. Nishizeki, A Linear-Time Algo-
rithm to Find Four Independent Span-
ning Trees in Four-Connected Planar
Graphs, WG'98, Lect. Notes in Comp.
Sci., 1517, Springer (1998) 310-323.

S. Nakano, M. S. Rahman and T.
Nishizeki, A linear time algorithm for
four-partitioning four-connected pla-
nar graphs, Information Processing Let-

ters, 62 (1997) 315-322.

K. Obokata, Y. Iwasaki, F. Bao and Y.
Igarashi, Independent spanning trees
of product graphs and their construc-
tion, Proc. 22nd Workshop on Graph-
Theoretic Concepts in Computer Science
(WG'96), Lect. Notes in Comp. Sci.,
1197 (1996) 338-351.

Ww.
graphs on the grid, Proc. 1lst An-

Schnyder, Embedding planar

nual ACMSIAM Symp. on Discrete
Algorithms, San Francisco (1990)
138-148

D. B. West, Introduction to Graph
Teory, Prentice Hall (1996)

A. Zehavi and A. Itai, Three tree-paths,
J. Graph Theory, 13 (1989) 175-188.



