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摘要: In this PaPer, we investigate a probabilistic local majority polling game on weighted
directed graphs, keeping an application to the distributed agreement problem in mind. We
formulate the game as a Markov chain, where an absorbing state corresponds to a system
configuration that an agreement is achieved, and characterize on which graphs the game will
eventually reach an absorbing state with probability 1. We then calculate, given a pair of
an initial and an absorbing states, the absorbing probability that the game will reach the
absorbing state, starting with the initial state.
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1 Introduction

Motivated by the importance of coordination
problems among agents, Tennenholtz and his
colleagues extensively discussed the problem of
agreeing on what they called social laws [4, 10, 11].
Shoham and Tennenholtz, in particular, proposed
and compared several algorithms for the agents to
agree on a standard from some existing propos-
als [10]. Under the assumption that every agent
knows who supports which proposal, the agree-
ment can be made just by, for example, taking
the one that the most agents support. The agent
system however can be distributed too wide to
admit this assumption, and this is why they sug-
gested those heuristic algorithms based on par-
tial information on the distribution of the agents’
opinions.

For simplicity, suppose that there are two pro-
posals, $0$ and 1, and that the proposal that a ma-

jority of the agents support is to be selected as the
standard. Given, for each agent, a group of neigh-
boring agents whose opinions are available to it,
a simple and natural heuristic to approximate the
agreement is to take the majority of the opinions
available to it, i.e., the opinions of its neighbors
and itself. This is called the deterministic local
majority polling system.

Peleg and his colleagues recently investigated
this system and determined how many agents sup-
porting $0$ are necessary and sufficient for all agents
to result in $0[1,7,8]$ . They naturally model
the system by a finite connected undirected graph
$G=(V, E)$ , where $V$ and $E$ respectively repre-
sent the set of agents and the (symmetric) neigh-
borhood relation. A subset $M$ of $V$ is called a
monopoly, if for any $v\in V$ , members in $M$ form
a majority of the vertices adjacent to $v$ (includ-
ing $v$ itself). Linial et al. discussed the problem
as a packing and a covering problems on graphs
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[7]. They showed that $|M|$ is $\Omega(\sqrt{n})$ and gave
a graph with $M$ of size $O(\sqrt{n})$ , where $n=|V|$ .
Bermond and Peleg studied some of its modifi-
cations, $r$-monopoly and self-ignoring monopoly
[1].

Peleg also discussed a repetitive version of the
deterministic local majority polling system infor-
mally defined as follows [9]: each of the vertices $u$

has a local state $\xi(u)\in\{0,1\}$ and synchronously
updates its local state to the one that a major-
ity of its neighbors (including itself) are in. The
game proceeds as a repetition of this process.

Since the number of possible configurations is
finite, this dynamical system will eventually be
periodic or stationary, and there is a pair of a
graph and an initial configuration such that the
system will never be stationary; the game may not
end up with all vertices being in the same local
state. The (repetitive) deterministic local major-
ity polling game is hence not powerful enough for
the purpose of making all agents agree on an ade-
quate standard, let alone a one-shot deterministic
local majority polling system.

We therefore study a probabilistic local major-
ity polling game, the idea of which was suggested
by Peleg on an undirected graph [8, 8.1.5 Other
variants].1 In this paper, the game is defined on
a directed finite graph $G=(V, E)$ with an edge
weight function $\mu$ : $Earrow \mathrm{R}^{+}$ , where $\mathrm{R}^{+}$ is the
set of positive real numbers. A directed edge
$e=(u, v)\in E$ from a vertex $u$ to a vertex $v$ rep-
resents that $v$ can read the local state $\xi(u)$ of $u$ .
There can exist a self-loop edge $(v, v)$ in $E$ . Note
that $v$ cannot make use of the local state $\xi_{\vee}(v)$ of
itself, unless $(v, v)\in E$ . The weight $\mu(u, v)$ as-
signed to an edge $(u, v)\in E$ intuitively denotes
the degree of importance of the local state $\xi(u)$

for $v$ .
The probabilistic game proceeds in the same

way as the deterministic one, except for the state
update algorithm. The new local state $\xi(v)$ is

1It should be noted that independently Hassin and Pe-
leg also studied a probabilistic local majority polling game
[5].

determined through a $\mathrm{s}\mathrm{t}\mathrm{o}\mathrm{c}\mathrm{b}_{B}\mathrm{s}\mathrm{t}\mathrm{i}_{\mathrm{C}}$ procedure as fol-
lows: For any $v\in V$ and $b\in\{0,1\}$ , let

$s_{\xi}(v, b)= \sum_{u\in Vb}\mu(u, v)$
,

where $V_{b}=\{u\in V : \xi(u)=b\}$ . Here we assume
$\mu(u, v)=0$ for any $(u, v)\not\in E$ . Then we select a
bit $b$ with probability $s_{\xi}(v, b)/(S_{\xi}(v, 0)+s_{\xi}(v, 1))$

as the new local state $\xi(v)$ .
A directed graph with a weight function is a

substantial extension over an undirected graph as
a model of multi-agent systems; the former call

for example treat asymmetric neighborhood re-
lation and each agent’s influence upon the deci-
sion process. In this paper, we further prepare
a framework by which we can partly discuss the
effect of the degree of synchrony on the game. In
the study of the repetitive deterministic local ma-
jority polling game, all vertices $v$ simultaneously
update the local states $\xi(v)$ , which assumption is
unrealistic for widely distributed multi-agent sys-
tems to make. In this paper, $k$ randomly selected
vertices are assumed to simultaneously update
their local states, which we will call the k-polling.
By varying the value of $k$ from 1 to $n=|V|$ , we
will observe the effect of the degree of synchrony
upon the game.

In order to investigate the probabilistic local
majority polling game, we first formalize the sys-
tem as a Markov chain with absorbing states, and
show that the game will eventually reach an ab-
sorbing state with probability 1, if $G$ is strongly
connected and, in addition, has a self-loop when
$k=n$ . Since the absorbing states correspond to
configurations such that all vertices have the same
local state, it guarantees that the modeled dis-
tributed system will achieve the agreement with
probability 1. We next calculate the probability
that all vertices will achieve the agreement with
local state being $0$ , given an initial configuration.
As a result, we will show that the probability is
computable by solving a set of simultaneous lin-
ear equations with $2^{n}-2$ variables, but obtaining
an explicit form of it seems to be difficult. We
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hence present two classes of graphs and give an
explicit form of the probability for them. Finally,
we demonstrate that regular graphs have desir-
able property from the view of the distributed
agreement application, by using the martingale
theory.

Following an introduction of the probabilistic
local polling game in Section 2, Section 3 inves-
tigates the game as a Markov chain. Section 4
discusses regular graphs by using the martingale
theory. Some concluding remarks will be made in
Section 5.

2 The Model and Notations

Consider a finite connected directed graph $G=$

(V, $E$) with an edge weight function $\mu$ : $Earrow \mathrm{R}^{+}$ ,
where $\mathrm{R}^{+}$ is the set of positive real numbers.
Throughout the paper, $n$ is reserved to denote
the order $|V|$ of $G$ . We associate a boolean value
$\xi(v)\in\{0,1\}$ with each vertex $v\in V$ , and call
it the local state of $v$ . For any $v\in V$ , let
$\Gamma(v)=\{u\in V:(u, v)\in E\}$ . Then the set of ver-
tices whose local states $v$ can read is the substan-
tial meaning of $\Gamma(v)$ in the paper. We hence nat-
urally assume $\Gamma(v)\neq\emptyset$ for any $v\in V$ . A configu-
ration (or a global state) $\xi=(\xi(v_{1}), \cdots,\xi(v)n)\in$

$\Xi=\{0,1\}^{V}$ is the vector of all local states. For
any $\xi\in---,$ $v\in V$ and $b\in\{0,1\}$ , let

$s_{\xi}(v, b)= \sum_{uu\in \mathrm{r}(v)1\xi()=b}\mu(u, v)$
,

and
$S(v)=S_{\xi}(v, 0)+s_{\xi(v,1)}$ , (1)

i.e., $S_{\xi(v,b)}$ is the weighted sum of the number
of vertices whose local states are available to $v$

and are $b$ , assuming configuration $\xi$ . Note that
$s(v)(= \sum_{u\in}\Gamma(v)\mu(u, v))$ does not depend on $\xi$ and
is positive.

Given a configuration $\xi=(\xi(v_{1}), \cdot\cdot, ,\xi(v_{n}))$ , we
consider the following transformation of $\xi$ . First
we uniformly randomly select $k$ distinct $\mathrm{v}e$rtices
$u_{1},$ $\ldots,$ $u_{k}$ from $V$ . Next for each $1\leq i\leq k$ , we

generate a random bit $b_{i}$ , where the Probability
that $b_{i}=b$ is given by

$q_{\xi}(u_{i}, b)=s\xi(u_{i}, b)/s(u_{i})$ . (2)

Then $\xi$ is transformed into the configuration that
is constructed from $\xi$ by setting, for each $1\leq\dot{i}\leq$

$k,$ $\xi(u_{i})=b_{i}$ . Note that each of the updates of $k$

states is independent and simultaneous. Now $b_{i}$ is
the (new) local state of $u_{i}$ . We call this stochastic
transformation procedure $k$-polling. The proba-
bilistic local majority $k$-polling game on $G’$ with $\mu$ ,
which we will study in this paper, is a transition of
configurations defined by a repetitive applications
of k-polling.

We start with calculating the probability that
$\xi$ is transformed into $\eta$ for any $\xi$ and $\eta \mathrm{i}\mathrm{n}---$ . For
any $W\subseteq V$ and $i=1,2,$ $\cdots,$ $n$ , we denote by
$Sub_{j()}W$ the set of all $j-(\mathrm{s}\mathrm{u}\mathrm{b}).\mathrm{s}e\mathrm{t}\mathrm{s}X$ of $W$ , i.e.,
$Sub_{j()}W=\{X\subseteq W : |X|=j\}$ . For any con-
figuration $\xi$ and set $W\subseteq V$ , let $\xi^{W}\in---$ be the
configuration such that the vertices exactly in $W$

are in different local states from $\xi$ ; formally,

$\xi^{w_{(v)=}}\{$
$\xi(v)$ if $v\not\in W$,
$1-\xi(v\rangle$ if $v\in W$.

Let $p_{k}(\xi, \eta)$ be the transition probability from
$\xi$ to $\eta$ , i.e., the probability that $\xi$ is transformed
into $\eta$ by an application of k-polling.

Proposition 1 Let $\eta=\xi^{W}$ for some $W\underline{\subseteq}V$ .
Then

$p_{k}(\xi, \eta)$ $=$ $p_{k}(\xi, \xi^{W})$

$=$
$\frac{1}{(\begin{array}{l}nk\end{array})}\sum_{UU:W\subseteq\in^{sub1}kV)}$

$\prod_{u\in W}q_{\xi(}u,$ $1-\xi(u))$

$\prod_{v\in U\backslash W}q_{\xi}(v, \xi(v))$
. (3)

$Pr\alpha)f$. Observe first that $p_{k}(\xi, \eta)=0,$ $\mathrm{i}\mathrm{f}|W|>$

$k$ , since no $U\in Sub_{k()}V$ is a superset of $W$ .
Suppose hence that $|W|\leq k$ . By the definition

of $k$-polling, a $k$-set $U\in Sub_{k()}V$ is randomly
selected from $V$ with probability $1/$ . Provided
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that a particular $U\in Sub_{k()}V$ is selected, the
probability that $\xi$ is transformed into $\xi^{W}$ is

$\prod_{u\in W}q_{\xi}(u, 1-\xi(u))\prod q\xi(v, \xi(v))v\in U\backslash W$’

if $W\subseteq U$ , and $0$ , otherwise, since the updates of
$\xi(u)$ are independently and simultaneously made.
1

By definition, for any $1\leq k\leq n$ , the transition
matrix $P_{k}=(p_{k}(\xi, \eta))_{\xi,-}\eta\in_{-}-$ is a stochastic matrix,
i.e., $p_{k}(\xi, \eta)\geq 0$ and $\sum_{\eta\in_{-}^{-pk(\xi,\eta)}}-=1$ , for $\xi,$ $\eta\in$

$—$ .

3 The Probabilistic Game as a Markov
Chain

Now we introduce a finite Markov chain
on $—$ with the transition probability $P_{k}$ $—$

$(p_{k}(\xi, \eta))_{\xi,-}\eta\in^{-}-\cdot$ Following the terminology of the
theory of Markov chain, we will use term a ‘state’
(of a Markov chain) and a ‘configuration’ (of a
graph) interchangeably. The elements of $P_{k}^{t}(=$

$(P_{k})^{t})$ are denoted by $p_{k}^{(t)}(\xi, \eta)$ for $t\in \mathrm{N}$ , where
$\mathrm{N}$ is the set of non-negative

$\mathrm{i}\mathrm{n}\mathrm{t}\mathrm{e}\mathrm{g}\mathrm{e}\mathrm{r}\underline{\underline{\wedge}}\mathrm{s}$

. Let $0=$

$(0, \cdots, 0),$ $1=(1,$ $\cdot$ .., 1 $)$ $\in---\mathrm{a}\mathrm{n}\mathrm{d}-=---\backslash \{0,1\}$ .
By definition, $0$ and 1 are absorbing states, i.e.,
$p_{k}(0,0)=p_{k}(1,1)=1$ , and they are the only
absorbing states, since graph $G$ is assumed to be
connected.

For each $k=1,$ $\cdots$ , $n$ , we say that $\xi\in---\mathrm{i}\mathrm{s}$

reachable to $\eta$ , if there exists a $t\geq 0$ , which may
depend on $\xi$ and $\eta$ , such that $p_{k}^{(t)}(\xi, \eta)>0$ holds.
We first characterize

$\mathrm{t}\mathrm{h}\mathrm{e}_{\wedge,--}\mathrm{c}\mathrm{l}\mathrm{a}\mathrm{S}\mathrm{S}$

of graphs such that
every configuration $\mathrm{i}\mathrm{n}rightarrow \mathrm{i}\mathrm{s}$ reachable both to $0$

and 1. The probabilistic local $k$-polling game on
such a graph will eventually reach an absorbing
state with probability 1, regardless of the initial
configuration and $k$ .

Theorem 1 Suppose that a given graph $G$ is not
strongly connected. Then there exists a configura-
tion $\xi\in-\underline{\underline{\wedge}}$ such that for any $1\leq k\leq n$ , it is not
reachable to $0_{f}i.e.$ , for any $1\leq k\leq n$ and $t\in \mathrm{N}$ ,

$p_{k}^{(t\rangle}(\xi, 0)=0$ . (4)

Proof. Let $V_{1},$ $V_{2},$ $\cdots,$
$V_{\mathit{1}}$ be the partition of $V$

corresponding to the strongly connected compo-
nents of $G$ , i.e., the induced subgraph of $G$ in-
duced by $V_{j}$ is a strongly connected component
of $G$ for any $1\leq j\leq\ell$. Since $G$ is not strongly
connected, $\ell\geq 2$ . Then there is a $j$ such that
there is no directed path from a $\mathrm{v}e$rtex not in $V_{j}$

to a vertex in $V_{j}$ . For a configuration $\xi$ such that
$\xi(v)=1$ if and only if $v\in V_{j}$ , Eq. (4) holds, since
every vertex in $\Gamma(v)$ is in 1 for any $v\in V_{j}$ . I

Theorem 2 Suppose that a given graph $G$ is
strongly connected. Then every configuration $\xi\in$

$–\wedge-$ is reachable both to $0$ and 1, provided that $G$

contains a self-loop when $k=n$ .

Remark 1 If a graph $G$ is strongly connected
but has no self-loops, then the $n$-polling may not
always lead the system to an absorbing state.

Proof of Theorem 2.
Provided that $k\neq n$ , we show $p_{k}^{(m_{0}}()\xi,$ $0)>0$

for some $m_{0}\in$ N. The fact that $\xi$ is reachable to
1 is provable by a similar argument.

Consider any configuration $\xi_{0}\in\underline{\underline{\wedge}}$

-. There is
then a vertex $u_{0}\in V$ having local state $\xi_{0}(u_{0})=0$

by definition. Since the given graph $G$ is strongly
connected, there is a directed path from $u_{0}$ to $v$

for any $v\in V$ . Let $V_{j}\subseteq V$ be the set of vertices
$v$ such that the length of a shortest path from $u_{0}$

to $v$ is $j$ , i.e., the distance of $v$ from $u_{0}$ is $j$ . Sets
$V_{0},$ $V_{1},$ $\cdots$ , $V_{\ell}$ clearly form a partition of $V$ , where
$V_{0}=\{u_{0}\}$ and $l$ is the distance of a farthest vertex
from $u_{0}$ .

$\mathrm{L}\mathrm{e}\mathrm{t}---j$ be the set of configurations $\xi\in---\mathrm{s}\mathrm{u}\mathrm{c}\mathrm{h}$

that $\xi(v)=0$ for any $v \in\bigcup_{i=0}^{j}V_{i}$ . By definition,
$\xi_{0}\in---0$ and

$—0\supset---_{1}\supset\cdots\supset--\ell=-\mathrm{t}0\}$ .

For any $0\leq j--\leq\ell-1$
, we show that any con-

$\mathrm{f}\mathrm{i}$gurat
$-$-ion $\mathrm{i}\mathrm{n}-j$ is reachable to a

$–\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{f}\mathrm{i}\mathrm{g}\mathrm{u}\mathrm{r}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}$

in
$-j+1$ . This, together with $\xi_{0}\inrightarrow 0$ , implies that
$\xi 0$ is reachable to $0$ .
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Consider any configuration $\xi\in---j\backslash ---j+1$ . Let
$u_{1}\in V_{j+1}$ be a vertex such that $\xi(u_{1})=1$ ,
which witnesses the fact $\xi\not\in---j+1$ . Observe that
$q_{\xi}(v, \mathrm{o})>0$ for any $v \in\bigcup_{i=1}^{i+1}V_{i}$ , since letting
$v\in V_{i}$ , there is an $x\in\Gamma(v)\cap V_{i-1}$ and $\xi(x)=0$

by definition.
Although $q_{\xi}(u0,0)$ can be $0$ , since $k<n$ , there

is a $k$-set $U\in Sub_{k()}V$ that contains $u_{1}$ but not
$u_{0}$ . Letting $U_{0}\subseteq U$ be the set of vertices $v$ such
that $q_{\xi}(v, 0)>0$ , we construct a configuration $\eta$

from $\xi$ by setting the local states of all $v\in U_{0}$ to
$0$ and those of all $v\in U\backslash U_{0}$ to 1. By definition,
we observe the following facts, which altogether
imply that $\xi\in---j\backslash _{-j+1}^{-}-$ is reachable to a certain
configuration $\mathrm{i}\mathrm{n}_{-}^{-_{j+1}}-$ :

$\bullet\eta(u_{1})=0$ ,

$\bullet$ if $\xi(v)=0$ and $v \in\bigcup_{i=0^{1}}^{j+}Vi$ then $\eta(v)=0$ ,
and

$\bullet p_{k}(\xi, \eta)>0$ .
We would like to go on the proof for $k=n$ ,

provided that $G$ has a self-loop. Let $u_{0}$ be a vertex
having a self-loop. For any configuration $\xi$ such
that $\xi(u_{0})=0,$ $p^{(t)}n(\xi, 0)>0$ for so.m$et\in \mathrm{N}$ since
$q_{\xi}(u0,0)>0$ . (One can repeat a similar proof to
that for case $k<n$ , provided that $q_{\xi}(u0,0)>0.)$

Hence all what we need to do is to show that for
any configuration $\xi(\neq 1)$ , there is a configuration
$\eta$ such that $\eta(u_{0})=0$ and $p_{n}^{(t)}(\xi, \eta)>0$ for some
$t\in \mathrm{N}$ hold.

Let $\xi(\neq 1)$ and $u_{1}$ be any configuration and
a vertex in $V$ such that $\xi(u_{1})=0$ , respectively.
Since $G$ is strongly connected, let $X$ : $x_{0}(=$

$u_{1}),$ $X_{1},$ $\cdots,$ $x_{t}(=u_{0})$ be a shortest path from $u_{1}$ to
$u_{0}$ . With $e$ach $x_{j}(0\leq j\leq\ell)$ , we associate, in the
following, a configuration $\xi_{j}$ such that $\xi_{j}(Xj)=0$

and $p_{n}(\xi_{j-1},\xi_{j})>0$ hold. By taking $\xi=\xi_{0}$ and
$\eta=\xi_{\ell}$ , we have $p_{n}^{(\ell}()\xi,\xi_{\ell})>0$ .

First $\xi$ is associated with $x_{0}(=u_{1})$ . For any
$1\leq j\leq\ell$ , letting $U_{f}$

, be the set of vertices $v$ such
that $q_{\xi_{j-1}}(v, 0)>0$ , the configuration $\xi_{j}$ associ-
ated with $x_{j}$ , is constructed from $\xi_{j-1}$ by setting
the local states of all vertices in $U_{j}$ to $0$ . Then

$\mathrm{c}1e$arly $p_{n}(\xi_{j-1},\xi j)>0$ by definition. In order
to observe $x_{j}\in U_{j}$ for any $1\leq j\leq\ell$, we point
out that $\xi(x_{0})=0$ , and that for any $1\leq j\leq\ell$,
$q_{\xi_{j-1}}(x_{j}, 0)>0$ , since $x_{j-1}\in\Gamma(x_{j})$ . 1

Next we discuss how to calculate the absorb-
ing probability that, from a given initial config-
uration $\xi\in-\underline{\underline{\wedge}}$ , the system reaches a given ab-
sorbing state in $\{0,1\}$ . For any initial distribu-
tion $\pi$ , there exists a (unique) stationary distribu-
tion $( \lim_{tarrow\infty}\pi P_{k}^{t})$ whose form is $(p_{1}^{\mathrm{O}},0, \cdots,0,p_{2})1$

for some $p_{1},p_{2}>0$ such that $p_{1}+p_{2}=1$ ,
i.e., the support of its stationary distribution is
$\{0,1\}\subset---$ . The following theorem is well-known
in the Markov chain theory (see e.g., Feller [3,
P.403 Theorem 2]). Let $\mathrm{A}\mathrm{b}_{\mathrm{S}\mathrm{o}\mathrm{r}}\mathrm{b}_{k}(\xi, 0)$ be the ab-
sorbing probability that, starting from a configu.-
ration $\xi$ , the system is absorbed into $0$ .

Theorem 3 $\mathrm{x}=(\mathrm{A}\mathrm{b}_{\mathrm{S}}\mathrm{o}\mathrm{r}\mathrm{b}_{k}(\xi, 0))\xi\in_{-}^{-}-$ is a solu-
tion of the following equation that satisfies the
boundary conditions $x_{0}=1$ and $x_{1}=0$ :

$P_{k}\mathrm{x}=\mathrm{x}$, (5)

where $P_{k}=(pk(\xi, \eta))\xi,\eta\in^{-}--$ and $\mathrm{x}=(x_{\eta})_{\eta\in_{-}}$-..
Conversely there exists a unique $\mathrm{x}$ that satisfies

Eq. (5).

The above theorem guarantees that $\mathrm{A}\mathrm{b}\mathrm{S}\mathrm{o}\mathrm{r}\mathrm{b}_{k}(\xi, 0)$

can be calculated by solving the set of simultar$\cdot$

neous linear equations (5) in $O(h^{3})$ time, where
$h=2^{n}-2$ is the number of variables ap-
peared [2]. However, obtaining an explicit form
of $\mathrm{A}\mathrm{b}_{\mathrm{S}}\mathrm{o}\mathrm{f}\mathrm{b}_{k(\xi,0)}$ seems to be difficult in general.
In the rest of this section, we give an explicit form
of $\mathrm{A}\mathrm{b}\mathrm{S}\mathrm{o}\mathrm{r}\mathrm{b}_{k}(\xi, 0)$ for two classes of graphs.

Lemma 1 Suppose that for any $\xi\in---$ ,

$\sum_{\xi(v)=1}S_{\xi()}v,$$0= \sum_{0\xi \mathrm{t}v)=}s_{\xi}(v, 1)$
. (6)

Then for any $\xi\in---andk=1,$ $\cdots,$ $n$ ,

$\sum$ $s(v)$

$\mathrm{A}\mathrm{b}_{\mathrm{S}\mathrm{O}}\mathrm{r}\mathrm{b}_{k}(\xi,0)=\frac{\xi(v)=0,\nu\in V}{\sum_{v\in V}s(v)}$

. (7)
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Proof. By Theorem 3, it is sufficient to show We now partially evaluate $A(U)$ :

$\sum_{\eta\in_{-}^{-}-}pk(\xi, \eta)(_{\eta(u}\sum_{)=0}S(u))=\sum_{\xi(u)=0}S(u)$ ,

for any $\xi$ $\in$
$–\wedge-$ and $k$ $=$ 1, $\cdots,$ $n$ . Letting

$\eta=\xi^{W}$ for some $W$ $\subseteq$ $V$ , we can rewrite
$\sum_{\eta(u)0^{S}}=(u)$ as $\sum_{\xi(u\rangle=0}s(u)+\sum_{u}\in W,\xi(u)=1^{S}(u)-$

$\sum_{u\in W,\xi(u)0}=(su)$ . In the following, we show

$\sum_{W\subseteq V}p_{k}(\xi,\xi^{w_{)}}(_{u\in W},\sum_{\xi(u)=1}s(u)-$

$u \in W,\xi\sum_{\mathrm{t}^{u})=0}S(u)\mathrm{I}=0$ , (8)

since

$\sum_{\eta\in_{-}^{-}-}p_{k}(\xi, \eta)\sum\xi(u)=0S(u)$

$=$
$\xi(u)0\sum_{=}S(u)\sum pk(\xi, \eta)\eta\in_{-}^{-}-$

$=$
$\xi(u)\sum_{=0}S(u)$

.

By Proposition 1, Eq. (8) is equivalent to

$\sum_{U\in Sub_{k()}VW}\sum_{U\subseteq w\in W}\prod q\xi(w, 1-\xi(w))$

$\prod_{v\in U\backslash W}q_{\xi}(v, \xi(v))$

$(_{u\in W,\xi(} \sum_{u)=1}s(u)-\sum_{u\in W,\xi(u)=0}S(u)1=0$.

For any $U\in Sub_{k()}V$ , let

$A_{1}(U)=W \sum_{\subseteq U}\prod_{w\in W}q\xi(w, 1-\xi(w))$

$\prod_{v\in U\backslash W}q_{\xi(v},\xi(v))\sum_{u\in W,\xi(u)=1}\theta(u)$

$=$
$\sum_{u\in U,\xi(u\rangle=1}s(u)\sum_{\in W:uW\subseteq U}$

$\prod_{w\in W}q_{\xi}(w, 1-\xi(w))\prod q_{\xi}(v,\xi(v))v\in U\backslash W$

$=$
$u \in U,\xi(u)1\sum_{=}s(u)q\xi(u, 1-\xi(u))$

$\sum_{W:u\in W\subseteq U}\prod_{w\in W\backslash \{u\}}q\xi(w, 1-\xi(w))$

$\prod_{v\in U\backslash W}q_{\xi(}v,$

$\xi(v))$

$=$ $\sum$ $s(u)q_{\xi}(u, 0)$

$u\in U,\xi(u)=1$

$\prod_{v\in U\backslash \{u\}}\{q_{\xi}(v, 1-\xi(v))+q_{\xi}(v,\xi(v))\}$

$=$ $u \in U,\xi()=1\sum_{u}S(u)\cdot\frac{s_{\xi}(u,0)}{s(u)}\cdot 1$

$=$ $\sum$ $s_{\xi}(u, 0)$ .
$u\in u_{\xi},(u)=1$

In the same reduction,

$A_{2}(U)=W \sum_{\subseteq U}\prod_{w\in W}q\xi(w, 1-\xi(w))$

$\prod_{v\in U\backslash W}q\xi(v,\xi(v))\sum_{\xi u\in W,(u)=0}s(u)$

$=$ $\sum$ $s_{\xi}(u, 1)$ .
$u\in U,\xi(u)=0$

So we obtain

$A(U)= \sum_{UW\subseteq}\prod_{w\in W}q_{\xi}(w, 1-\xi(w))$

$\prod_{v\in U\backslash W}q_{\xi}(v, \xi(v))$

$(_{u\in W,\xi(} \sum_{u)=1}s(u)-\sum_{=u\in W,\xi(u)0}S(u))$ .

Then we $\mathrm{n}e\mathrm{e}\mathrm{d}$ to show

$\sum$ $A(U)=0$ .
$u\in s_{u}b_{k}(U)$

$A(U)$ $=$ $\sum$ $s_{\xi}(u, 0)$

$\xi\langle u)=1,u\in U$

$\sum$ $s_{\xi}(u, 1)$ .
$\xi(u)=0_{u\in},U$

Since

$\sum$ $A(U)=$
$U\in^{s_{u}}b_{k}(V)$

$( \sum_{\xi(v)=1}S_{\xi}(v, 0)-\sum S\xi(v,$$1\xi(v)=^{0}))$ ,
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the proof completes by assumption. 1

We then give two classes of graphs satisfying
the condition given by Eq. (6) in Lemma 1. A
graph $G=(V, E)$ is said to be semi-symmetric, if
for any vertex $v\in V$ its indegree coincides with its
outdegree, i.e., $|\{u\in V:(u, v)\in E\}|=|\{w\in V$ :
$(v, w)\in E\}|$ for any $v\in V$ . A graph $G=(V, E)$

is said to be symmetric if for any pair $u,$ $v\in V$

of vertices, $(u, v)\in E$ if and only if $(v, u)\in E$ .
Note that a symmetric graph is semi-symmetric
and that there can be a vertex that does not have
a self-loop in a symmetric graph.

Theorem 4 The absorbing probability is given by
Eq. (7), if

(C1) $G=(V, E)$ is symmetric and $\mu$ satisfies that
$\mu(u, v)=\mu(v, u)$ for any $(u, v)\in E$ , or

(C2) $G$ is semi-symmetric and $\mu$ is a constant
function.

Proof. We show that the condition (6) holds
for any $\xi\in---$ , if either (C1) or (C2) holds.

If (C1) holds, by definition, Condition (6) ob-
viously holds for any $\xi\in---$ .

As for (C2), since $G$ is semi-symmetric, $E$

can be decomposed into several directed rings
$–E_{1},$

$E_{2},$ $\cdots,$
$E\ell$ . Consider any configuration $\xi\in$

$-\cdot$ With respect to an arbitrary fixed ring $E_{i}$ ,
$|\{(u, v)\in E_{i} : \xi(u)=0,\xi(v)=1\}|=|\{(u, v)\in$

$E_{i}$ : $\xi(u)=1,\xi(v)=0\}|$ , which implies that con-
dition (6) holds, since $\mu$ is constant. 1

4 Regular Graphs and Martingales

In this section, using the martingale theory
(see, e.g., [6]) we analyze the probabilistic local
majority polling game satisfying Eq. 6.

4.1 Martingales

Let $\{X_{t}\}_{t0}\infty=$ denote the $—$-valued stochastic
process defined by the transition probability

given in Proposition 1 on the probability space
$(_{-,\tau}^{-}-\mathrm{N}, \mathrm{p}\epsilon)$ , where $\mathcal{F}$ is the a-field, and $\mathrm{P}_{\xi}\{X_{0}=$

$\xi\}=1$ for $\xi\in---$ . Namely $X_{t}$ is the state $\mathrm{o}\mathrm{f}_{-}^{-}-$ at
time $t$ and

$Pk(\eta 1, \eta 2)=^{\mathrm{p}_{\xi\{X}}t+1=\eta_{2}|X_{t}=\eta_{1}\}$

for $t\in \mathrm{N}$ . Let $\mathcal{F}_{t}\subset \mathcal{F}$ be the smallest a-field such
that all of $X_{0},$

$\cdots,$
$X_{t}$ are measurable. Provided

Eq. 6, by the proof of Lemma 1,

$\sigma(\xi)=\sum_{\in\xi--}p_{k(\xi,\eta})\sigma-(\eta)$ for $\xi\in---$ , (9)

where $\sigma(\xi)=\sum_{v\in V_{)}\xi(}v\rangle=0(Sv)$ . It means that $\sigma$

is harmonic with respect to the transition matrix
$P_{k}$ . By Eq. (9), we have the following theorem
([6, P.87]):

Theorem 5 If Eq. (6) holds then $(\sigma(X_{t}), F_{t})$ is
a martingale, that is, for any $t\in \mathrm{N}$

$\mathrm{E}[\sigma(X_{t+}1)|F_{t}]=\sigma(Xt)$ $\mathrm{P}_{\xi^{-\mathrm{a}}}.\mathrm{s}$ .

4.2 Regular graphs

Now we consider a regular graph with a con-
stant edge weight function. Here by a regular
graph, we mean a symmetric graph $G$ such that

(i) every vertex $v\in V$ has a self-loop $(v, v)$ , and

(ii) all vertices $v\in V$ have the same indegree
$|\Gamma(v)|$ (and hence have the same outdegree).

For a regular graph $G$ and a constant function $\mu$ ,
by Theorem 4 and Eq. (7),

$\mathrm{A}\mathrm{b}_{\mathrm{S}\mathrm{o}\mathrm{r}}\mathrm{b}k(\xi, 0)=\frac{|\{v\in V.\xi(v)=0\}|}{|V|}.$ , (10)

which property seems to be desirable for a fair
agreement. It is worth emphasizing that the prob-
ability depends only on the number of vertices
having state $0$ , but not on their positions.

Theorem 6 Suppose that $G$ is regular (in the
sense of this subsection), and $\mu$ is constant. Then
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for any $1\leq k\leq n$ , the mean of the number of ver-
tices whose local states $0$ (or $0$ ) is invariant under
$k$ -polling, that is, for any $t\in \mathrm{N}$

$\mathrm{E}[|\{v\in V : xt=\eta, \eta(v)=0\}|]$

$=$ $|\{v\in V : \xi(v)=0\}|$ ,

where $\xi$ is a given initial configuration.

Proof. Since $G$ is regular, $s(v)=s$ is a con-
stant, and

$|\{v\in V:\xi(v)=0\}|=\sigma(\xi)/s$ . (11)

By Theorem 5,

$\mathrm{E}[\sigma(x_{t})/s]=\mathrm{E}[\sigma(x0)/s]$ .

By Eq. (11),

$\mathrm{E}[\sigma(x_{t})/s]$

$=$ $\mathrm{E}[|\mathrm{f}^{v\in}V:Xt=\eta, \eta(v)=0\}|]$ ,

and since $\mathrm{P}_{\xi}\{X0=\xi\}=1$ ,

$\mathrm{E}$ [a $(X_{0})/s$] $=|\{v\in V : \xi(v)=0\}|$ .

The proof completes. 1

5 Concluding Remarks

This paper investigated a probabilistic local
majority polling game on a weighted directed
graph, by formulating it as a Markov chain. From
the view of designing an agreement algorithm for
all agents to agreeing on an opinion, the determin-
istic local majority polling game discussed so far is
not powerful enough, which motivated our study.
We characterized on which graphs the probabilis-
tic game always finishes in an absorbing state, i.e.,
the agents achieve an agreement. We mainly in-
vestigated the probability that the game reaches
an arbitrarily given absorbing state.

However, there remain many open problems,
among which the the problem of calculating the
absorbing time is perhaps the most important.

Given a configu.ration $\xi$ , calculating the mean
time $\mathrm{T}_{k}(\xi, 0)$ necessary for the system to reach
absorbing state $0$ is the problem. The following
theorem holds using an argument similar to that
of the ruin problem [3, P.348]:

Theorem 7 $\mathrm{y}=(\mathrm{T}_{k}(\xi, \{0,1\}))_{\xi\in^{-}}--\dot{i}S$ a solution

of the following equation with the boundary con-
ditions $y_{0}=0$ and $y_{1}=0$ :

$P_{kY+}=\mathrm{y}$ , (12)

where $\mathrm{y}=(y_{\eta})_{\eta}\in_{-}--$ .
Conversely there exists a unique $\mathrm{y}$ that satisfies

Eq. (12).

As in the case of Theorem 3, the time can be
calculated by solving the set of simultaneous lin-
ear equations (12) in $O(h^{3})$ time, where $h=2^{n}-2$

is the number of variables appeared [2]. It is how-
ever difficult to obtain an explicit form of the so-
lution of the inhomogeneous difference equation
(12), even if the graph is complete, and leave it
as a future work.
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